高考数学导数小题练习集

高考数学导数小题练习集
高考数学导数小题练习集

高考数学导数小题练习集Newly compiled on November 23, 2020

2018年高考数学导数小题练习集(二)

1.设函数

x

e x e x g x x e x

f 222)(,1)(=+=,对任意21,x x ∈(0,+∞),不等式

1)()(21+≤k x f k x g 恒成立,则正数k 的取值范围是( ) A .[1,+∞) B .(1,+∞) C .),121

[

+∞-e

D .),1

21

(

+∞-e 2.函数()y f x =的图象如图所示,在区间[].a b 上可找到n 个不同的数0x ,使得000

()

()

f x f x x '=,那么n = ( )

A .1

B .2

C .3

D .4

3.已知)('x f 是函数)(x f ,)(R x ∈的导数,满足)('

x f =﹣)(x f ,且()0f =2,设函数

()()()x f x f x g 3ln -=的一个零点为0x ,则以下正确的是( )

A .0x ∈(﹣4,﹣3)

B .0x ∈(﹣3,﹣2)

C .0x ∈(﹣2,﹣1)

D .0x ∈(﹣1,0)

4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足

''

()()f x g x =,则()f x 与()g x 满足( )

A .()f x =()g x

B .()f x -()g x 为常数函数

C .()f x =()0g x =

D .()f x +()g x 为常数函数

5.设函数()f x ,()g x 在[]b a ,上均可导,且

()()x g x f '

'<,则当b x a <<时,有( ) A .()f x >()g x

B .()f x <()g x

C .()f x +()a g <()g x +()a f

D .()f x +()b g <()g x +()b f

6.设0()cos f x x =,/10()()f x f x =,/

21()()f x f x =,……,/1

()()n n f x f x +=, (n ∈N),则f 2011(x ) =( ).

A. sin x

B. sin x -

C. cos x

D. cos x -

7.如图所示的曲线是函数d cx bx x x f +++=2

3)(的大致图象,则2221x x +等于( )

1

x

A.98

B .910

C . 916

D .45

8.若两个函数的图象有一个公共点,并在该点处的切线相同,就说明这两个函数有why 点,已知函

数()x x f ln =和

()m

x e

x g +=有why 点,则m 所在的区间为( )

A .(﹣3,﹣e )

B .(﹣e ,821

-

C .(821-

,613

-

D .(613

-

,﹣2)

9.如图所示,曲线12

-=x y ,2,0,y=0x x ==围成的阴影部分的面积为( ) A .dx x

?-2

2

|1| B .|)1(|2

2dx x ?

-

C .

dx x ?

-2

2)1(

D .

1

2

220

1

(1)(1)x dx x dx

-+-?

?

10.已知()f x '

是奇函数()f x 的导函数,(1)0f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成

立的x 的取值范围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞

C .(1,0)(0,1)-

D .(,1)(1,)-∞-+∞

11.设函数2

()2f x x x =-,若(1)(1)()()0f x f y f x f y +++≤+≤,则点(,)P x y 所形成的区域的面积为 ( ) A.

4332

π+ B.

43

32

π- C.

23

32

π+

D.

23

3π- 12.设函数()x f 是定义在()0,∞-上的可导函数,其导函数为()x f ',且有()()2'2x x xf x f >+,则不等式

()()()024*********

>--++f x f x 的解集为

A .()2012,-∞-

B .()0,2012-

C .()2016,-∞-

D .()0,2016-

13.已知函数()2

23a bx ax x x f +++=在1=x 处有极值10,则()2f 等于( )

A .11或18

B .11

C .18

D .17或18

14.若函数

()1ln 2++-+=a ax x x x f 为()+∞,0上的增函数,则实数a 的取值范围是() A .(﹣∞,22]

B .(﹣∞,2]

C .[1,+∞)

D .[2,+∞)

15.给出以下命题:

⑴若

()0

b a

f x dx >?,则f (x )>0; ⑵

20

sin 4

xdx =?π;

⑶f (x )的原函数为F (x ),且F (x )是以T 为周期的函数,则

()()a a T T

f x dx f x dx

+=??

其中正确命题的个数为( ) A .1

16.已知f (x )为定义域为R 的函数,f'(x )是f (x )的导函数,且f (1)=e ,x ∈R 都有f'(x )>f (x ),则不等式f (x )<e x 的解集为( ) A .(﹣∞,1)

B .(﹣∞,0)

C .(0,+∞)

D .(1,+∞)

17.函数f (x )=x 2﹣2ax ﹣2alnx (a ∈R ),则下列说法不正确的命题个数是( ) ①当a <0时,函数y=f (x )有零点; ②若函数y=f (x )有零点,则a <0; ③存在a >0,函数y=f (x )有唯一的零点; ④若a≤1,则函数y=f (x )有唯一的零点. A .1个

B .2个

C .3个

D .4个

18.已知函数()f x 的定义域为[)3-+∞,,且(6)2f =.()f x '为

()f x 的导函数,()f x '的图像如右图所示.若正数,a b 满足

(2)2f a b +<,则3

2b a +-的取值范围是( )

A .3

(,)(3,)

2-∞-+∞

B .9

(,3)2- C .9

(,)(3,)

2-∞-+∞

D .3,32??

- ???

19.函数()f x 是定义域为R 的函数,对任意实数x 都有()(2)f x f x =-成立.若当1x ≠时,不等式

(1)()0x f x '-?

<成立,设(0.5)a f =,4

()3b f =,(3)c

f =,则a ,b ,c 的大小关系是

( ) A .b a c >> B .c b a >> C .a b c >>

D .b c a >>

20.记)]'([)()

1(x f x f

=,)]'([)()1()2(x f x f =,…,)]'([)()1()(x f x f n n -= )2,(≥∈+n N n .若

x x x f cos )(=,则)0()0()0()0()2012()2()1(f f f f ++++ 的值为( )

A .1006

B .2012

C .2012-

D . 1006-

21.若点P 在曲线()

43

33323+

-+-=x x x y 上移动,经过点P 的切线的倾斜角为α,则角α的取值

范围是( )

A .[0,)

B .[0,)∪[,π)

C .[

,π)

D .[0,

)∪(

]

22.设函数

()θθθtan 1

4sin 6cos 323+

+=x x x f ,其中θ∈??? ??-2,2ππ,则导数f′(1)的取值范围是( ) A .(﹣,1]

B .(﹣,1)

C .(﹣,)

D .(﹣,]

23.已知函数

()d cx bx ax x f +++=2

3的图象如图所示, y 则 ( )

A. ()0,∞-∈b

B. ()1,0∈b

C. ()2,1∈b

D. ()+∞∈,2b

24.过点(2,2)P -且与曲线3

3y x x =- ) A.916y x =-+ B.920y x =

C.2y =-

D.916y x =-+或2y =-

25.已知函数

()()()()

321x x x x x x x f ---=(其中

3

21x x x <<),()()12sin 3++=x x x g ,且函

数()x f 的两个极值点为()βαβα<,.设2,2322

1x x u x x +=+=

λ,则

A .

