数列经典题型总结

数列经典题型总结
数列经典题型总结

一、直接(或转化)由等差、等比数列的求和公式求和

例1(07高考山东文18)设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已

知37S =,且123334a a a ++,

,构成等差数列. (1)求数列{}n a 的等差数列.

(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .

练习:设S n =1+2+3+…+n ,n ∈N *

,求1

)32()(++=

n n

S n S n f 的最大值.

二、错位相减法

例2(07高考天津理21)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*

+==++-∈N ,,

其中0λ>.

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;

例3(07高考全国Ⅱ文21)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且

111a b ==,3521a b +=,5313a b +=

(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ??

????

的前n 项和n S .

三、逆序相加法

例4(07豫南五市二联理22.)设函数2

22)(+=x x

x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2,

y 2),若)(2

12

1OP +=,且点P 的横坐标为21

. (I )求证:P 点的纵坐标为定值,并求出这个定值;

(II )若;求,),()3()2()1(*n n S N n n

n f n f n f n f S ∈+?+++=

四、裂项求和法 例5 求数列

???++???++,1

1,

,3

21,

2

11n n 的前n 项和.

例6(06高考湖北卷理17)已知二次函数()y f x =的图像经过坐标原点,其导函数为

'()62f x x =-,数列{}n a 的前n 项和为n S ,点(,)()n n S n N *

∈均在函数()y f x =的图

像上。

(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设11n n n b a a +=

,n T 是数列{}n b 的前n 项和,求使得20

n m

T <对所有n N *∈都成立的最小正整数m ;

五、分组求和法

例7数列{a n }的前n 项和12-=n n a S ,数列{b n }满)(,311*

+∈+==N n b a b b n n n .

(Ⅰ)证明数列{a n }为等比数列;(Ⅱ)求数列{b n }的前n 项和T n 。

例8求2222121234(1)n S n -=-+-++-(n N +∈)

六、利用数列的通项求和

先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.

例9 求

1

1111111111个n ???+???+++之和. 解:由于)110(91

99999111111

1

-=????=???k k k

个个 (找通项及特征)

1

1111111111个n ???+???+++ =

)110(9

1

)110(91)110(91)110(91321-+???+-+-+-n (分组求和)

)1111(91

)10101010(911

321 个n n +???+++-+???+++ =9110)110(1091n

n ---?

=)91010(81

11n n --+ 例10 已知数列{a n }:∑∞

=+-+++=

1

1))(1(,)3)(1(8

n n n n a a n n n a 求的值. 解:∵ ])

4)(2(1

)3)(1(1)[

1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)

=])4)(3(1

)4)(2(1[

8+++++?n n n n (设制分组)

=)4

1

31(8)4121(4+-+++-+?n n n n (裂项)

∴ ∑∑∑∞

=∞=∞=++-+++-+=-+1

111)41

31(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和)

=4

18)4131

(4?++? =

3

13 类型1 )(1n f a a n n +=+

解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=

a ,n

n a a n n ++=+211,求n a 。

变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异.

类型4 n

n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。

(1n

n n a pa rq +=+,其中p ,q, r 均为常数) 。

解法:一般地,要先在原递推公式两边同除以1

+n q ,得:

q

q a q p q a n n n n 1

11+?=++引入辅助数列{}n b (其中n

n n q a b =

),得:q b q p b n

n 1

1+=+再待定系数法解决。 例:已知数列{}n a 中,651=a ,1

1)2

1(31+++=n n n a a ,求n a 。

解:在11)21(31+++=n n n a a 两边乘以12+n 得:1)2(3

2211

+?=?++n n n n a a

令n n

n a b ?=2,则1321+=+n n b b ,解之得:n n b )3

2(23-=所以

n

n n

n n b a )31(2)21(32

-== 类型5递推公式为n S 与n a 的关系式。(或()n n S f a =)

解法:这种类型一般利用???≥???????-=????????????????=-)2()

1(11n S S n S a n n

n 与

)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去 n a 进行求解。

例:已知数列{}n a 前n 项和22

1

4---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项

公 式n a .

解:(1)由2

2

14--

-=n n n a S 得:1

112

14-++-

-=n n n a S 于是

)2121(

)(1

2

11--++-

+-=-n n n n n n a a S S

所以11121-+++-=n n n n a a a n

n n a a 2

1

211+=?+. (2)应用类型4(n

n n q pa a +=+1

(其中p ,q 均为常数,)0)1)(1((≠--q p pq ))

的方法,上式两边同乘以1

2

+n 得:222

11

+=++n n n n a a 由

12

1412

1111=?-

-==-a a S a .于是数列{}n n

a 2是以2为首项,2为公差的等差数列,所以n n a n n

2)1(222=-+=12

-=?n n n a

类型6b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令

)()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。

例:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

解:设B An b a B ,An a b n n n n --=++=则,将1,-n n a a 代入递推式,得

[]12)1(31-+---=---n B n A b B An b n n )133()23(31+----=-A B n A b n

??????+-=-=∴13323A B B A A ?

