届高考三角函数复习讲义
2025年高考数学总复习课件30第四章第二节同角三角函数的基本关系与诱导公式

第二节 同角三角函数的基本关系与诱导公式
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
由一个角的任一三角函数值可求出这个角的另外两个三角函数值,当利用“平 方关系”公式求平方根时,会出现两解,需根据角所在的象限判断三角函数值 的符号,当角所在的象限不明确时,要进行分类讨论.
第二节 同角三角函数的基本关系与诱导公式
第二节 同角三角函数的基本关系与诱导公式
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
(2)已知tan α=-34,则sin α(sin α-cos α)=( )
√A.2215
B.2251
C.45
D.54
A
解析:
sin
α(sin
α - cosຫໍສະໝຸດ α) = sin2α - sinαcos
α
=
sin2 α-sinα cos sin2 α+ cos2 α
第二节 同角三角函数的基本关系与诱导公式
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
若已知正切值,求一个关于正弦和余弦的齐次式的值,则可以通过分子、分母 同时除以一个余弦的最高次幂将其转化为一个关于正切的分式,代入正切值就 可以求出这个分式的值.
第二节 同角三角函数的基本关系与诱导公式
第二节 同角三角函数的基本关系与诱导公式
必备知识 落实“四基”
核心考点 提升“四能”
课时质量评价
【常用结论】
1.sin α=± 1- cos2 α;cos α=± 1- sin2 α; (sin α±cos α)2=1±2sin αcos
α.
2
.sin2α
高三数学-高考复习讲义-反三角函数与最简三角方程讲义资料(Word版)

高三数学二高考复一习讲义■反三角函数与最简三角方程、反三角函数的图像与性质、最简单三角方程的解集:1、反三角函数的定义1【例1】右sinx=— , x =[—为可,贝U x =.3【巩固训练】1.函数y =cosx,xw (-冗,0 )的反函数是2、反三角函数的性质与图像1【例2】求函数y = v arcsin-的定义域与值域. x【例3】求函数y =arcsin(1 —x) +arccos2x的值域. 【例4】.求函数y =arccos(x2 -2x)的单调区间【例5】.函数f x =xarcsinx ' a 【巩固训练】+ barccosx是奇函数的充要条件是2.求函数y = Jarcsin(x—6)的定义域和值域.3.写出下列函数的定义域2 、. x 互(1) y=2arcsinjx (2) y =arcsin(x +x) (3) y = log2 arccos——2 3,一一二x ,,4.求函数y =—+arccos-的反函数,并指出反函数的定乂域和值域2 2心一「冗5元"|…,一…一一一5.右arccos x= —,——,则x的取值氾围是<3 6」3、反三角函数的恒等式19【例6】arcsin I sin —二,124 c 5【例7】化间:arccos 2arccos—二5 5[例8]求下列各式的值:“、一 4 . ( 11) cos arccos- + arccos5一.二1 ,(2) sin —十—arctan1 - x -【例9】求y =arctanx + arctan -------- 的值.1 x【巩固训练】6.计算arcsin(cos2) = 16二、7.下列关系式中,正确的是(八.二3A.arcsin —二一3 2B.sin(arcsin,一2) =、. 21 .C.arccos 一一1= arcsinD.arctan — arctan —一=03 . 38.求值:… ,一,3(1)arctan 7 + arctan 一 4 (2),1-tan 25 arctan -------1 tan 25JI9 设——W x W0,求arcsin (cosx )-arccos (sin x )的值24、最简三角方程的解集x x【例10]斛方程:sin - - cos- =1 .2 2【例11】解方程:2sec2 x+19tan x =12 .【例12]解方程:sin2x+3sin xcosx+1 =0 .【例13]解方程:sin2x—12(sin x — cosx)+12 = 0 .【巩固训练】10.方程:sin x —、,r3cosx = J2在0,冗】上的解是11.方程:5cosx cos2x , sin x = 0在0,2二1上的解丸12.解方程:sin5x-cosx=013.解方程:sin 2x-12 (sin x-cosx )+12 = 05、综合应用【例14]解三角方程:asin(x +n =sin 2x+9,a 为一实常数. 4【巩固训练】14 .关于X 的方程3+2sin x +cosx = k 恒有解,求实数k 的取值范围.1 2sin x 3cosx【课后作业】1.