B .

C .

D .

26.设

()dx

a x a f ?-=1

22,当0≥a 时,()a f 的最小值是( )

A.32

B.41

C.31-

D.无最小值

27.已知'()f x 是定义在R 上的函数()f x 的导函数,且5

()(5),()'()0

2f x f x x f x =--<若

1212,5

x x x x <+<,则下列结论中正确的是( )

A .12()()

f x f x < B .

12()()0f x f x +>

C .

12()()0

f x f x +<

D .

12()()

f x f x >

28.已知函数f (x )的导函数图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )

A .f (cosA )<f (cos

B ) B .f (sinA )<f (cosB )

C .f (sinA )>f (sinB )

D .f (sinA )>f (cosB )

29.如果函数

()x a x x f 23

31-=

满足:对于任意的x 1,x 2∈[0,1],都有|f (x 1)﹣f (x 2)|≤1恒成

立,则a 的取值范围是( ) A . B .

C .

D .

30.若

dx x n ?

???

??+=2

4sin 2π

π,则

n

y y ???? ??+2的展开式中常数项为( ) A .8

B .16

C .24

D .60

31.已知f (x )=x 3-3x +m 在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的三角形,则实数m 的取值范围是( ) A. (6,+∞) B. (5,+∞)

C.(4,+∞)

D. (3,+∞)

32.已知函数

1()(*)n f x x n N +=∈的图象与直线1x =交于点P ,若图象在点P 处的切线与x 轴交

点的横坐标为n x ,则12013log x +22013log x +…+20122013log x 的值为( ) A .-1

B . 1-log

C .-log

D .1

33.已知函数

()()b x a x g ax x x f +=+=

ln 3,22122

,设两曲线y=f (x ),y=g (x )有公共点,且在

该点处的切线相同,则a ∈(0,+∞)时,实数b 的最大值是( ) A .

B .

C .

D .

34.已知函数2

()f x x =的图象在点11(,())A x f x 与点22(,())B x f x 处的切线互相垂直,并交于点P ,

则点P 的坐标可能是

A .3

(,3)2-

B . (0,4)-

C .(2,3)

D .

1

(1,)

4- 35.已知函数()y f x =对任意的

(,)22x ππ

∈-

满足'()cos ()sin 0f x x f x x +>(其中'

()f x 是函数

()f x 的导函数),则下列不等式成立的是( )

A .

2()()

34f f ππ

-<- B .

2()()

34f f ππ

< C .

(0)2()

4f f π

>

D

(0)2()

3f f π

<

36.已知函数y=f (x )的图象为如图所示的折线ABC ,则()[]dx

x xf ?-1

1=( )

A .

B .

C .0

D .

37.已知函数f (x )满足:f (x )+2f′(x )>0,那么下列不等式成立的是( ) A .

B .

C .

D .f (0)>e 2f (4)

38.函数

22

()()()(02)x x f x e a e a a -=-+-<<的最小值为( ) A 、2

2a -

B 、2

2(1)a -

C 、22a -

D 、2

2(1)a --

39.设函数f (x )=e x (sinx ﹣cosx )(0≤x≤2016π),则函数f (x )的各极大值之和为( ) A .

B .

C .

D .

40.已知函数f (x )的定义域为R ,且x 3f (x )+x 3f (﹣x )=0,若对任意x ∈[0,+∞)都有3xf (x )+x 2f'(x )<2,则不等式x 3f (x )﹣8f (2)<x 2﹣4的解集为( ) A .(﹣2,2) B .(﹣∞,﹣2)∪(2,+∞) C .(﹣4,4)

D .(﹣∞,﹣4)∪(4,+∞)

41.已知

( )

A .至少有三个实数根

B .至少有两个实根

C .有且只有一个实数根

D .无实根

42.设函数f (x )在R 上存在导函数f′(x ),对任意的实数x 都有f (x )=2x 2﹣f (﹣x ),当x ∈(﹣∞,0)时,f′(x )+1<2x .若f (m+2)≤f (﹣m )+4m+4,则实数m 的取值范围是( ) A .[﹣,+∞)

B .[﹣,+∞)

C .[﹣1,+∞)

D .[﹣2,+∞)

43.已知f (x )=|xe x |,又g (x )=f 2(x )﹣tf (x )(t ∈R ),若满足g (x )=﹣1的x 有四个,则t 的取值范围是( ) A .

B .

C .

D .

44.定义在R 上的函数f (x )的图象关于y 轴对称,且f (x )在[0,+∞)上单调递减,若关于x 的不等式f (2mx ﹣lnx ﹣3)≥2f (3)﹣f (﹣2mx+lnx+3)在x ∈[1,3]上恒成立,则实数m 的取值范围为( ) A .[,] B .[,]

C .[,

]

D .[

]

45.已知函数f (x )= ?????>+-≤+-0x ,1)1x (0x ,a x 3,且x 0∈[2,+∞)使得f (﹣x 0)=f (x 0),若对任意的

x ∈R ,f (x )>b 恒成立,则实数b 的取值范围为( ) A .(﹣∞,0)

B .(﹣∞,0]

C .(﹣∞,a )

D .(﹣∞,a]

46.设函数()m x x x f ++=

ln ,若曲线

21cos 21e

x e y ++-=

上存在(x 0,y 0),使得

()()00y y f f =成立,则实数m 的取值范围为( )

A .[0,e 2﹣e+1]

B .[0,e 2+e ﹣1]

C .[0,e 2+e+1]

D .[0,e 2﹣e ﹣1]

47.设函数f (x )满足2x 2f (x )+x 3f′(x )=e x ,f (2)=82

e ,则x ∈[2,+∞)时,

f (x )( )

A .有最大值

B .有最小值

C .有最大值

D .有最小值

48.已知函数f (x )=e x ﹣ax ﹣1,g (x )=lnx ﹣ax+a ,若存在x 0∈(1,2),使得()()0

00

则实数a 的取值范围是( ) A .

B .(ln2,e ﹣1)

C .[1,e ﹣1)

D .

49.已知函数f (x )=

x

e x ,关于x 的方程

f 2(x )﹣2af (x )+a ﹣1=0(a ∈R )有四个相异的实数根,

则a 的取值范围是( ) A .(﹣1,

B .(1,+∞)

C .(,2)

D .(,+∞)

50.设函数()()()???

??+=+==326

sin 2,2,2

ππx x h x x x g xe x f x

,若对任意的x ∈R ,都有

()()()[]2+≤-x g k x f x h 成立,则实数k 的取值范围是( )

A .

B .

C .

D .

试卷答案

【考点】利用导数求闭区间上函数的最值.

