上海交大船舶操纵性ppt课件

合集下载

《船舶操纵与避碰—船舶操纵》教学课件—01船舶操纵性能

《船舶操纵与避碰—船舶操纵》教学课件—01船舶操纵性能

第二阶段 (过渡阶段)
• 过渡阶段:转舵结束起到船舶进入定 常回转运动为止的动态过程
• 受力情况:随船舶横移、漂角增大, 作用于船体的流体力和力矩增大;
• 运动特点 : 斜航运动; 旋回加速; 纵向速度下降; 内倾渐渐向外倾变化。
第三阶段(定常阶段)
• 定常阶段(steady turning) : 受力与运动处于稳定状态
6.舵角
规律:
– 在极限舵角的范围之内,操不同舵角时的旋回初径变 化情况,总的趋势是,随着舵角的减小,旋回初径将 会急剧增加,当然旋回时间也将增加。
– 对于不同的船舶,随着舵角的减小,旋回初径的增加 率是不一样的,其中舵的高宽比小的船舶,其旋回初 径的增加率较大。
7.操舵时间
操舵时间主要对船舶的进距影响较大,进距随操 舵时间的增加而增加;
• 降速幅度:
– 与旋回初径DT有密切的关系,DT/L值越小,旋回性越好, 降速越显著。
– 一般船舶旋回中的降速幅度大约为旋回操舵前船舶速度的 25%~50%,而旋回性能很好的超大型油轮最大可达到原 航速的65%。
3. 横倾(list)
横倾变化
– 船舶操舵不久,将因舵力横倾力矩而出现少量内倾; – 接着由于船舶旋回惯性离心力矩的作用,内倾将变为外倾; – 因横向摇摆惯性的存在将产生最大的外倾角θmax,最大外
第一章 船舶操纵性能
• 第一节 船舶旋回性能 • 第二节 船舶航向稳定性和保向性 • 第三节 船舶变速运动性能 • 第四节 船舶操纵性能试验 • 第五节 IMO船舶操纵性衡准的基本内容
第一节 船舶旋回性能
• 在实际操船中,对舵的使用大致可分为小舵角的 保向操纵、一般舵角的转向操纵及大舵角的旋回 操纵三种。定速直航的船舶操某一大舵角后进入 定常旋回的运动性能称为船舶的旋回性能,它是 船舶操纵性当中极为重要的一种性能。

《船舶操纵》课件

《船舶操纵》课件

(3)船舶转动惯量、排水量:
满载大船、舵效比较差,其表现是起转迟钝,停 转不易。一般情况下,操纵此类船舶应早用舵,早回 舵,并使用大舵角。
(4)船舶纵、横倾:
首倾时,舵效较差,适量尾倾舵效好。横倾时, 转向低舷侧水阻力较大,舵效差;反之,则舵效好。
(5)舵机性能:
电动液压舵机性能较好。
(6)风、流、浅水等外界因素:
(4)收到功率(DHP) 收到功率是指通过船尾轴管后向螺旋桨提供的功率。
(5)推力功率(THP)
推力功率是指螺旋桨发出的推进功率,它 等于螺旋桨发出的推力T与螺旋桨进速Vp 的积。即:
THP=T·Vp
(6)有效功率(EHP)
有效功是指克服船舶阻力R而保持一定船 速Vs所需要的功率,它等于船舶阻力与船 速的积,即:
EHP=R·Vs
2)各功率之间的关系
(1)传送效率η c
传送效率是螺旋桨收到功率与主机功率(MHP)之比:
η c=DHP/MHP
(该值通常为O.95~O.98)
(2)推进器效率η p
推进器效率是有效功率与收到功率之比:
η p=EHP/DHP (3)推进效率
(该值约为O.60~O.75)
推进效率是有效功率与主机机器功率之比。该
1.静航向稳定性
静航向稳定性是指当船舶因外力作用稍微偏离原 航向而重心仍沿原航线运动时,船舶斜航漂角将如 何变化的性能。
2.动航向稳定性
动航向稳定性是指当干扰过去之后,在不用舵纠 正的情况下,能尽快地稳定于新航向的性质。
3.判断航向稳定性的方法
1)航向稳定性指数判断法
船舶航向稳定性指数T>O且为较小正数时,其具有 良好的航向稳定性。随着T值的增大。虽然仍具有航 向稳定性,但是其航向稳定性将变差。当T<O,则船 舶不具有航向稳定性。