函数y =arcsin(x-2 )的定义域为,值域为 2,若 x =」是方程 2cos(x +a ) = 1 的解 其中 a w (0,2n ),则 a =3冗 JT3.若1=$的乂,x = .1--,—,则arccost 的取值范围是 ______________________ .一 6 3一..1 -2x .. _____ __ _ 一 4 .函数 y = 3arccos --- 的反函数的取大值是,取小值是 .4「. 7立).一11 15 . arccos.sin - \=, sin |-arccos -- =26 .万程 1g (cosx +sin x )=lg (2cos x -1 )的解集是.27 .函数y=arccos(2x -x )的值域为( )8 .下列命题中,正确命题的个数是( )(1) y =arcsin x 的反函数是 y =sin xA. 0,二 1B."*'」C. \ 71)1 0,arccos ——1 I 84C n 1D. 0,arccos-一 8(2)y=cosx, x^ [-n,0]的反函数是y - -arccosx, x [-1,1](3)y=tanx, x e 1-—,—i的反函数是y = arctanx, xw (口,西2 2 3A.0个B.1个C.2个D.3个_____ . . 2 . 3x-1 ......9. (1)求函数y=lg(1—4x )+arcsin---的定义域;(2)求y =arcsin(1 -x )+arccos2x的值域;2(3)求y =arcsin(x -x )的定乂域;(4)判断函数y = sin(2arccosx)的奇偶性;(5)求满足不等式arccos(1 -x )> arccosx的x的取值范围.2 1、,10.求函数y =arccos(x -x-金)的TE义域和值域.11.解下列三角方程:(1)sinx+cosx =cos2x ;1(2)cosxcos2xcos4x =一;82(3)3tan x +2 =2sec x ;x(4)cos x = 2 tan --1 I.212.已知方程cos2x 十J3sin 2x = k+1.(1)k为何值时,方程在区间|0,三।内有两个相异的解" _ ,2(2)求a + P的值.(3)。
2024届高考数学一轮总复习第三章三角函数解三角形第三讲两角和与差及二倍角的三角函数公式课件

(5)tan (α-β)=1t+antαan-αttaannββ(T(α-β)). (6)tan (α+β)=1t-antαan+αttaannββ(T(α+β)).
2.二倍角公式 (1)基本公式 ①sin 2α=2sin αcos α. ②cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.
答案:C 【反思感悟】 理解数学文化内容,结合题目条件进行三角变换求值是关键.
【高分训练】
(2021 年泸州市模拟)《周髀算经》中给出了弦图,所谓弦图
是由四个全等的直角三角形和中间一个小正方形拼成
一个大的正方形,若图3-3-1中直角三角形两锐角分别
为α,β,且小正方形与大正方形面积之比为 9∶25,
答案:12
⊙三角变换与数学文化的创新问题 新高考数学考查的学科素养提炼为理性思维,数学应用,数 学探究和数学文化,其中数学文化作为素养考查的四大内涵之一, 以数学文化为背景的试题将是新高考的必考内容.
[例 4]公元前 6 世纪,古希腊的毕达哥拉斯学派研究过正五边 形和正十边形的作图方法,发现了黄金分割,其比值约为 0.618,
考向 2 公式的变形
[例
3](1)存在角
θ,已知
(1+sin θ∈(0,π),则
θ+cos θ)sin 2+2cos θ
2θ-cos
θ 2
=______.
解析:由 θ∈(0,π),得 0<2θ<π2, ∴cos 2θ>0,∴ 2+2cos θ= 4cos22θ=2cos2θ.
又(1+sin θ+cos θ)sin
解析:原式=1-cos22α-π3+1-cos 22α+π3-sin2α=1- 12cos2α-π3+cos 2α+π3-sin2α=1-cos2α·cos π3-sin2α=1- co2s2α-1-c2os 2α=12.
2024届新高考一轮总复习人教版 第四章 第2节 同角三角函数的基本关系式及诱导公式 课件(35张)

所以 cos2α=190,由 α 为第二象限角,易知 cosα<0,所以 cos α=-31010,sin α= 1100,
C.sin 54π+α=12
B.cos π4-α=12 D.cos 54π-α=-12
解析:由 sin π4+α=12,可得 cos (π4+α)=± 23,sin 54π+α=sin π+π4+α=-sin π4+α=-12,cos π4-α=cos [π2-π4+α]=sin π4+α=12,cos 54π-α=cos π+π4-α= -cos π4-α=-12.