??==11B A

1++=∴n a b n n 取…(1)则13-=n n b b ,又61=b ,故 n n n b 32361?=?=-代入(1)得132--?=n a n n 说明:(1)若)(n f 为n 的二次式,则可设 C Bn An a b n n +++=2;(2)本题也可由

1231-+=-n a a n n ,1)1(2321--+=--n a a n n (3≥n )两式相减得2)(3211+-=----n n n n a a a a 转化为 n n n qb pb b +=++12求之.

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

数列全部题型归纳(非常全面-经典!)(新)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且23 1n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a += -,* N n ∈.

求证:11n a ?? ??-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2)8 n n a S +=则,数列n a 3 4)1a +求数列a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(1 1≥-+=-n n n a a n n ,求此数列的通项公式 (3) 1a = (4 (四)一次函数的递推形式 1. 若数列{}n a 满足111 1,12 n n a a a -==+(2)n ≥,数列n a

2 .若数列{}n a 满足111 1,22 n n n a a a -==+ (2)n ≥,数列n a (1 (2 (六)求周期 16 (1) 121,41n n n a a a a ++==-,求数列2004a

数列必会常见题型归纳

数列必会基础题型 题型一:求值类的计算题(多关于等差等比数列) A )根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37, 中间两数之和为36,求这四个数. 5在等差数列{a n }中, (1)已知a 15=10,a 45=90,求a 60; (2)已知S 12=84,S 20=460,求S 28; (3)已知a 6=10,S 5=5,求a 8和S 8. 6、有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 7、已知△ABC 中,三内角A 、B 、C 的度数成等差数列,边a 、b 、c 依次成等比数列.求证:△ABC 是等边三角形. B )根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、 {}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S .. 6、已知等比数列{a n }中,a 1·a 9=64,a 3+a 7=20,则a 11= .

数列常见题型总结经典(超级经典)

数列常见题型总结经典(超 级经典) -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法.

例 1. 已知数列{a n }满足)2(3,1111≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。

高中数列经典题型-大全教学教材

高中数列经典题型-大 全

收集于网络,如有侵权请联系管理员删除 高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

收集于网络,如有侵权请联系管理员删除 解法一(待定系数——迭加法):数列{}n a : ),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x 。 32,121==x x Θ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 13212+=++,求n a 。 类型6 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2()1(11n S S n S a n n n 与 例:已知数列{}n a 前n 项和2214-- -=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公 式n a . 类型7 b an pa a n n ++=+1)001(≠≠,a 、p 解法:这种类型一般利用待定系数法构造等比数列,即令 )()1(1y xn a p y n x a n n ++=++++,与已知递推式比较,解出y x ,,从而转化为{}y xn a n ++是公比为p 的等比数列。 例:设数列{}n a :)2(,123,411≥-+==-n n a a a n n ,求n a .

数列常见题型分析与方法总结

数列常见题型分析与做法 一、等差、等比数列的概念与性质 1、已知等比数列432,,,}{a a a a n 中分别是某等差数列的第5项、第3项、第2项,且1,641≠=q a 公比,求n a ; (I )依题意032),(32244342=+--+=a a a a a a a 即 03213131=+-∴q a q a q a 2 1101322 = =?=+-∴q q q q 或2 11= ∴≠q q 1)2 1 (64-?=n n a 故 二、求数列的通项 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足2 11=a ,n n a a n n ++ =+2 11,求n a 答案:n n a n 12 3112 1- = - += ∴ 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 1 1+= +,求n a 答案:n a n 32= ∴ 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中p q t -=1,再利用换元 法转化为等比数列求解。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 提示:)3(231+=++n n a a 答案:321-=+n n a . 类型4 递推公式为n S 与n a 的关系式。(或()n n S f a =) 解法:这种类型一般利用???≥???????-=????????????????=-) 2() 1(11n S S n S a n n n 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例:已知数列{}n a 前n 项和2 2 14---=n n n a S . (1)求1+n a 与n a 的关系;(2)求通项公式n a . 解:(1)由2 2 14-- -=n n n a S 得:1 112 14-++- -=n n n a S 于是) 2 12 1( )(1 2 11--++- +-=-n n n n n n a a S S 所以1 112 1 -+++ -=n n n n a a a n n n a a 2 12 11+ = ?+.