《船舶操纵》课件(精选)97页PPT

《船舶操纵》课件(精选)97页PPT


16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
《船舶操纵》课件(精选)
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

船舶操纵PPT学习教案课件

船舶操纵PPT学习教案课件
大连海事大学船舶操纵
会计学
1
船舶操纵绪论
概述 船舶操纵运动学参数 船舶操纵动力学参数 船舶阻力与推进
第1页/共46页
船舶操纵概述
船舶操纵的含义 常规船舶操纵(ship handling)包括三种:
保持航向 改变航向 改变船速
第2页/共46页
船舶操纵概述
保持航向(Course keeping or steering)
第32页/共46页
船舶操纵动力学参数
船体水动力及其表 达式
水动力角是指水动力合力FH 方向与船舶首尾线之间的交 角γ;
水动力角可用水动力横向分 量与纵向分量的比值表示
第33页/共46页
船舶操纵动力学参数
船体水动力及其表 达式
水动力角的大小取决于横向 水动力系数和纵向水动力系 数的比值;
第6页/共46页
船舶操纵设备
• 其他设备:
– 侧推器设备; – 外力协助操纵—拖船的协助; – 系泊设备:锚、缆等。
第7页/共46页
船舶操纵特点
• 惯性大,缓变系统 • 控制输入较小 • 欠驱动特性:
控制输入的维数小于被 控自由度维数(dof), 例如,控制输入:车、 舵;被控坐标:横向位 移y1,航向角和纵向 位移x1
船体水动力及水动力矩
深水中,超大型船舶的纵向附加质 量mx≈0.07m;横向附加质量 my≈0.75m;附加惯性矩Jz≈1.0m。
为了研究问题的方便,有的资料将 船舶质量与附加质量之和称为虚质 量,惯性矩与附加惯性矩之和称 为虚惯性矩。
第30页/共46页
船舶操纵动力学参数
船体水动力及其 表达式
第36页/共46页
船舶操纵动力学参数
水动力作用中心

船舶操纵性指数ppt课件

船舶操纵性指数ppt课件

用拉氏变换法进展数学处置。对式〔23〕两边作拉氏变 换,并思索到:
v(s)
L[v(t)]
0
v(t)
e
s
tdt
r(s)
L[r(t)]
0
r(t
)
es
tdt
(s)
L[
(t)]
0
(t
)
es
tdt
拉氏变换后变量 s与时间域变量 t 相对应,具
有频率的含义。那么式〔23〕变为:
Yvv(s)(M Yv )s(v s)(M Yv )v(0)
〔18〕
X
式中:X u u
,Y
Y
,…,统称为水动力导数,
分别表示为船舶作匀速直线运动,只改动某一运动参
数,而其他参数皆不变时,所引起的作用于船舶的水
动力〔或力矩〕对该运动参数的变化率。
对〔18〕式思索到泰勒级数展开点对应于匀速直线
运动,此时船舶运动左右对称,无横向力,故:
Y(u1)0, N(u1)0; 为坚持匀速直线运动, X方向的受力应使螺旋桨的
Y
M(v
u
xG 2 xG)
)
〔10〕
N Iz MxG(v u)
显然,式〔5〕是式〔10〕当 xG 0 时的实例。
〔二〕线性支配运动微分方程
1.根据式〔10〕,先讨论等号左侧的作用于船体的水运动和 力矩的线性表达式。
X
Yf( L, m , Iz , xG , 船 型 ;u ,v 参 , ,u ,v 数 , ,n ,n , ,; , , g , , p, pv ) 船体几何特征 船体运动特征 流体特征
〔17〕
简化为:
X X (u 1 ) X u u X v v X X u u X v v X X Y Y (u 1 ) Y u u Y v v Y Y u u Y v v Y Y N N (u 1 ) N u u N v v N N u u N v v N N