(sin α+cos α)2-(sin α-cos α)2=4sin αcos α;
sin α=tan αcos αα≠π2+kπ,k∈Z;
sin
2α=sin
sin 2α 2α+cos
2α=tanta2nα2+α 1;
cos2α=sin
cos 2α 2α+cos
2α=tan21α+1.
【小题热身】 1.思考辨析(在括号内打“√”或“×”) (1)若 α,β 为锐角,则 sin2α+cos2β=1.( ) (2)sin(π+α)=-sin α 成立的条件是 α 为锐角.( ) (3)若 α∈R,则 tan α=csoins αα恒成立.( ) (4)若 sin (kπ-α)=13(k∈Z),则 sin α=13.( ) 答案:(1)× (2)× (3)× (4)×
2.三角函数的诱导公式
组数
一
二
三
四
角 2kπ+α(k∈Z) π+α
-α
π-α
正弦 余弦 正切
口诀
__s_in__α__ __c_o_s_α__ __ta_n__α__
__-__s_i_n_α__ __-__s_in__α__ __s_in__α__ __-__c_o_s_α__ __co_s__α__ _-___co_s__α__ __t_an__α__ __-__t_a_n_α__ _-___ta_n_α___
2022届新高考高三数学一轮复习考点讲义第7讲:三角函数【含答案】

三角函数一、知识点 (一)角的概念的推广1、角:一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
其中顶点,始边,终边称为角的三要素。
角可以是任意大小的。
(1)角按其旋转方向可分为:正角,零角,负角。
①正角:习惯上规定,按照逆时针方向旋转而成的角叫做正角; ②负角:按照顺时针方向旋转而成的角叫做负角;③零角:当射线没有旋转时,我们也把它看成一个角,叫做零角。
(2)在直角坐标系中讨论角:①角的顶点在原点,始边在x 轴的非负半轴上,角的终边在第几象限,就说这个角是第几象限角。
②若角的终边在坐标轴上,就说这个角不属于任何象限,它叫轴线角。
(3)终边相同的角的集合:设α表示任意角,所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为},360|{Z n n S ∈⋅+α=ββ= 。
集合S 的每一个元素都与α的终边相同,当0=k 时,对应元素为α。
2、弧度制和弧度制与角度制的换算(1)角度制:把圆周360等分,其中1份所对的圆心角是1度,用度作单位来度量角的制度叫做角度制。
(2)1弧度的角:长度等于半径长的圆弧所对的圆心角叫做1弧度的角。
规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零。
任一已知角α的弧度数的绝对值rl =α||,这种以“弧度”作为单位来度量角的制度叫做弧度制。
(3)角度制与弧度制的互化:π=2360,π=180;815730.571801'≈≈π= rad ; rad 01745.01801≈π= 。
3、特殊角的三角函数值0 3045 60 90 120 135 150 1800 6π4π 3π 2π 32π 43π 65ππ sin 0 2122 23 1 232221 0 cos 1 232221 0 21- 22- 23- 1- tan 0 331 3 ⨯3- 1- 33- 0210 225 240 270 300 315 330 36067π 45π 34π 23π 35π 47π 611ππ2sin21- 22- 23- 1- 23- 22- 21- 04、平面直角坐标系中特殊线表示的角的集合:其中:Z n ∈,Z k ∈;x 轴正半轴 360⋅nπk 2 第一象限角平分线36045⋅+nπ+πk 24 x 轴负半轴 360180⋅+n π+πk 2 第二象限角平分线 360135⋅+nπ+πk 243 x 轴 180⋅n πk 第三象限角平分线 360225⋅+nπ+πk 245 y 轴正半轴 36090⋅+n π+πk 22第四象限角平分线 360315⋅+nπ+πk 247 y 轴负半轴 360270⋅+n π+πk 223 第一、三象限角平分线 18045⋅+n π+πk 4y 轴 18090⋅+nπ+πk 2 第二、四象限角平分线 180135⋅+n π+πk 43 坐标轴 90⋅n 2πk 象限角平分线 9045⋅+n 24π+πk 5、弧长及扇形面积公式:弧长公式:r l ⋅α=||扇形弧长,扇形面积公式:lr r S 21||212=⋅α=扇形,α是圆心角且为弧度制,r 是扇形半径。
【金版教程】届高考数学总复习 第3章 第3讲 三角函数的图象与性质课件 理 新人教A版

求形如y=Asin(ωx+φ)(A>0,ω>0)的函数的单调区间,基
本思路是把ωx+φ看作一个整体,由-
π 2
+2kπ≤ωx+φ≤
π 2
+
2kπ(k∈Z)求得函数的增区间,由
π 2
+2kπ≤ωx+φ≤
3π 2
+2kπ(k
∈Z)求得函数的减区间.若在y=Asin(ωx+φ)中,ω<0,则应
先利用诱导公式将解析式转化,使x的系数变为正数,再进行
(1)y=cos(x+π3)(x∈[0,π])的值域________. (2)y=tan(4π-x)的单调递减区间__________.