【分析】当x >0时,f (x )=e 2x+,利用基本不等式可求f (x )的最小值,对函数g (x )求导,利用导数研究函数的单调性,进而可求g (x )的最大值,由

恒成立且k >0,则

≤,可求k 的范围.

【解答】解:∵当x >0时,f (x )=e 2x+≥2 =2e ,

∴x 1∈(0,+∞)时,函数f (x 1)有最小值2e , ∵g (x )=

∴g′(x )=,

当x <1时,g′(x )>0,则函数g (x )在(0,1)上单调递增, 当x >1时,g′(x )<0,则函数在(1,+∞)上单调递减, ∴x=1时,函数g (x )有最大值g (1)=e ,

则有x 1、x 2∈(0,+∞),f (x 1)min =2e >g (x 2)max =e , ∵恒成立且k >0,

∴≤,

∴k≥1, 故选:A . ∵

000

()

()f x f x x '=, ∴在0x 点处的切线过原点(0,0), 由图象观察可知共有3个.

【考点】利用导数研究函数的单调性.

【分析】求出f (x )的表达式,得到g (x )的表达式,设h (x )=f (x )﹣g (x ),求出h (0)和h (﹣1)的值,从而求出x 0的范围. 【解答】解:设f (x )=ke ﹣x ,

则f(x)满足f′(x)=﹣f(x),

而f(0)=2,∴k=2,

∴f(x)=2e﹣x,

∴g(x)=3lnf(x)=3(﹣x+ln2)=﹣3x+3ln2,

设h(x)=f(x)﹣g(x),

则h(x)=2e﹣x+3x﹣3ln2,

∴h(0)=2﹣3ln2<0,h(﹣1)=2e﹣3﹣3ln2>0,即在(﹣1,0)上存在零点,

故选:D.

解析:

()

f x,()

g x的常数项可以任意

【考点】6B:利用导数研究函数的单调性.

【分析】比较大小常用方法就是作差,构造函数F(x)=f(x)﹣g(x),研究F(x)在给定的区间[a,b]上的单调性,F(x)在给定的区间[a,b]上是增函数从而F(x)>F(a),整理后得到答案.

【解答】解:设F(x)=f(x)﹣g(x),

∵在[a,b]上f'(x)<g'(x),

F′(x)=f′(x)﹣g′(x)<0,

∴F(x)在给定的区间[a,b]上是减函数.

∴当x>a时,F(x)<F(a),

即f(x)﹣g(x)<f(a)﹣g(a)

即f(x)+g(a)<g(x)+f(a)

故选C.

【考点】利用导数研究曲线上某点切线方程.

【专题】新定义;函数的性质及应用;导数的概念及应用.

【分析】设f(x)和g(x)的公共点为(a,b),(a>0),求导数,建立方程组,求得alna=1,

确定a的范围,再由m=﹣lna﹣a=﹣(a+)确定单调递增,即可得到m的范围.

【解答】解:设f(x)和g(x)的公共点为(a,b),(a>0),

函数f(x)=lnx的导数为f′(x)=,

g (x )=e x+m 有的导数为g′(x )=e x+m , 即有

=e a+m ,lna=e a+m ,

即为alna=1,

令h (a )=alna ﹣1,可得h ()=

ln

﹣1<0,h (2)=2ln2﹣1>0,

即有

<a <2,

则m=﹣lna ﹣a=﹣(a+)∈(﹣

,﹣

),而﹣

>﹣

故选C .

【点评】本题考查导数知识的运用,考查导数的几何意义,解题的关键是分离参数,确定函数的单调性,属于中档题.

∵2

()()()f x xf x f x x x ''-??= ???

,0x >时,()()0xf x f x '->, ∴当0x >时,

()f x x 为增函数,0x <时,()f x x

为减函数, ∵()f x 有奇函数, ∴

()

f x x

为偶函数, ∵(1)0f -=, ∴(1)0f =.

画出大致图象可得到()0f x >时(1,0)(1,)x ∈-+∞.

12.

:由

得:

,即

,令

,则当

时,

,即在

是减函数, ,

在是减函数,所以由得,,即,故选

【考点】函数在某点取得极值的条件.

【分析】根据函数在x=1处有极值时说明函数在x=1处的导数为0,又因为f′(x)=3x2+2ax+b,所以得到:f′(1)=3+2a+b=0,又因为f(1)=10,所以可求出a与b的值确定解析式,最终将x=2代入求出答案.

【解答】解:f′(x)=3x2+2ax+b,

∴或

①当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;

②当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)

∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,符合题意.

∴,∴f(2)=8+16﹣22+16=18.

故选C.

14.

A

【考点】利用导数研究函数的单调性.

【分析】由函数f(x)=lnx+x2﹣ax+a+1为(0,+∞)上的增函数,可得:f′(x)=+2x﹣a≥0,化为:a≤+2x=g(x),利用导数研究函数的单调性极值与最值即可得出.

【解答】解:f′(x)=+2x﹣a,

∵函数f(x)=lnx+x2﹣ax+a+1为(0,+∞)上的增函数,

∴f′(x)=+2x﹣a≥0,化为:a≤+2x=g(x),

g′(x)=2﹣==,

可知:x=时,函数g(x)取得极小值即最小值, =2.

则实数a的取值范围是a≤2.

故选:A.

16.

【考点】利用导数研究函数的单调性.

【分析】根据题意,令g(x)=,结合题意对其求导分析可得g′(x)>0,即函数g(x)在R 上为增函数,又由f(1)=e,可得g(e)==1,而不等式f(x)<e x可以转化为g(x)<g (1),结合函数g(x)的单调性分析可得答案.

【解答】解:根据题意,令g(x)=,其导数g′(x)==,

又由,x∈R都有f'(x)>f(x),则有g′(x)>0,即函数g(x)在R上为增函数,

若f(1)=e,则g(e)==1,

f(x)<e x<1g(x)<g(1),

又由函数g(x)在R上为增函数,

则有x<1,即不等式f(x)<e x的解集为(﹣∞,1);

故选:A.

【考点】利用导数研究函数的单调性;命题的真假判断与应用;函数零点的判定定理;利用导数研究函数的极值.

【分析】先将函数进行参变量分离,得到2a=,令g(x)=,转化成y=2a与y=g (x)的图象的交点个数,利用导数得到函数的单调性,结合函数的图象可得结论.