数列全部题型归纳(非常全面-经典!)讲解学习

数列全部题型归纳(非常全面-经典!)

数列百通 通项公式求法 (一)转化为等差与等比 1、已知数列{}n a 满足11a =,n a =,n N *∈2≤n ≤8),则它的通项公式n a 什么 2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么 3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么 4、已知数列{}n a 中,10a =,112n n a a +=-,*N n ∈.

求证:11n a ????-?? 是等差数列;并求数列{}n a 的通项公式; 5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n b a n =-,求数列{}n a 的通项公式 (二)含有n S 的递推处理方法 1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.

2.)若数列{}n a 的前n 项和n S 满足,2 (2) 8n n a S +=则,数列n a 3)若数列{}n a 的前n 项和n S 满足,111 ,0,4n n n n a S S a a -=-≠=则,数列 n a 4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a (三) 累加与累乘 (1)如果数列{}n a 中111,2n n n a a a -=-=(2)n ≥求数列n a

(2)已知数列}{n a 满足31=a ,)2() 1(11≥-+ =-n n n a a n n ,求此数列的通项公式 (3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式. (4)若数列{}n a 的前n 项和n S 满足,211,2 n n S n a a ==则,数列n a (四)一次函数的递推形式 1. 若数列{}n a 满足1111,12 n n a a a -== +(2)n ≥,数列n a

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常 数) 例1、已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{}n a 满足11 2n n a a +=,而12a =,求 n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112 a = ,12 141 n n a a n +=+ -,求n a . 解:由已知可知 )12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) ★ 说明只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有 132n n a a -=+,求n a . 解法一:由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1∵a n+1=3a n +2∴3a n +2-a n =4·3n-1 即a n =2·3n-1-1 解法二:上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把n-1个等式累加得:∴an=2·3n-1-1 (4)递推式为a n+1=pa n +qn (p ,q 为常数) )(3 2 11-+-=-n n n n b b b b 由上题的解法, 得:n n b )3 2(23-=∴ n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化 为前面的类型。 求n a 。 (6)递推式为S n 与a n 的关系式 系;(2)试用n 表示a n 。 ∴)2121( )(1 2 11 --++- +-=-n n n n n n a a S S ∴1 11 2 1 -+++ -=n n n n a a a ∴ n n n a a 2 1 211+= + 上式两边同乘以2n+1得2n+1a n+1=2n a n +2则{2n a n }是公差为2的等差数列。 ∴2n a n =2+(n-1)·2=2n 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。

数列常见题型总结经典

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n项和法(知n S 求n a )?? ?-=-11 n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和2 12n n S n -=,求数列|}{|n a 的前n 项和n T 变式:已知数列}{n a 的前n 项和n n S n 122 -=,求数列|}{|n a 的前n项和n T 练习: 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。答案:???=-12 2n n a )2() 1(≥=n n 2、若数列}{n a 的前n 项和32 3-=n n a S ,求该数列的通项公式。答案:n n a 32?= 3、设数列}{n a 的前n项和为n S ,数列}{n S 的前n 项和为n T ,满足2 2n S T n n -=, 求数列}{n a 的通项公式. 4.n S 为{n a }的前n 项和,n S =3(n a -1),求n a (n ∈N +) 5、设数列{}n a 满足2 *12333()3 n n a a a a n N +++= ∈n-1 …+3,求数列{}n a 的通项公式(作差法) 2。形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+。 (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 1 3-=n n a 例2.已知数列{}n a 的首项为1,且* 12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 例3.已知数列}{n a 满足31=a ,)2() 1(1 1≥-+ =-n n n a a n n ,求此数列的通项公式。 3。形如 )(1 n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =1 1-?n q a 。 (2)当f(n )为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式.答案:12+=n a n 练习: 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。答案:)1(2 +=n n a n 2、求数列)2(1 232,111 ≥+-==-n a n n a a n n 的通项公式。 4。形如s ra pa a n n n += --11 型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211 ≥+=--n a a a n n n ,求通项公式n a

高中数列经典题型 大全

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211=a ,n n a a n n ++=+2 11 ,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1 n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+, 其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,65 1=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121= =x x Θ,∴1 2 11--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ? ? ?+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a 例:已知数列{}n a 中,11=a ,22=a ,n n n a a a 3 1 3212+=++,求n a 。

高一数学《数列》经典练习题-附答案

强力推荐人教版数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2 -2x +m )(x 2 -2x +n )=0的四个根组成一个首项为4 1 的等差数列,则 |m -n |等于( ). A .1 B . 4 3 C . 2 1 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若35a a =9 5 ,则59S S =( ). A .1 B .-1 C .2 D . 2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则2 1 2b a a 的值是( ). A . 2 1 B .- 2 1 C .- 21或2 1 D . 4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2 n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