《船舶操纵》课件

《船舶操纵》课件

船舶操纵的基本原则
01
遵守国际海上避碰规则 ,确保船舶之间的安全 避让。
02
根据船舶的装载状态、 吃水、风流影响等因素 ,合理调整船速和航向 。
03
注意观察周围环境和条 件,及时采取必要的措 施应对突发情况。
04
保持船员良好的心理状 态,避免因紧张或疏忽 导致的操作失误。
PART 02
船舶操纵性能
、航速、航向等因素,以便更好地进行避让操作。
船舶的应急操纵
总结词
应急操纵是船舶在紧急情况下采取的特殊操纵方式, 要求驾驶员熟悉应急操纵程序和方法,确保船舶在紧 急情况下能够安全脱险。
详细描述
应急操纵是船舶在紧急情况下采取的特殊操纵方式, 要求驾驶员熟悉应急操纵程序和方法。在应急操纵中 ,驾驶员需要保持冷静,迅速判断情况并采取适当的 措施。例如,在失火、碰撞等紧急情况下,驾驶员需 要迅速停车、倒车、转向等操作,以避免危险扩大。 此外,驾驶员还需要了解各种应急设备的使用方法, 如消防器材、救生设备等,以便在紧急情况下能够正 确使用。
PART 05
船舶操纵安全与管理
船舶操纵安全制度与规则
船舶操纵安全制度
为确保船舶操纵安全,必须制定和遵 守相关制度,包括航行制度、停泊制 度、作业制度等。
船舶操纵规则
遵循国际海事组织(IMO)和国内海 事管理机构制定的船舶操纵规则,确 保船舶在航行、停泊和作业过程中的 安全。
船舶操纵安全检查与评估
船舶操纵包括船舶推进、转向 、减速、停车和倒车等基本操 作。
Байду номын сангаас
船舶操纵是航海技术的重要组 成部分,是航海人员进行船舶 驾驶和操作的基本技能。
船舶操纵的重要性
船舶操纵是保证船舶 安全航行和作业的重 要手段。