【解答】解:令f(x)=x2﹣2ax﹣2alnx=0,则2a(x+lnx)=x2,

∴2a=,令g(x)=,

则g′(x)==

令h(x)=x+lnx,通过作出两个函数y=lnx及y=﹣x的图象(如右图)

发现h(x)有唯一零点在(0,1)上,

设这个零点为x0,当x∈(0,x0)时,g′(x)<0,g(x)在(0,x0)上单调递减,x=x0是渐近线,

当x∈(x0,1)时,g′(x)<0,则g(x)在(x0,1)上单调递减,

当x ∈(1,+∞)时g′(x )>0,g (x )在(1,+∞)单调递增, ∴g (1)=1,可以作出g (x )=

的大致图象,

结合图象可知,当a <0时,y=2a 与y=g (x )的图象只有一个交点, 则函数y=f (x )只有一个零点,故①正确;

若函数y=f (x )有零点,则a <0或a≥,故②不正确; 存在a=>0,函数y=f (x )有唯一零点,故③正确;

若函数y=f (x )有唯一零点,则a <0,或a=,则a≤1,故④正确. 故选:B . 略

因为对任意实数x 都有()(2)f x f x =-成立,所以函数的图象关于1x =对称,又由于若当1

x ≠时,不等式(1)()0x f x '-?<成立,所以函数在

()1,+∞上单调递减,所以4

()3b f =()()30.532a f f f ??>==> ???

【考点】导数的几何意义;直线的倾斜角.

【分析】先求出函数的导数y′的解析式,通过导数的解析式确定导数的取值范围,再根据函数的导数就是函数在此点的切线的斜率,来求出倾斜角的取值范围. 【解答】解:∵函数的导数y′=3x 2﹣6x+3﹣=3(x ﹣1)2﹣

≥﹣

∴tanα≥﹣,又 0≤α<π, ∴0≤α< 或

≤α<π,

故选 B .

【考点】63:导数的运算. 【分析】求导,当x=1时,f′(1)=+

=sin (θ+

),由θ∈(﹣

),即

可求得θ+

∈(﹣

),根据正弦函数的性质,即可求得导数f′(1)的取值范围. 【解答】解:f (x )=

x 3+

x 2+

,f′(x )=

x 2+

x ,

f′(1)=+=sin (θ+),

由θ∈(﹣,

),则θ+∈(﹣

),

则sin (θ+

)∈(﹣,1],

∴导数f′(1)的取值范围(﹣,1], 故选A .

设点(,)a b 是曲线上的任意一点,则有33b a a =-。导数2'33y x =-则切线斜率233k a =-,所

以切线方程为

2(33)()

y b a x a -=--,即

22233(33)(33)(33)333y a x a a b a x a a a a =---+=-+-+-,整理得23(33)2y a x a =-+,将

点(2,2)P -代入得

2

233

22(33)2266a a a a -=-+=-+,即32340a a -+=,即3232133(1)3(1)0a a a a +-+=+--=,整理得2(1)(2)0a a +-=.

25.

D

【考点】函数的单调性与导数的关系.

【分析】根据导数函数图象可判断;f (x )在(0,1)单调递增,(1,+∞)单调递减, 由△ABC 为锐角三角形,得A+B ,0

﹣B <A

,再根据正弦函数,f (x )单调性判

断.

【解答】解:根据导数函数图象可判断;f (x )在(0,1)单调递增,(1,+∞)单调递减, ∵△ABC 为锐角三角形,∴A+B ,0

﹣B <A

∴0<sin (

﹣B )<sinA <1,0<cosB <sinA <1

f (sinA )>f (sin (

﹣B )),

即f (sinA )>f (cosB ) 故选;D

【点评】本题考查了导数的运用,三角函数,的单调性,综合性较大,属于中档题.

【考点】利用导数求闭区间上函数的最值.

【分析】由题意函数满足:对于任意的x1,x2∈[0,1],都有|f(x1)﹣f(x2)

|≤1恒成立,必有函数满足其最大值与最小值的差小于等于1,由此不等式解出参数a的范围即可,故可先求出函数的导数,用导数判断出最值,求出最大值与最小值的差,得到关于a的不等式,解出a的值

【解答】解:由题意f′(x)=x2﹣a2

当a2≥1时,在x∈[0,1],恒有导数为负,即函数在[0,1]上是减函数,故最大值为f(0)=0,最小值为f(1)=﹣a2,故有,解得|a|≤,故可得﹣≤a≤

当a2∈[0,1],由导数知函数在[0,a]上增,在[a,1]上减,故最大值为f(a)=又f(0)

=0,矛盾,a∈[0,1]不成立,

故选A.

【考点】DB:二项式系数的性质.

【专题】38 :对应思想;4O:定义法;5P :二项式定理.

【分析】求定积分可得n的值,再利用二项展开式的通项公式,令x的幂指数等于零求得r的值,可得展开式中常数项.

【解答】解:

=2(sinx+cosx)dx

=2(﹣cosx+sinx)

=2(﹣cos+cos0+sin﹣sin0)

=4,

∴的通项公式为T r+1=2r y4﹣2r,

令4﹣2r=0,可得r=2,

∴二项式展开式中常数项是22=24.

故选:C.

【考点】利用导数研究曲线上某点切线方程.

【分析】分别求出函数f (x )的导数,函数g (x )的导数.由于两曲线y=f (x ),y=g (x )有公共点,

设为P (x 0,y 0),则有f (x 0)=g (x 0),且f′(x 0)=g′(x 0),解出x 0=a ,得到b 关于a 的函数,构造函数,运用导数求出单调区间和极值、最值,即可得到b 的最

大值.

【解答】解:函数f (x )的导数为f'(x )=x+2a , 函数g (x )的导数为

由于两曲线y=f (x ),y=g (x )有公共点,设为P (x 0,y 0),

则,

由于x 0>0,a >0 则x 0=a ,因此

构造函数

由h'(t )=2t (1﹣3lnt ), 当

时,h'(t )>0即h (t )单调递增;当

时,h'(t )<0即h (t )单调递减,

则即为实数b 的最大值.

故选D . 34.D

由题,22

1122(,),(,)A x x B x x ,()2f x x '=,则过,A B 两点的切线斜率

112k x =,222k x =,又切线互相垂直,所以121k k =-,即121

4

x x =-.两

条切线方程分别为22

111222:2,:2l y x x x l y x x x =-=-,联立得

1212()[2()]0x x x x x --+=,∵12x x ≠,∴12

2

x x x +=

,代入1l ,解得

121

4y x x ==-

,故选D .

35.

【知识点】导数的应用;构造函数法.B12

【答案解析】D 解析:设()()cos f x g x x =,则()()()2cos sin cos f x x f x x

g x x '+'=

因为()y f x =对任意的

(,)22x ππ

∈-

满足'

()cos ()sin 0f x x f x x +>,所以()0g x '>在

(,)22x ππ

∈-

上恒成立,所以()g x 是(,)

22ππ-上的增函数,所以

()03g g π??< ???,即 (0)2()

3f f π

<.故选D.

【思路点拨】根据已知条件,构造函数()()cos f x g x x =

,利用导数确定函数在()g x (,)22ππ

-上的单

调性,从而得到正确选项.

【考点】定积分. 【分析】由函数图象得

,由此能求出的值.

【解答】解:∵函数y=f (x )的图象为如图所示的折线ABC , ∴,

∴=

=(﹣﹣x )+()

=(﹣)+(

=0. 故选:C .

