2020北京顺义高三二模数学试卷及答案解析

合集下载

北京市北京市顺义区2020年中考数学二模试卷及参考答案

北京市北京市顺义区2020年中考数学二模试卷及参考答案

参考答案
1.
2.
3.
4.
5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
18.
19. 20.
21. 22.
23.
24.
25.
,先求出该边长 ,再取最小整数 .
甲:如图2,思路是当 为矩形对角线长时就可移转过去;结果取n=14.
乙:如图3,思路是当 为矩形外接圆直径长时就可移转过去;结果取n=14.
丙:如图4,思路是当 为矩形的长与宽之和的 倍时就可移转过去;结果取n=13.
甲、乙、丙的思路和结果均正确的是________ .
和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成
的三个小组各摸球20次的结果,请你估计袋中有________个红球.
摸到红球的次数
摸到白球的次数
一组
13
7
二组
14
6
三组
15
5
16. 对于题目:“如图1,平面上,正方形内有一长为12 、宽为6 的矩形,它可以在正方形的内部及边界通过移转(即 平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数 .”甲、乙、丙作了自认为边长最小的正方形
8. 正方形
的边 上有一动点E,以 为边作矩形
,且边 过点 .设AE=x , 矩形
的面
积为y , 则y与x之间的关系描述正确的是( )
A . y与x之间是函数关系,且当x增大时,y先增大再减小 B . y与x之间是函数关系,且当x增大时,y先减小再增大 C . y与x之 间是函数关系,且当x增大时,y一直保持不变 D . y与x之间不是函数关系

2023-2024学年北京市顺义区高三适应性测试数学模拟试题(含解析)

2023-2024学年北京市顺义区高三适应性测试数学模拟试题(含解析)