上海交大船舶操纵性ppt课件

上海交大船舶操纵性ppt课件

Shanghai Jiao Tong University2nd Semester,Academic Year2014-2015 Summary of Ship Manoeuvrability for ReviewProf. Dr.-Ing. Zou ZaojianMay 14, 2015Outline●Introduction●Evaluation and Prediction of Ship Manoeuvrability ●Equations of Ship Manoeuvring Motion●Dynamic Stability of Ships●Initial Turning and Turning Ability of Ships●Control Devices●Measures to Improve Ship Manoeuvrability●Some Remarks on the ExaminationIntroduction●Purpose of the course-to answer the questions:What is “ship manoeuvrability” (What does “shipmanoeuvrability” deal with) ?Why should a ship have good manoeuvrability?How to evaluate ship manoeuvrability(How tomake judgement if a ship has good or poormanoeuvrability) ?How to ensure that a ship is designed/built withgood manoeuvrability(If a ship has poormanoeuvrability, or the manoeuvrability is notgood enough, how to take measures to improve itsmanoeuvrability) ?●Ship Manoeuvrability and Its Contents-Manoeuvrability: The ability of a ship to keep or change its state of motion under control actions according to the intention of the helmsman.Ship manoeuvrability includes : (definition)Inherent dynamic stability (straight line stability) Course-keeping ability (directional stability)Initial turning/course-changing abilityYaw-checking abilityTurning abilityStopping ability●Importance of Ship Manoeuvrability-Navigation safety(examples)-Navigation economy(examples)●Factors which affect navigation safety(1)Ship manoeuvrability itself(2)Human factors (most important !)(3)Environmental factors (wind, waves, current;restricted waters; etc.)●Closed-loop Control System for Ship ManoeuvringShip ↔Helmsman (Pilot or autopilot) ↔Control Devices ↔Environmental effects ↔ShipEvaluation of Ship Manoeuvrability●Standard manoeuvres and the parameters forevaluating ship manoeuvrability-How to conduct these manoeuvres?-The parameters obtained from these manoeuvres?-How can these parameters be used to evaluate ship manoeuvrability?Turning testZig-zag testStopping test (crash stop test)Spiral test (direct spiral and reverse spiral test)Pull-out testEvaluation of Ship Manoeuvrability(continued)●IMO Standards for Ship Manoeuvrability-Turning ability (with turning test)-Initial turning ability (with zig-zag test)-Yaw-checking and course-keeping abilities (with zig-zag test)-Stopping ability (with stopping test)●Full-scale TrialConduct the standard manoeuvres with full-scale ship to obtain the parameters for evaluating shipmanoeuvrabilityPrediction of Ship ManoeuvrabilityThe methods which can be used for predicting ship manoeuvrability at the ship design stage:(1) Empirical method (database, empirical formulae for theparameters for evaluating ship manoeuvrability)(2)Free-running model tests(by conducting the standardmanoeuvres with ship model)(3) Mathematical models(Equations of ship manoeuvringmotion) +computer simulation (simulation of thestandard manoeuvres)(4) Direct numerical simulation of the standard manoeuvresby using CFD (Computational Fluid Dynamics) techniques The second one and the third one are the most commonly used methods for predicting ship manoeuvrability at the ship design stage.Equations of Ship Manoeuvring MotionMathematical models (Equations of ship manoeuvring motion)-Coordinate systems(1) earth-fixed coordinate system(2) body-fixed coordinate system with the originlying on the center of gravity of the ship(3) body-fixed coordinate system with the originlying on the midship section-How to derive the equations of ship manoeuvring motion in these coordinate systems?Equations of Ship Manoeuvring Motion (continued)Expressions of the hydrodynamic forces in the equations of ship manoeuvring motion-Abkowitz model(MIT professor, whole-ship model)(1) The hydrodynamic force (and moment) actingon hull-propeller-rudder system as a whole(2) The hydrodynamic force (and moment) expressedby Taylor expansion, with the steady forwardmotion state as the expansion point-MMG model(Japanese mathematical modelling group, modular model)The hydrodynamic force (and moment) are dividedinto three parts: on hull, on propeller and on rudder, with the hydrodynamic interactions among thembeing taken into account.