【考点】利用导数研究函数的单调性. 【分析】根据题意可设f (x )=

,然后代入计算判断即可.

【解答】解:∵f (x )+2f′(x )>0, 可设f (x )=

∴f(1)=,f(0)=e0=1,

∴f(1)>,

故选:A.

【考点】利用导数研究函数的极值.

【分析】先求f′(x)=2e x sinx,这样即可得到f(π),f(3π),f(5π),…,f为f(x)的极大值,并且构成以eπ为首项,e2π为公比的等比数列,根据等比数列的求和公式求f(x)的各极大值之和即可.

【解答】解::∵函数f(x)=e x(sinx﹣cosx),

∴f′(x)=[e x(sinx﹣cosx)]′=e x(sinx﹣cosx)+e x(cosx+sinx)=2e x sinx;

令f′(x)=0,解得x=kπ(k∈Z);

∴当2kπ<x<2kπ+π时,f′(x)>0,原函数单调递增,

当2kπ+π<x<2kπ+2π时,f′(x)<0,原函数单调递减;

∴当x=2kπ+π时,函数f(x)取得极大值,

此时f(2kπ+π)=e2kπ+π[sin(2kπ+π)﹣cos(2kπ+π)]=e2kπ+π;

又∵0≤x≤2016π,∴0和2016π都不是极值点,

∴函数f(x)的各极大值之和为:

eπ+e3π+e5π+…+e2015π=,

故选:D.

【考点】利用导数研究函数的单调性.

【分析】构造函数h(x)=x3f(x)﹣2x,根据函数的单调性和奇偶性求出不等式的解集即可.【解答】解:令h(x)=x3f(x)﹣2x,

则h′(x)=x[3xf(x)+x2f'(x)﹣2],

若对任意x∈[0,+∞)都有3xf(x)+x2f'(x)<2,

则h′(x)≤0在[0,+∞)恒成立,

故h(x)在[0,+∞)递减,

若x3f(x)+x3f(﹣x)=0,

则h(x)=h(﹣x),

则h(x)在R是偶函数,h(x)在(﹣∞,0)递增,

不等式x3f(x)﹣8f(2)<x2﹣4,

即不等式x3f(x)﹣x2<8f(2)﹣4,

即h(x)<h(2),

故|x|>2,解得:x>2或x<﹣2,

故不等式的解集是(﹣∞,﹣2)∪(2,+∞),

故选:B.

【点评】本题考查了函数的单调性、奇偶性问题,考查转化思想,构造函数g(x)是解题的关键,本题是一道中档题.

41.答案:C

【考点】利用导数研究函数的单调性.

【分析】利用构造法设g(x)=f(x)﹣x2,推出g(x)为奇函数,判断g(x)的单调性,然后推出不等式得到结果.

【解答】解:∵f(x)=2x2﹣f(﹣x),

∴f(x)﹣x2+f(﹣x)﹣x2=0,

设g(x)=f(x)﹣x2,则g(x)+g(﹣x)=0,

∴函数g(x)为奇函数.

∵x∈(﹣∞,0)时,f′(x)+1<2x,

g′(x)=f′(x)﹣2x<﹣1,

故函数g(x)在(﹣∞,0)上是减函数,

故函数g(x)在(0,+∞)上也是减函数,

若f(m+2)≤f(﹣m)+4m+4,

则f(m+2)﹣(m+2)2≤f(﹣m)﹣m2,

即g(m+2)<g(﹣m),

∴m+2≥﹣m,解得:m≥﹣1,

故选:C.

【考点】利用导数研究函数的单调性;根的存在性及根的个数判断.

【分析】令y=xe x,则y'=(1+x)e x,求出极值点,判断函数的单调性,作出y=xe x图象,利用图象变换得f(x)=|xe x|图象,令f(x)=m,则关于m方程h(m)=m2﹣tm+1=0两根分别在

,满足g(x)=﹣1的x有4个,列出不等式求解即可.

【解答】解:令y=xe x,则y'=(1+x)e x,由y'=0,得x=﹣1,

当x∈(﹣∞,﹣1)时,y'<0,函数y单调递减,

当x∈(﹣1,+∞)时,y'>0,函

数y单调递增.作出y=xe x图象,

利用图象变换得f(x)=|xe x|图象(如图10),

2018年高考理科数学全国卷二导数压轴题解析

2018年高考理科数学全国卷二导数压轴题解析 已知函数2()x f x e ax =-. (1) 若1a =,证明:当0x ≥时,()1f x ≥. (2) 若()f x 在(0,)+∞只有一个零点,求a . 题目分析: 本题主要通过函数的性质证明不等式以及判断函数零点的问题考察学生对于函数单调性以及零点存在定理性的应用,综合考察学生化归与分类讨论的数学思想,题目设置相对较易,利于选拔不同能力层次的学生。第1小问,通过对函数以及其导函数的单调性以及值域判断即可求解。官方标准答案中通过()()x g x e f x -=的变形化成2()x ax bx c e C -+++的形式,这种形式的函数求导之后仍为2()x ax bx c e -++这种形式的函数,指数函数的系数为代数函数,非常容易求解零点,并且这种变形并不影响函数零点的变化。这种变形思想值得引起注意,对以后导数命题有着很大的指引作用。但是,这种变形对大多数高考考生而言很难想到。因此,以下求解针对函数()f x 本身以及其导函数的单调性和零点问题进行讨论,始终贯穿最基本的导函数正负号与原函数单调性的关系以及零点存在性定理这些高中阶段的知识点,力求完整的解答该类题目。 题目解答: (1)若1a =,2()x f x e x =-,()2x f x e x '=-,()2x f x e ''=-. 当[0,ln 2)x ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x ∈+∞时,()0f x ''>,()f x '单调递增; 所以()(ln 2)22ln 20f x f ''≥=->,从而()f x 在[0,)+∞单调递增;所以()(0)1f x f ≥=,得证. (2)当0a ≤时,()0f x >恒成立,无零点,不合题意. 当0a >时,()2x f x e ax '=-,()2x f x e a ''=-. 当[0,ln 2)x a ∈时,()0f x ''<,()f x '单调递减;当(ln 2,)x a ∈+∞时,()0f x ''>,()f x '单调递增;所以()(ln 2)2(1ln 2)f x f a a a ''≥=-. 当02 e a <≤ 时,()0f x '≥,从而()f x 在[0,)+∞单调递增,()(0)1f x f ≥=,在(0,)+∞无零点,不合题意.

高考数学导数题型归纳

导数题型归纳 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:分离变量法: ∵ 当0x =时, 2 ()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2 ()30g x x mx =--<恒成立 等价于233 x m x x x ->=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 解法三:变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 例2),10(32 R b a b x a ∈<<+- ],2不等式()f x a '≤恒成立,求a 的取值范围.