1.f(x+T)=f(x) 最小 最小正周期
想一想:提示:f[(x+2)+2]=-f(x+2)=f(x),即f(x+4)
=f(x),所以f(x)是周期为4的函数.
____
________
________
____
y=tanx
无最值
____ ________ 无对称轴
____
判断以下命题的正误. ①y=sinx在第一象限是增函数.( ) ②y=cosx在[0,π]上是减函数.( ) ③y=tanx在定义域上为增函数.( ) ④y=|sinx|的周期为2π.( ) ⑤y=ksinx+1,x∈R则y的最大值为k+1.( )
Z)
π+2kπ(k∈Z)
奇
偶
奇
(kπ,0),k∈Z
(kπ+
π 2
,
0),k∈Z
(
kπ 2
,0),k∈Z
x=kπ+
π 2
,k∈Z
x=kπ,k∈Z
2π 2π π
判一判:①× ②√ ③× ④× ⑤×
高中数学三角函数综合复习讲义

高中数学三角函数综合复习讲义1:产生背景:初中锐角三角函数定义:设a是一个任意大小的角,角的终边上任意一点P的坐标是(x,y),它于原点的距离是r(r>0),那么正弦: sinα=y/r余弦: cosα=x/r正切: tanα=y/x余切: cotα=x/y正割: secα=r/x余割: cscα=r/y都是a的函数,这六个函数统称为角a的三角函数。
2:找出结构:[函数]包括定义域,值域,对应法则。
本质:对于定义域内地任一x值在对应法则f(x)下都有值域中唯一的y和x对应,即y=f(x)3:分类:[角的大小]包括:正角三角函数,负角三角函数;[定义域]包括:【0,2π】,【0,2π】之外的[对应法则]包括:正弦: y= sinx余弦: y= cosx正切: y= tanx余切: y= cotx正割: y= secx余割: y= cscx[角的位置]包括:象限角的三角函数,坐标轴上的角的三角函数4:产生的条件:三角函数是在角的集合与实数集合之间建立的一种一一对应的关系。
5:研究概念的性质{特征、用途、作用、功能}基本三角函数的性质:同角的三角函数:倒数关系: 商的关系:平方关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secαsin 2α+cos 2α=1 1+tan 2α=sec 2α 1+cot 2α=csc 2α诱导公式sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanαcot (-α)=-cotαsin (π/2-α)=cos α cos (π/2-α)=sin α tan (π/2-α)=cot α cot (π/2-α)=tan αsin (π/2+α)=cos αcos (π/2+α)=-sin α tan (π/2+α)=-cot α cot (π/2+α)=-tan α sin (π-α)=sin α cos (π-α)=-cos α tan (π-α)=-tan α cot (π-α)=-cot αsin (π+α)=-sin αcos (π+α)=-cos α tan (π+α)=tan α cot (π+α)=cot αsin (3π/2-α)=-cos α cos (3π/2-α)=-sin α tan (3π/2-α)=cot α cot (3π/2-α)=tan αsin (3π/2+α)=-cos α cos (3π/2+α)=sin α tan (3π/2+α)=-cot α cot (3π/2+α)=-tan α sin (2π-α)=-sin α cos (2π-α)=cos α tan (2π-α)=-tan α cot (2π-α)=-cot α sin (2k π+α)=sin αcos (2k π+α)=cos α tan (2k π+α)=tan α cot (2k π+α)=cot α(其中k∈Z)两角和与差的三角函数公式sin sin cos cos sin sin sin cos cos sin cos cos cos sin sin cos cos cos sin sin αβαβαβαβαβαβαβαβαβαβαβαβ(+)=+(-)=-(+)=-(-)=+ =1 ?tan tan tan tan tan αβαβαβ+(+)-1? ?tan tan tan tan tan αβαβαβ-(-)=+半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α万能公式2tan(α/2) 