(continued)Methods for determining the hydrodynamic forces acting on a manoeuvring ship(1)Captive model tests (How are these tests conducted?)-Oblique-towing test-Rudder force test-Rotating-arm test-PMM test (pure sway, pure yaw tests, etc.)-Circular Motion Test(2)Semi-empirical method (database, empirical formulae, etc.)(3)System identification by analyzing the test results of free-running model tests or full-scale trials (4)Numerical method (Calculation)(continued)●Equations of ship manoeuvring motion (based onAbkowitz model)●Linearizationunder the assumption of small manoeuvring motion =>neglecting the high-order terms in the Taylorexpansion of the hydrodynamic force (and moment) => linear equations of ship manoeuvring motion●Linear hydrodynamic derivativesSome hydrodynamic derivatives are zero. Why?How to analyze the magnitude and the positive ornegative sign of the hydrodynamic derivatives?(continued)●Second-order response models derived from thelinear equations of ship manoeuvring motion-How to derive the response models from the linear equations of ship manoeuvring motion?-Response model: yaw motion as response to the rudder action; lateral motion as response to therudder action-Forms of the second-order response models-Coefficients and the manoeuvrability indexes in these models●First-order response model (Nomoto model)-Manoeuvrability indexes K、T in Nomoto model (Their relationship with ship manoeuvrability)Dynamic Stability of Ships●Categories of dynamic stability associated with ship manoeuvring (different kinds of stability)●Analysis of inherent dynamic stability (by using the response model without control action)●The criterion for inherent dynamic stability How to compare the inherent dynamic stability of ships with different C index?How to judge if a ship is dynamically stable or unstable? (How many methods are available? )()()0v Gr v r C Y m x N N m Y ''''''''=--+->Initial Turning and Turning Ability of Ships●Analysis of the initial turning and turning abilityof ships (by using the linear equations of shipmanoeuvring motion)●Three phases of the turning testRudder-turning phase (first phase)How to analyze the initial turning ability?Steady turning phase (third phase)How to analyze the turning ability?How to analyze the relationship between the K, C indexes and ship manoeuvrability, according to the formula of the steady yaw rate or the steady turning diameter ?The dynamic stability and the turning ability of a ship are usually in contradiction with each other. Why?Concomitant Phenomena during Turning Motion●Speed drop and heeling during turning motionSpeed droplarger resistance + lower propulsive efficiency=> speed drop (may be as large as 50%)HeelingThe heights of the acting points of the lateral forces acting on the rudder and on the hull are different,which produces a moment (heeling moment) about the longitudinal axis.During the different phases (e.g., first phase and third phase) of the turning test, different heeling moment, thus different heeling angle, will be induced.Control DevicesKinds of Control DevicesActive control deviceslateral thruster, azimuthing rudder propeller,steering nozzle, etc.Passive control devicesRudder: conventional/unconventional ruddersUnconventional rudders: rotating cylinder rudder, flap rudder, etc.Geometrical and performance characteristics, advantages and disadvantages of the active andpassive control devicesMeasures to Improve Ship ManoeuvrabilityAccording to the linear hydrodynamic derivatives involved in the expressions of the indexes K, T, and C, to analyze the effects of ship form on ship manoeuvrability, and to find out how to improve ship manoeuvrability(dynamic stability, turning ability, etc.).Some Remarks on the Examination●Type of the written examination—Judge if a statement is true or false:10%;—Fill in the blank:10%;—Comprehensive question (to describe briefly, to analyze, etc.):20%;—Calculation:10%。