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学导数压轴题

导数压轴 一.解答题(共20小题) 1.已知函数f(x)=e x(1+alnx),设f'(x)为f(x)的导函数. (1)设g(x)=e﹣x f(x)+x2﹣x在区间[1,2]上单调递增,求a的取值范围; (2)若a>2时,函数f(x)的零点为x0,函f′(x)的极小值点为x1,求证:x0>x1. 2.设. (1)求证:当x≥1时,f(x)≥0恒成立; (2)讨论关于x的方程根的个数. 3.已知函数f(x)=﹣x2+ax+a﹣e﹣x+1(a∈R).

(1)当a=1时,判断g(x)=e x f(x)的单调性; (2)若函数f(x)无零点,求a的取值范围. 4.已知函数. (1)求函数f(x)的单调区间; (2)若存在成立,求整数a的最小值.5.已知函数f(x)=e x﹣lnx+ax(a∈R).

(Ⅰ)当a=﹣e+1时,求函数f(x)的单调区间; (Ⅱ)当a≥﹣1时,求证:f(x)>0. 6.已知函数f(x)=e x﹣x2﹣ax﹣1. (Ⅰ)若f(x)在定义域内单调递增,求实数a的范围; (Ⅱ)设函数g(x)=xf(x)﹣e x+x3+x,若g(x)至多有一个极值点,求a的取值集合.7.已知函数f(x)=x﹣1﹣lnx﹣a(x﹣1)2(a∈R).

(2)若对?x∈(0,+∞),f(x)≥0,求实数a的取值范围. 8.设f′(x)是函数f(x)的导函数,我们把使f′(x)=x的实数x叫做函数y=f(x)的好点.已知函数f(x)=. (Ⅰ)若0是函数f(x)的好点,求a; (Ⅱ)若函数f(x)不存在好点,求a的取值范围. 9.已知函数f(x)=lnx+ax2+(a+2)x+2(a为常数).

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

高中导数小题整理(含答案)

导数的概念及简单应用[小题提速练] [明晰考情] 本内容是高考命题的热点内容.在选择、填空题中,若考查导数的几何意义, 难度较小;若考查应用导数研究函数的单调性、极值、最值,一般在选择题、填空题最后的位置,难度较大. 题组一导数的几何意义 要点重组 (1)函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x ) 在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0).(2)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的不同. 1.已知f (x )为奇函数,且当x <0时,f (x )=ln(-x )+x ,则曲线y =f (x )在x =1处的切线的斜率为()A .1B .-1C .0 D .- 12 答案C 解析 当x >0时,-x <0,则f (-x )=ln [-(-x )]-x =ln x -x ,又f (x )为奇函数, 所以当x >0时,f (x )=-f (-x )=x -ln x .当x >0时,f ′(x )=1-1 x ,所以f ′(1)=0, 即曲线y =f (x )在x =1处的切线的斜率为0. 2.(2019·合肥质检)已知直线2x -y +1=0与曲线y =a e x +x 相切,则实数a 的值是() A.12 B .1 C .2 D .e 答案B 解析 由题意知y ′=a e x +1=2,则a >0,x =-ln a ,代入y =a e x +x ,得y =1-ln a , 所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1,所以a =1. 3.(2019·全国Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.答案y =3x 解析 因为y ′=3(2x +1)e x +3(x 2+x )e x =3(x 2+3x +1)e x ,所以曲线在点(0,0)处的切线的斜率 k =y ′|x =0=3,所以所求的切线方程为y =3x .

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

高考题汇编2010-全国高考数学真题--第21题导数

2017-2019年全国高考数学真题--第21题导数 2018年:设函数2 ()1x f x e x ax =---。 (1)若0a =, 求()f x 的单调区间; (2)若当0x ≥时()0f x ≥, 求a 的取值范围 2019年:已知函数ln ()1a x b f x x x = ++, 曲线()y f x =在点(1,(1))f 处的切线方程为 230x y +-=. (I )求,a b 的值; (II )如果当0x >, 且1x ≠时, ln ()1x k f x x x >+-, 求k 的取值范围. 2019年: 已知函数)(x f 满足2 1 2 1)0()1(')(x x f e f x f x + -=-. (Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥2 2 1)(, 求b a )1(+的最大值.

2019: 一卷:已知函数()f x =2 x ax b ++, ()g x =()x e cx d +, 若曲线()y f x =和 曲线()y g x =都过点P (0, 2), 且在点P 处有相同的切线42y x =+ (Ⅰ)求a , b , c , d 的值; (Ⅱ)若x ≥-2时, ()f x ≤()kg x , 求k 的取值范围. 2019一卷:设函数1 ()ln x x be f x ae x x -=+, 曲线()y f x =在点(1, (1)f 处的切线为 (1)2y e x =-+. (Ⅰ)求,a b ; (Ⅱ)证明:()1f x >. 2015一卷:已知函数3 1 ()4 f x x ax =++ , ()ln g x x =-. (Ⅰ)当a 为何值时, x 轴为曲线()y f x = 的切线; (Ⅱ)用min {},m n 表示m , n 中的最小值, 设函数{}()min (),()(0)=>h x f x g x x , 讨论()h x 零点的个数.

校级:高考数学试题导数内容探究

高考数学试题导数内容探究 现代中学数学组陈永生 导数是研究函数的工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值;以导数为工具,通过观察、分析三次函数图像的变化趋势,寻找临界状况,并以此为出发点进行推测、论证,实现对考生创造能力的考查是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常把高次多项式函数,分式函数,指数型,对数型函数,以及初等基本函数的和、差、积、商知识结合起来,以解答题形式综合考察利用导数研究函数的单调性、极值、最值,切线,方程的根,参数的范围等问题,这类题难度很大,综合性强,内容新,背景新,方法新,是高考命题的丰富宝藏。解题中需用到函数与方程思想、分类讨论思想、数形结合思想、转化与划归思想。 《课程标准》中导数的内容有:导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、(理科)定积分与微积分基本定理。文、理科考查形式略有不同。理科基本以一个解答题的形式考查。文科以一个选择题或填空题和一个解答题为主。从新课程高考分析,对导数的要求一般有三个层次:第一层次是主要考查导数的概念、求导公式和求导法则;第二层次是导数的简单应用,包括求切线方程、求函数的单调区间, 求函数的极值;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等有机的结合在一起,设计综合试题。本文以高考试题为例,谈谈高考导数的热点问题,供鉴赏。 一、函数,导数,不等式综合在一起,解决单调性,参数的范围等问题。解决单调性问题转化为解含参数的一元二次不等式或高次不等式的问题;求解参数的取值范围问题转化为不等式的恒成立,能成立,恰成立来求解。进一步转化求函数的最值或一元二次不等式在给定区间上(或实数集 )上的恒成立问题来解决,从而达到考查分类与整合、化归与转化的数学思想。