1-tan2(α/2) 2tan(α/2) cosα=—————— sinα=—————— tanα=——————1+tan2(α/2) 1+tan2(α/2) 1-tan2(α/2) 三角函数的和差化积公式三角函数的积化和差公式sinα+sinβ=2sin2βα+cos2βα-sinα-sinβ=2cos2βα+sin2βα-cosα+cosβ=2cos2βα+·cos2βα-cosα-cosβ=-2sin2βα+·sin2βα-sinα ·cosβ=21[sin(α+β)+sin(α-β)]cosα ·sinβ=-21[sin(α+β)-sin(α-β)]cosα ·cosβ=21[cos(α+β)+cos(α-β)]sinα ·sinβ=-21[cos(α+β)-cos(α-β)]【三角形边角关系】1.正弦定理:在△ABC 中,∠A , ∠B , ∠C 的对边分別为 a , b , c ,则其中R 为外接圆半径。
高三高考数学第一轮复习课件三角函数复习

]
20)在△ABC中,a、b、c分别为角A、B
、C的对边,4sin2
B
2
C
-cos2A=
7 2
。
(1)求角A的度数;
(2)若a= 3 ,b+c=3,求b和c的值。
解:∴c4∴ocsoc2Aos(21s=A+A2 c-b=co2os122csAb22c)Aa-∴22==c72oA12s=2A60+。1=b272+c2-a2=bc 又∵b+c=3 bc=2
22 3
选A
例4
函数f(x)=cos2(x-
2 3
)+sin2(x-
5 6
)
+msinxcosx的值域为[a,2](x∈R,m>a)求m
值和f(x)的单调增区间。
解 :1 f (x1 2 )[ = c 2 1 x c o o 2 2 4 3 x s ) 4 3 ()c s 1 2 co x ( o 2 2x 5 s 3 5 3 ) (s ) m ] 2 m 2( s s2 i2 x i x n
=sin(45。±35。). ∴ Sinα =sin 10。 ,sinβ=sin 80。
∴α=10。 β=80。 cos(2α-β)=cos60。= 1
2
〔三〕单元测试
一、选择题
1〕函数y=
coxs s
|cox|s |s
inx inx|
|ttaaxxnn|的值域是〔A〕
(A) |3,-1| (B) |3,1| (C) |-1,1,3| (D) |-1,1-3|
(2)若x∈[求a的值。
2
,
2
]时,f(x)的最大值为1,
解:(1)f(x)=sin(x+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012届高考三角函数复习讲义一、角的概念与推广:任意角的概念;角限角、终边相同的角; 二、弧度制:把长度等于半径的弧所对的圆心角叫做1弧度;弧长公式:r l α=扇形面积:S=α22121r r l =⋅三角函数线:如右图,有向线段AT 与MP OM 分别叫做α 的的正切线、正弦线、余弦线。
三、同角三角函数关系:即:平方关系、商数关系、倒数关系。
四、诱导公式:()ααπf nf '±=⎪⎭⎫⎝⎛±2 记忆:单变双不变,符号看象限。
单双:即看πn 中的n 是2π的单倍还是双倍,单倍后面三角函数名变,双不变则三角函数名不变;符号看象限:即把α看成锐角,加上2πn终边落在第几象限则是第几象限角的符号。
五、有关三角函数单调区间的确定、最小正周期、奇偶性、对称性以及比较三角函数值的大小问题,一般先化简成单角三角函数式。
然后再求解。
六、三角函数的求值、化简、证明问题常用的方法技巧有:1、 常数代换法:如:αααααα2222tan sec cot tan cos sin1-=⋅=+=2、 配角方法:ββαα-+=)( ()βαβαα-++=)(2 22βαβαβ--+=3、 降次与升次:22cos 1sin 2αα-= 22cos 1cos 22αα+= 以及这些公式的变式应用。
三角函数知识框架图4、 ()θααα++=+sin cos sin 22b a b a (其中ab=θtan )的应用,注意θ的符号与象限。