船舶操精品课件

船舶操精品课件

第一章 船舶操纵性能
第三节 螺旋桨的致偏作用
一、单螺旋桨横向力
(一)沉深横向力(SWT)又称侧压力或水面效应横向力
1.SWT产生原因:螺旋桨上桨叶露出水面或空气卷入。
2.后果:以右旋单车船为例,进车时,该力推尾向右,
使船首向左偏转;倒车时使船首向右偏转。左旋式单车
船的偏转方向相反。
Qu
正车
右旋单车船
M=PN·ℓ
ℓ=L/2cosδ
l
PN
G L/2
M=kARVR2 sinδ·L/2cosδ=1/4kLARVR2sin2δ
第一章 船舶操纵性能
2.系泊时 船速为零,但一旦螺旋桨正转,其排出流作用在舵叶上, 同样会产生正压力PN ,只是支点要视具体情况而言。若 采用甩尾离泊时,则支点在船首,舵力转船力矩为:
第一章 船舶操纵性能
4.船舶有效功率EHP 船舶有效功率是指船舶克服阻力R而保持一定船速VS所 消耗的功率,它等于船舶阻力与船速的积,即
E H P=R·VS (二)推进效率 1.传递效率ηC:DHP╱MHP,称为传送功率。该值通常 为0.95~0.98。中机型船该值约为0.95~0.97;尾机型船 该值约为0.97~0.98。 2.推进系数Ct:EHP╱MHP,称为推进系数, 也称推进效 率。该值一般为0.50~0.70。也就是说,主机发出的功率 变为船舶推进有效功率后损失将近一半。 3.推进器效率ηP:EHP╱DHP,称为推进器效率,该值 约为0.60~0.75。
3、滑失和滑失比 (1)滑失S:螺距P与进程hp之差,称滑失S,即S=P-hp,
螺旋桨理论上应能前进的速度nP与螺旋桨实际对水 速度Vp之差,称为滑失速度,也可称为真滑失S,即:
S=nP-Vp (2)滑失比Sr: 滑失与螺距之比,称为滑失比Sr。或定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Shanghai Jiao Tong University2nd Semester,Academic Year2014-2015 Summary of Ship Manoeuvrability for ReviewProf. Dr.-Ing. Zou ZaojianMay 14, 2015Outline●Introduction●Evaluation and Prediction of Ship Manoeuvrability ●Equations of Ship Manoeuvring Motion●Dynamic Stability of Ships●Initial Turning and Turning Ability of Ships●Control Devices●Measures to Improve Ship Manoeuvrability●Some Remarks on the ExaminationIntroduction●Purpose of the course-to answer the questions:What is “ship manoeuvrability” (What does “shipmanoeuvrability” deal with) ?Why should a ship have good manoeuvrability?How to evaluate ship manoeuvrability(How tomake judgement if a ship has good or poormanoeuvrability) ?How to ensure that a ship is designed/built withgood manoeuvrability(If a ship has poormanoeuvrability, or the manoeuvrability is notgood enough, how to take measures to improve itsmanoeuvrability) ?●Ship Manoeuvrability and Its Contents-Manoeuvrability: The ability of a ship to keep or change its state of motion under control actions according to the intention of the helmsman.Ship manoeuvrability includes : (definition)Inherent dynamic stability (straight line stability) Course-keeping ability (directional stability)Initial turning/course-changing abilityYaw-checking abilityTurning abilityStopping ability●Importance of Ship Manoeuvrability-Navigation safety(examples)-Navigation economy(examples)●Factors which affect navigation safety(1)Ship manoeuvrability itself(2)Human factors (most important !)(3)Environmental factors (wind, waves, current;restricted waters; etc.)●Closed-loop Control System for Ship ManoeuvringShip ↔Helmsman (Pilot or autopilot) ↔Control Devices ↔Environmental effects ↔ShipEvaluation of Ship Manoeuvrability●Standard manoeuvres and the parameters forevaluating ship manoeuvrability-How to conduct these manoeuvres?-The parameters obtained from these manoeuvres?-How can these parameters be used to evaluate ship manoeuvrability?Turning testZig-zag testStopping test (crash stop test)Spiral test (direct spiral and reverse spiral test)Pull-out testEvaluation of Ship Manoeuvrability(continued)●IMO Standards for Ship Manoeuvrability-Turning ability (with turning test)-Initial turning ability (with zig-zag test)-Yaw-checking and course-keeping abilities (with zig-zag test)-Stopping ability (with stopping test)●Full-scale TrialConduct the standard manoeuvres with full-scale ship to obtain the parameters for evaluating shipmanoeuvrabilityPrediction of Ship ManoeuvrabilityThe methods which can be used for predicting ship manoeuvrability at the ship design stage:(1) Empirical method (database, empirical formulae for theparameters for evaluating ship manoeuvrability)(2)Free-running model tests(by conducting the standardmanoeuvres with ship model)(3) Mathematical models(Equations of ship manoeuvringmotion) +computer simulation (simulation of thestandard manoeuvres)(4) Direct numerical simulation of the standard manoeuvresby using CFD (Computational Fluid Dynamics) techniques The second one and the third one are the most commonly used methods for predicting ship manoeuvrability at the ship design stage.Equations of Ship Manoeuvring MotionMathematical models (Equations of ship manoeuvring motion)-Coordinate systems(1) earth-fixed coordinate system(2) body-fixed coordinate system with the originlying on the center of gravity of the ship(3) body-fixed coordinate system with the originlying on the midship section-How to derive the equations of ship manoeuvring motion in these coordinate systems?Equations of Ship Manoeuvring Motion (continued)Expressions of the hydrodynamic forces in the equations of ship manoeuvring motion-Abkowitz model(MIT professor, whole-ship model)(1) The hydrodynamic force (and moment) actingon hull-propeller-rudder system as a whole(2) The hydrodynamic force (and moment) expressedby Taylor expansion, with the steady forwardmotion state as the expansion point-MMG model(Japanese mathematical modelling group, modular model)The hydrodynamic force (and moment) are dividedinto three parts: on hull, on propeller and on rudder, with the hydrodynamic interactions among thembeing taken into account.