数列经典例题(裂项相消法)

数列经典例题(裂项相消法)

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为, 15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101 100 2.数列, )1(1 += n n a n 其前n 项之和为,109 则在平面直角坐标系中, 直线0)1(=+++n y x n 在y 轴上的截距为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且6 22 321 9,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设, log log log 32313n n a a a b +++= 求数列}1{n b 的前n 项和. 4.正项数列}{n a 满足0 2)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令, )1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且1 2,4224 +==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,2 1 1*221 1N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26 ,7753 =+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ;

高中数列经典题型大全

高中数列经典题型大全 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

高中数学:《递推数列》经典题型全面解析 类型1 )(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。 例:已知数列{}n a 满足211= a ,n n a a n n ++=+211,求n a 。 类型2 n n a n f a )(1=+ 解法:把原递推公式转化为 )(1n f a a n n =+,利用累乘法(逐商相乘法)求解。 例:已知数列{}n a 满足321= a ,n n a n n a 11+=+,求n a 。 例:已知31=a ,n n a n n a 2 3131+-=+ )1(≥n ,求n a 。 类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。 例:已知数列{}n a 中,11=a ,321+=+n n a a ,求n a . 变式:递推式:()n f pa a n n +=+1。解法:只需构造数列{}n b ,消去()n f 带来的差异. 类型4 n n n q pa a +=+1(其中p ,q 均为常数,)0)1)(1((≠--q p pq )。 (1n n n a pa rq +=+,其中p ,q, r 均为常数) 。 例:已知数列{}n a 中,651=a ,11)2 1(31+++=n n n a a ,求n a 。 类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。 解法一(待定系数——迭加法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,,求数列{}n a 的通项公式。 解法二(特征根法):数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征 方程是:02532=+-x x 。 32,121==x x ,∴1211--+=n n n Bx Ax a 1)3 2(-?+=n B A 。又由b a a a ==21,,于是 ???-=-=??? ???+=+=)(32332b a B a b A B A b B A a 故1)32)((323--+-=n n b a a b a

高中数列常见题型总结经典

高中数列常见题型总结 经典 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a )2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和323-=n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如)(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+==n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中111 1,1-+-==n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1 232,111≥+-==-n a n n a a n n 的通项公式。 题型二 根据数列的性质求解(整体思想) 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、{}n b 的前n 项和, 327++=n n T S n n ,则=55b a . 3、设n S 是等差数列{}n a 的前n 项和,若==5 935,95S S a a 则( ) 4、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。 5、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 6、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( )

高中数学复习系列---数列常见题型总结

数列 题型一:求值类的计算题(多关于等差等比数列) A)根据基本量求解(方程的思想) 1、已知n S 为等差数列{}n a 的前n 项和,63,6,994=-==n S a a ,求n ; 2、等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 3、设{}n a 是公比为正数的等比数列,若16,151==a a ,求数列{}n a 前7项的和. 4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数. B )根据数列的性质求解 1、已知n S 为等差数列{}n a 的前n 项和,1006=a ,则=11S ; 2、设n S 、n T 分别是等差数列{}n a 、{}n a 的前n 项和,327++=n n T S n n ,则=5 5b a . 3、设n S 是等差数列{}n a 的前n 项和,若 ==5 935,95S S a a 则( ) 4、等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若 231n n S n T n =+,则n n a b =( ) 5、已知n S 为等差数列{}n a 的前n 项和,)(,m n n S m S m n ≠==,则=+n m S . 6、在正项等比数列{}n a 中,153537225a a a a a a ++=,则35a a +=_______。 7、已知数列{}n a 是等差数列,若 471017a a a ++=,45612131477a a a a a a +++ +++=且 13k a =,则k =_________。 8、已知n S 为等比数列{}n a 前n 项和,54=n S ,602=n S ,则=n S 3 . 9、在等差数列{}n a 中,若4,184==S S ,则20191817a a a a +++的值为( ) 10、在等比数列中,已知910(0)a a a a +=≠,1920a a b +=,则99100a a += . 11、已知{}n a 为等差数列,20,86015==a a ,则=75a . 12.在等差数列中,若 84816 1 ,.3S S S S =求= . 题型二:求数列通项公式: A) 给出前几项,求通项公式 1,0,1,0,…… ,,21,15,10,6,3,1 3,-33,333,-3333,33333…… B)给出前n 项和求通项公式

相关文档
最新文档