5、 常见三角不等式:(1)、若x x x x tan sin .2,0<<⎪⎭⎫ ⎝⎛∈则π (2)、若2cos sin 1.2,0≤+<⎪⎭⎫⎝⎛∈x x x 则π (3)、1cos sin ≥+x x 6、 常用的三角形面积公式:(1)、c b a ch bh ah S 212121===(2)、B ac A bc C ab S sin 21sin 21sin 21=== (3)、()22221OB OA OB OA S ⋅-⋅=七、三角函图象和性质:正弦函数图象的变换:()()αωαωω+=−−−→−+=−−−→−=−−−→−=x A y x y x y x y sin sin sin sin 振幅变换平移变换横伸缩变换三角函数的图象和性质定义域RR值 域RR周期性奇偶性对称性 奇函数,图象关于坐标原点对称偶函数,图象关于轴对称奇函数,图象关于坐标原点对称 奇函数,图象关于原点对称单调性在区间上单调递增; 在区间上单调递减。
在区间上单调递增;在区间上单调递减。
在区间上单调递增。
在区间上单调递减。
考点分析:考点一: 求三角函数的定义域、值域和最值、三角函数的性质(包括奇偶性、单调性、周期性)这类问题在选择题、填空题、解答题中出现较多,主要是考查三角的恒等变换及三角函数的基础知识。
样题1、已知函数f(x)=)x cos x (sin log 21-(1)求它的定义域和值域;求它的单调区间;判断它的奇偶性;判断它的周期性。
解题思路分析: (1)x 必须满足sinx-cosx>0,利用单位圆中的三角函数线及π+π<<π+π45k 2x 4k 2,k ∈Z ∴ 函数定义域为)45k 2,4k 2(π+ππ+π,k ∈Z ∵ )4x sin(2x cos x sin π-=- ∴ 当x ∈)45k 2,4k 2(π+ππ+π时,1)4x sin(0≤π-< ∴ 2cos x sin 0≤-<∴ 212log y 21-=≥∴ 函数值域为[+∞-,21] (3)∵ f(x)定义域在数轴上对应的点关于原点不对称 ∴ f(x)不具备奇偶性 (4)∵ f(x+2π)=f(x) ∴ 函数f(x)最小正周期为2π注;利用单位圆中的三角函数线可知,以Ⅰ、Ⅱ象限角平分线为标准,可区分sinx-cosx 的符号。
样题2、(05年广东)化简),,)(23sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期. 解:)23sin(32)232cos()232cos()(x x k x k x f +π+-π-π++π+π= )23sin(32)23cos(2x x +π++π=x 2cos 4=所以函数f (x )的值域为[]4,4-,最小正周期πωπ==2T样题3、(1)已知cos(2α+β)+5cos β=0,求tan(α+β)·tan α的值; (2)已知5cos 3sin cos sin 2-=θ-θθ+θ,求θ+θ2sin 42cos 3的值。
解题思路分析:从变换角的差异着手。
∵ 2α+β=(α+β)+α,β=(α+β)-α ∴ 8cos[(α+β)+α]+5cos[(α+β)-α]=0 展开得: 13cos(α+β)cos α-3sin(α+β)sin α=0 同除以cos(α+β)cos α得:tan(α+β)tan α=313 (1)以三角函数结构特点出发 ∵3tan 1tan 2cos 3sin cos sin 2-θ+θ=θ-θθ+θ ∴ 53tan 1tan 2-=-θ+θ ∴ tan θ=2∴ 57tan 1tan 8tan 33cos sin cos sin 8)sin (cos 32sin 42cos 3222222=θ+θ+θ-=θ+θθθ+θ-θ=θ+θ 样题4 求函数y=sin 2x+2sinxcosx+3cos 2的最大值 解:∵2sinxcosx=sin2x,sin 2x+cos 2x=1,cos 2x=2cos2x1+ ∴y=sin 2x+2sinxcosx+3cos 2x=(sin 2x+cos 2x)+2sinxcosx+2cos 2x=1+sin2x+2·2cos2x1+ =sin2x+cos2x+2=2(sin2x ·cos 4π+cos2x ·sin 4π)+2=2 sin(2x+4π)+2 ∴当2x+4π=2π+2k π时,y max =2+2 即x=8π+K π(K ∈Z),y的最大值为2+2注;齐次式是三角函数式中的基本式,其处理方法是化切或降幂。
考点二: 三角与其他知识的结合,三角函数仍将以选择题、填空题和解答题三种题型出现,难度会控制在中等偏易的程度;样题5、已知00<α<β<900,且sin α,sin β是方程-+-020240cos x )40cos 2(x 21=0的两个实数根,求sin(β-5α)的值。