(continued)Methods for determining the hydrodynamic forces acting on a manoeuvring ship(1)Captive model tests (How are these tests conducted?)-Oblique-towing test-Rudder force test-Rotating-arm test-PMM test (pure sway, pure yaw tests, etc.)-Circular Motion Test(2)Semi-empirical method (database, empirical formulae, etc.)(3)System identification by analyzing the test results of free-running model tests or full-scale trials (4)Numerical method (Calculation)(continued)●Equations of ship manoeuvring motion (based onAbkowitz model)●Linearizationunder the assumption of small manoeuvring motion =>neglecting the high-order terms in the Taylorexpansion of the hydrodynamic force (and moment) => linear equations of ship manoeuvring motion●Linear hydrodynamic derivativesSome hydrodynamic derivatives are zero. Why?How to analyze the magnitude and the positive ornegative sign of the hydrodynamic derivatives?(continued)●Second-order response models derived from thelinear equations of ship manoeuvring motion-How to derive the response models from the linear equations of ship manoeuvring motion?-Response model: yaw motion as response to the rudder action; lateral motion as response to therudder action-Forms of the second-order response models-Coefficients and the manoeuvrability indexes in these models●First-order response model (Nomoto model)-Manoeuvrability indexes K、T in Nomoto model (Their relationship with ship manoeuvrability)Dynamic Stability of Ships●Categories of dynamic stability associated with ship manoeuvring (different kinds of stability)●Analysis of inherent dynamic stability (by using the response model without control action)●The criterion for inherent dynamic stability How to compare the inherent dynamic stability of ships with different C index?How to judge if a ship is dynamically stable or unstable? (How many methods are available? )()()0v Gr v r C Y m x N N m Y ''''''''=--+->Initial Turning and Turning Ability of Ships●Analysis of the initial turning and turning abilityof ships (by using the linear equations of shipmanoeuvring motion)●Three phases of the turning testRudder-turning phase (first phase)How to analyze the initial turning ability?Steady turning phase (third phase)How to analyze the turning ability?How to analyze the relationship between the K, C indexes and ship manoeuvrability, according to the formula of the steady yaw rate or the steady turning diameter ?The dynamic stability and the turning ability of a ship are usually in contradiction with each other. Why?Concomitant Phenomena during Turning Motion●Speed drop and heeling during turning motionSpeed droplarger resistance + lower propulsive efficiency=> speed drop (may be as large as 50%)HeelingThe heights of the acting points of the lateral forces acting on the rudder and on the hull are different,which produces a moment (heeling moment) about the longitudinal axis.During the different phases (e.g., first phase and third phase) of the turning test, different heeling moment, thus different heeling angle, will be induced.Control DevicesKinds of Control DevicesActive control deviceslateral thruster, azimuthing rudder propeller,steering nozzle, etc.Passive control devicesRudder: conventional/unconventional ruddersUnconventional rudders: rotating cylinder rudder, flap rudder, etc.Geometrical and performance characteristics, advantages and disadvantages of the active andpassive control devicesMeasures to Improve Ship ManoeuvrabilityAccording to the linear hydrodynamic derivatives involved in the expressions of the indexes K, T, and C, to analyze the effects of ship form on ship manoeuvrability, and to find out how to improve ship manoeuvrability(dynamic stability, turning ability, etc.).Some Remarks on the Examination●Type of the written examination—Judge if a statement is true or false:10%;—Fill in the blank:10%;—Comprehensive question (to describe briefly, to analyze, etc.):20%;—Calculation:10%。

相关文档
最新文档