(完整版)高中数学导数压轴题专题训练

高中数学导数尖子生辅导(填选压轴) 一.选择题(共30小题) 1.(2013?文昌模拟)如图是f(x)=x3+bx2+cx+d的图象,则x12+x22的值是() A.B.C.D. 考点:利用导数研究函数的极值;函数的图象与图象变化. 专题:计算题;压轴题;数形结合. 分析:先利用图象得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x,求出其导函数,利用x1,x2是原函数的极值点,求出x1+x2=,,即可求得结论. 解答:解:由图得:f(x)=x(x+1)(x﹣2)=x3﹣x2﹣2x, ∴f'(x)=3x2﹣2x﹣2 ∵x1,x2是原函数的极值点 所以有x1+x2=,, 故x12+x22=(x1+x2)2﹣2x1x2==. 故选D. 点评:本题主要考查利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考查,属于基础题. 2.(2013?乐山二模)定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”,若函数g(x)=x,h(x)=ln(x+1),φ(x)=x3﹣1的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为() A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α 考点:导数的运算. 专题:压轴题;新定义. 分析:分别对g(x),h(x),φ(x)求导,令g′(x)=g(x),h′(x)=h(x),φ′(x)=φ(x),则它们的根分别为α,β,γ,即α=1,ln(β+1)=,γ3﹣1=3γ2,然后分别讨论β、γ的取值范围即可. 解答: 解:∵g′(x)=1,h′(x)=,φ′(x)=3x2, 由题意得: α=1,ln(β+1)=,γ3﹣1=3γ2, ①∵ln(β+1)=, ∴(β+1)β+1=e, 当β≥1时,β+1≥2, ∴β+1≤<2, ∴β<1,这与β≥1矛盾, ∴0<β<1; ②∵γ3﹣1=3γ2,且γ=0时等式不成立,

专题05 挖掘“隐零点”,破解导数压轴题-2019年高考数学压轴题之函数零点问题(解析版)

专题五挖掘“隐零点”,破解导数压轴题 函数方程思想是一种重要的数学思想方法,函数问题可以利用方程求解,方程解的情况可借助于函数的图象和性质求解.高考命题常常以基本初等函数为载体,主要考查以下三个方面:(1)零点所在区间——零点存在性定理;(2)二次方程根的分布问题;(3)判断零点的个数问题;(4)根据零点的情况确定参数的值或范围;(5)根据零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解导数压轴问题,例题说法,高效训练. 【典型例题】 类型一挖掘“隐零点”,求参数的最值或取值范围 例1.【浙江省杭州第十四中学2019届高三12月月考】设函数,曲线y=f(x)在x=1处的切线与直线y=3x平行. (1)判断函数f(x)在区间和上的单调性,并说明理由; (2)当时,恒成立,求的取值范围. 【答案】(1)区间单调递增;(2) 【解析】 (1).∵f'(1)=1+b=3,∴b=2,则f'(x)=ln x+4x-1. 因为在单调递增,所以当时 即函数f(x)在区间单调递减;当时 即函数f(x)在区间单调递增; (2)因为,而在(0,1)上递增 存在使得

,当 时单调递减; 当时 单调递增 所以 又因为时则 所以则 类型二 挖掘“隐零点”,证明不等式 例2. 设函数2()ln x f x e a x =-,设()2 0,2a e ∈求证:当(]0,1x ∈时,2()2ln f x a a a ≥+ 【答案】见解析 【解析】()f x 的定义域为(]0,1,222'()2x x a xe a f x e x x -=-= 设2()2x x xe a ?=-,()22()242x x x xe x e ?'==+, 当(]0,1x ∈,()0x ?'>,即()x ?在区间(]0,1为增函数, (2(),2x a e a ??∈--? 又因为( )2 0,2a e ∈,所以2 (0)0,(1)20a e a ??=-<=-> 由零点存在定理可知'()f x 在(]0,1的唯一零点为0x 当0(0,)x x ∈时,'()0f x <,当(]0,1x x ∈,'()0f x > 故()f x 在0(0,)x 单调递减,在(]0,1x 单调递增, 所以当0x x =时,()f x 取得最小值,最小值为0200()ln x f x e a x =-, 由0 2020x x e a -=,即0 202x a e x = ,两边去对数得00ln ln 22 a x x =- 由于,所以00000222()2ln 22ln 2ln 22a a f x ax a ax a a a x a x a a = ++≥?=+

高考数学——导数大题精选

高考数学——导数大题精选 6.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a,b,c 值。 例2 求下列函数的导数: (1)y=(2x 2-1)(3x+1) (2)x x y sin 2= (3))1ln(2x x y ++= (4)1 1-+=x x e e y (5)x x x x y sin cos ++= (6)x x x y cos sin 2cos -= 1.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值; (Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围 2.设a ≥0,f (x )=x -1-ln 2 x +2a ln x (x >0). (Ⅰ)令F (x )=xf '(x ),讨论F (x )在(0.+∞)内的单调性并求极值; (Ⅱ)求证:当x >1时,恒有x >ln 2x -2a ln x +1. 3.设函数22()21(0)f x tx t x t x t =++-∈>R ,. (Ⅰ)求()f x 的最小值()h t ; (Ⅱ)若()2h t t m <-+对(02)t ∈, 恒成立,求实数m 的取值范围 4.设函数2()ln(23)f x x x =++ (Ⅰ)讨论()f x 的单调性; (Ⅱ)求()f x 在区间3144??-???? ,的最大值和最小值 6.已知函数2221()()1 ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.

(完整)2019-2020年高考数学压轴题集锦——导数及其应用(一).doc

2019-2020 年高考数学压轴题集锦——导数及其应用(一) 1.已知函数f (x) x2 ax ln x(a R) . (1)函数f (x)在 [1,2] 上的性; (2)令函数g( x) e x 1 x2 a f (x) ,e=2.71828?是自然数的底数, 若函数 g (x) 有且只有一个零点m,判断 m 与 e 的大小,并明理由 . 2.已知函数 f (x) x3ax2bx c 在x 2 与x 1都取得极. 3 (1)求 a, b 的与函数f( x)的区; (2)若x [ c,1] ,不等式 f (x) c 恒成立,求 c 的取范 . 2 3.已知函数 f (x) ln(1 x) ln(1x) . (1)明 f '(x) 2 ; (2)如果 f (x) ax x [0,1) 恒成立,求 a 的范 .

x 1 4.已知函数f (x) ( e 自然数的底数) . e x (1)求函数f (x)的区; (2)函数(x) xf (x) tf '(x) 1 x1, x2 [0 ,1] ,使得 2 ( x1 )(x2 ) x ,存在数 e 成立,求数t 的取范 . 5.已知函数 f ( x) kx a x,其中k R,a 0且a 1 . (1)当 a e ( e=2.71 ?自然数的底),f(x)的性;(2)当k 1,若函数f(x)存在最大g(a),求g(a)的最小. 6.已知函数 f x x2ax ln x a R (1)当a 3 ,求函数f(x)在 1 , 2 上的最大和最小; 2 (2)函数 f(x)既有极大又有极小,求数 a 的取范 .