解题思路分析:由韦达定理得sin α+sin β=2cos400,sin αsin β=cos 2400-21 ∴ sin β-sin α=)40cos 1(2sin sin 4)sin (sin )sin (sin 0222-=βα-β+α=α-β 040sin 2=又sin α+sin β=2cos400∴ ⎪⎪⎩⎪⎪⎨⎧=-=α=+=β0000005sin )40sin 240cos 2(21sin 85sin )40sin 240cos 2(21sin∵ 00<α<β< 900∴ ⎪⎩⎪⎨⎧=α=β00585 ∴ sin(β-5α)=sin600=23注:利用韦达定理变形寻找与sin α,sin β相关的方程组,在求出sin α,sin β后再利用单调性求α,β的值。
考点三: 关于三角函数的图象, 立足于正弦余弦的图象,重点是函数 的图象与y=sinx的图象关系。
根据图象求函数的表达式,以及三角函数图象的对称性样题6、 如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b .(1)求这段时间的最大温差.(2)写出这段曲线的函数解析式.解:(1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象.∴ωπ221⋅=14-6,解得ω=8π,由图示A =21(30-10)=10,b =21(30+10)=20,这时y =10sin(8πx +φ)+20,将x =6,y =10代入上式可取φ=43π.综上所求的解析式为y =10sin(8πx +43π)+20,x ∈[6,14].样题7(05年福建)函数)20,0,)(sin(πϕωϕω<≤>∈+=R x x y 的部分图象如图,则 ( C )A .4,2πϕπω== B .6,3πϕπω==C .4,4πϕπω==D .45,4πϕπω==样题8、(05年全国卷Ⅰ17)设函数)(),0( )2sin()(x f y x x f =<<-+=ϕπϕ图像的一条对称轴是直线8π=x 。
(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)画出函数)(x f y =在区间],0[π上的图像。
(本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分.) 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得 .,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)由知)432sin(π-=x yx 0 8π83π 85π 87ππy22--1 0 1 022-故函数上图像是在区间],0[)(πx f y = (略)考点四,三角函数与其它知识交汇设计试题,是突出能力、试题出新的标志,近年来多出现于三角函数与向量等知识交汇。
样题9(05年江西)已知向量b a x f x x b x x a ⋅=-+=+=)()),42tan(),42sin(2()),42tan(,2cos 2(令πππ. 求函数f (x )的最大值,最小正周期,并写出f (x )在[0,π]上的单调区间. 解:)42tan()42tan()42sin(2cos 22)(πππ--++=⋅=x x x xb a x f21tan tan122()222221tan1tan222sin cos2cos1222x xx x xx xx x x+-=++⋅-+=+-xx cossin+==)4sin(2π+x.所以2)(的最大值为xf,最小正周期为,2π]4,0[)(π在xf上单调增加,[,]42ππ上单调减少.样题10、(05年山东卷)已知向量528),2,(),cos,sin2()sin,(cos=+ππ∈θθθ-=θθ=nm和,求)82cos(π+θ的值.解:)sincos,2sin(cosθθθθ++-=+nm22)sin(cos)2sin(cosθ+θ++θ-θ=+nm)sin(cos224θ-θ+=)4cos(44π+θ+=)4cos(12π+θ+=528=,得257)4cos(=π+θ又1)82(cos2)4cos(2-π+θ=π+θ所以2516)82(cos2=π+θ)82cos(898285,2<π+θ∴π<π+θ<π∴π<θ<π54)82cos(-=π+θ∴。