7.已知 f( x)是定义在 R 上的奇函数,当 x 0 时, f x 1 x 3 ax a R ,且曲线 f(x)在 3 x 1 处的切线与直线 y 3 x 1平行 2 4 (1)求 a 的值及函数 f(x)的解析式; (2)若函数 y f x m 在区间 3, 3 上有三个零点,求实数 m 的取值范围 . 8.已知函数 f x x 0 ax, a ln x (1)若函数 y f x 在 1, 上减函数,求实数 a 的最小值; (2)若存在 x 1 , x 2 e,e 2 ,使 f x 1 f x 2 a 成立,求实数 a 的取值范围 . 9.已知函数 f (x) x 3 ax 2 bx 1, a , b R . ( 1)若 a 2 b 0 , ①当 a 0 时,求函数 f(x)的极值(用 a 表示); ②若 f(x)有三个相异零点,问是否存在实数 a 使得这三个零点成等差数列?若存在,试 求出 a 的值;若不存在,请说明理由; ( 2)函数 f( x)图象上点 A 处的切线 l 1 与 f(x)的图象相交于另一点 B ,在点 B 处的切线为 l 2 ,直线 l 1, l 2 的斜率分别为 k 1, k 2 ,且 k 2 =4k 1 ,求 a ,b 满足的关系式.

高考数学理科导数大题目专项训练及答案

高一兴趣导数大题目专项训练 班级 姓名 1.已知函数()f x 是定义在[,0)(0,]e e - 上的奇函数,当(0,]x e ∈时,有()ln f x ax x =+(其中e 为自然对数的底,a ∈R ). (Ⅰ)求函数()f x 的解析式; (Ⅱ)试问:是否存在实数0a <,使得当[,0)x e ∈-,()f x 的最小值是3?如果存在,求出实数a 的值;如果不存在,请说明理由; (Ⅲ)设ln ||()||x g x x =([,0)(0,]x e e ∈- ),求证:当1a =-时,1 |()|()2 f x g x >+; 2. 若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足: ()f x kx b ≥+和()g x kx b ≤+,则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知 2()h x x =,()2ln x e x ?=(其中e 为自然对数的底数). (1)求()()()F x h x x ?=-的极值; (2) 函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

3. 设关于x 的方程012 =--mx x 有两个实根α、β,且βα<。定义函数.1 2)(2+-= x m x x f (I )求)(ααf 的值;(II )判断),()(βα在区间x f 上单调性,并加以证明; (III )若μλ,为正实数,①试比较)(),( ),(βμ λμβ λααf f f ++的大小; ②证明.|||)()(|βαμ λλβ μαμλμβλα-<++-++f f 4. 若函数22()()()x f x x ax b e x R -=++∈在1x =处取得极值. (I )求a 与b 的关系式(用a 表示b ),并求()f x 的单调区间; (II )是否存在实数m ,使得对任意(0,1)a ∈及12,[0,2]x x ∈总有12|()()|f x f x -< 21[(2)]1m a m e -+++恒成立,若存在,求出m 的范围;若不存在,请说明理由. 5.若函数()()2 ln ,f x x g x x x ==- (1)求函数()()()()x g x kf x k R ?=+∈的单调区间; (2)若对所有的[),x e ∈+∞都有()xf x ax a ≥-成立,求实数a 的取值范围.

2019-2020年高考数学压轴题集锦——导数及其应用(四)

2019-2020年高考数学压轴题集锦——导数及其应用(四) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2019-2020年高考数学压轴题集锦——导数及其应用(四) 23.已知函数()32 23log 32 a f x x x x = -+(0a >且1a ≠). (Ⅰ)若()f x 为定义域上的增函数,求实数a 的取值范围; (Ⅱ)令a e =,设函数()()3 24ln 63 g x f x x x x =--+,且()()120g x g x +=,求 证:122x x +≥ 24.已知函数2x f x e x ax . (1)R x ∈时,证明:1->x e x ; (2)当2a 时,直线1y kx 和曲线y f x 切于点,1A m n m ,求实数k 的值; (3)当10<x f 恒成立,求实数a 的取值范围. 25.已知函数ln a f x a x x x (a 为常数)有两个不同的极值点. (1)求实数a 的取值范围; (2)记f x 的两个不同的极值点分别为12,x x ,若不等式2 12 1 2 f x f x x x 恒成 立,求实数的取值范围.

26.已知函数()1ln f x ax x =--(a ∈R ). (1)讨论函数()f x 极值点的个数,并说明理由; (2)若1x ?>,()2xf x ax ax a <-+恒成立,求a 的最大整数值. 27.已知函数()()()()2 21,2ln 1f x x x g x a x a R =-+=-∈. (1)求函数()()()h x f x g x =-的极值; (2)当0a >时,若存在实数,k m 使得不等式()()g x kx m f x ≤+≤恒成立,求实数a 的取值范围. 28.设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+. (1)求()y f x =的表达式; (2)若直线()01x t t =-<<,把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.

高考文科数学试题分类汇编导数

2012高考文科试题解析分类汇编:导数 1.【2012高考重庆文8】设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是 【答案】C 【解析】:由函数()f x 在2x =-处取得极小值可知2x <-,()0f x '<,则 ()0xf x '>;2x >-,()0f x '>则20x -<<时()0xf x '<,0x >时()0xf x '> 【考点定位】本题考查函数的图象,函数单调性及导数的关系,属于基础题. 2.【2012高考浙江文10】设a >0,b >0,e 是自然对数的底数 A. 若e a +2a=e b +3b ,则a >b B. 若e a +2a=e b +3b ,则a <b C. 若e a -2a=e b -3b ,则a >b D. 若e a -2a=e b -3b ,则a <b 【答案】A 【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性. 【解析】若23a b e a e b +=+,必有22a b e a e b +>+.构造函数:()2x f x e x =+,

则()20x f x e '=+>恒成立,故有函数()2x f x e x =+在x >0上单调递增,即 a > b 成立.其余选项用同样方法排除. 3.【2012高考陕西文9】设函数f (x )=2x +lnx 则 ( ) A .x=1 2 为f(x)的极大值点 B .x=12 为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 【答案】D. 【解析】()22212 'x f x x x x -=- +=,令()'0f x =,则2x =. 当2x <时,()22212 '0x f x x x x -=-+=<; 当2x >时,()22212 '0x f x x x x -=-+=>. 即当2x <时,()f x 是单调递减的;当2x >时,()f x 是单调递增的. 所以2x =是()f x 的极小值点.故选D . 4.【2012高考辽宁文8】函数y=12 x 2-㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 【答案】B 【命题意图】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。 【解析】21 1ln ,,00,02 y x x y x y x x x x ''=-∴=->∴<由≤,解得-1≤≤1,又≤1,

相关文档
最新文档