2023-2024学年北京市顺义区高三适应性测试数学模拟试题一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A =ð()A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >【正确答案】C【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】因为集合{}2230{|13}A x x x x x =--<=-<<,所以U A =ð{1xx ≤-∣或3}x ≥.故选:C.2.已知复数z 满足()13i 2i z -=+,则z =()A.2B.2CD.【正确答案】A【分析】先对已知式子化简可求出复数z ,然后再求其模即可【详解】因为()13i 2i z -=+,所以()()()()2i 13i 2i 17i13i 13i 13i 10z +++-+===--+,所以2z =.故选:A .3.若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b =()A .-4B .-1C .1D .4【正确答案】C【分析】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,根据题中条件求出d 、q 的值,进而求出2a 和2b 的值,由此可得出22a b 的值.【详解】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2q =-,3d =,那么221312a b -+==故选:C.4.若13π212log 3,log 3a b c ===,,则()A .c b a <<B .c<a<bC .b a c<<D .a b c<<【正确答案】A【分析】根据对数函数和指数函数的单调性进行判断可.【详解】因为103πππ221221,0log 1log 3log π=1,log log 103>==<<<=,所以c b a <<,故选:A5.若非零实数a ,b 满足a b >,则下列不等式一定成立的是()A .11a b>B.a b +>C .22lg lg a b >D .33a b >【正确答案】D【分析】根据不等式的基本性质、基本不等式的条件和对数的运算,逐项判定,即可求解.【详解】对于A 中,由11b aa b ab--=,因为a b >,可得0b a -<,因为ab 不确定,所以A 错误;对于B 中,只有当0,0,a b a b >>,不相等时,才有a b +>B 错误;对于C 中,例如1,2a b ==-,此时满足a b >,但22lg lg a b <,所以C 错误;对于D 中,由不等式的基本性质,当a b >时,可得33a b >成立,所以D 正确.故选:D6.已知lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()xf x a =与()1log bg x x =的图象可能是()A .B .C .D .【正确答案】B【分析】由lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),得1ab =,从而得到()log a g x x =与()x f x a =互为反函数,根据互为反函数的性质即可得到结果.【详解】∵lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),∴1ab =,∴1b a=,∴()1log log ba g x x x ==,函数()xf x a =与函数()1log bg x x =互为反函数,∴函数()xf x a =与()1log bg x x =的图象关于直线y x =对称,且具有相同的单调性.故选:B .7.已知()0,2P x 为抛物线2:2(0)C y px p =>上一点,点P 到抛物线C 的焦点的距离与它到y 轴的距离之比为3:2,则p =()AB .2C .D .3【正确答案】A【分析】由抛物线的定义得P 到抛物线C 的焦点的距离为02px +,进而得到00:3:22p x x ⎛⎫+= ⎪⎝⎭,再结合()0,2P x 在抛物线上,解方程即可.【详解】由题意知:抛物线的准线为2px =-,则P 到抛物线C 的焦点的距离为02p x +,P到y 轴的距离为0x ,故00:3:22p x x ⎛⎫+= ⎪⎝⎭,又042px =,解得p =.8.已知命题p :1a >,命题q :直线3410x y --=与圆222210x y x a +-+-=有交点,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】A【分析】根据直线与圆的位置关系求出命题q 中a 的取值范围,再利用逻辑关系得出结论.【详解】对于命题q :直线3410x y --=与圆222210x y x a +-+-=有交点,可以等价为圆心到直线的距离小于等于半径,又 圆心为()1,0,半径为a ,∴圆心到直线的距离25d a =≤解得:25a ≤-或25a ≥又命题p :1a >∴1a >⇒25a ≤-或25a ≥即p 是q 的充分不必要条件;故选:A.9.若双曲线()222210,0x y a b a b-=>>的一个顶点为A ,过点A 的直线330x y --=与双曲线只有一个公共点,则该双曲线的焦距为()A .B .C .D .【正确答案】D【分析】根据双曲线渐近线的性质即可求解.【详解】330x y --=斜率为13,过点A 的直线330x y --=与双曲线只有一个公共点,则该直线与双曲线的渐近线by x a=平行,且过双曲线右顶点(a ,0),故b a =13,且a -3=0,解得a =3,b =1,故c ,故焦距为2c =.10.若函数()()2ln ,0,2,0 2.x a x f x x x x ⎧--≤<=⎨-+≤≤⎩的值域为[)0,∞+,则a 的取值范围是()A .[)1,0-B .11,e ⎡⎫--⎪⎢⎣⎭C .11,e ⎡⎤--⎢⎣⎦D .11,e ⎛⎫-- ⎪⎝⎭【正确答案】C【分析】分别求出02x ≤≤和0a x ≤<时f (x )的范围,根据两个范围的并集为[)0,∞+即可求出a 的范围.【详解】当02x ≤≤时,f (x )=()()[]220,10,1x x f f ⎡⎤-+∈=⎣⎦,当0a x ≤<时,f (x )=()())())ln ,ln ,x f a a ⎡⎡--∈+∞=--+∞⎣⎣,故要使()f x 的值域是[)0,∞+,则0≤()ln a --≤1,解得11,e a ⎡⎤∈--⎢⎥⎣⎦.故选:C .二、填空题11.在二项式8x⎛ ⎝的展开式中,含5x 的项的系数是__________(用数字作答).【正确答案】28【分析】利用二项展开式的通项公式求出展开式的通项,令通项中的x 的指数为5,列出方程求出r 的值,将r 的值代入通项,求出展开式中,含5x 的项的系数.【详解】解:8(x展开式的通项为38218(1)rr r r T C x -+=-,令3852r-=得2r =,∴展开式中,含5x 的项的系数是2828C =.故28.本题考查利用二项式定理的通项公式,求特定项的系数的问题.12.已知函数()2lg 1f x x x =+-,则不等式()0f x >的解集是______.【正确答案】()1,+∞【分析】变形可得2lg 1x x >-,作函数lg y x =,21y x =-+的图象,观察图象可得不等式的解集.【详解】2lg 10x x +->,2lg 1x x >-,作出函数lg y x =,21y x =-+的图象如下,由图可知,满足不等式2lg 1x x >-+的x 的取值范围为()1,+∞,所以,不等式()0f x >的解集是()1,+∞.故答案为.()1,+∞13.若将函数cos y x x =-的图像向左平移(0)m m >个单位后所得图像关于y 轴对称,则m 的最小值为___________.【正确答案】23π【分析】利用辅助角公式将函数化简,再根据三角函数的平移变换及余弦函数的性质计算可得;【详解】解:因为1cos 2cos sin 2cos 223y x x x x x π⎛⎫⎛⎫==-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,将2cos 3y x π⎛⎫=+ ⎪⎝⎭的图像向左平移(0)m m >个单位,得到2cos 3y x m π⎛⎫=++ ⎪⎝⎭,又2cos 3y x m π⎛⎫=++ ⎪⎝⎭关于y 轴对称,所以3m k ππ+=,N*k ∈,所以3m k ππ=-+,N*k ∈所以当1k =时m 取最小值23π;故23π三、双空题14.已知单位向量1e ,2e 的夹角为π2,且12a xe ye =+ ,(其中x ,R y ∈).当1x y ==时,1a e ⋅= ______;当()12a e e + ∥时,1a e -的最小值是______.【正确答案】1;1.【分析】根据平面向量数量积的运算性质,结合共线向量的性质进行求解即可.【详解】当1x y ==时,12a e e =+,因为单位向量1e ,2e 的夹角为π2,所以120e e ⋅=,因此211211a e e e e ⋅=+⋅=;当()12a e e + ∥时,因此有()12x a e e y λλλ=⎧=+⇒⎨=⎩ ,112(1)a e e e λ-=-+== 因为单位向量1e ,2e 的夹角为π2,所以1a e -= 1λ=时,1a e - 有最小值1.故1;1四、填空题15.如图,空间四边形ABCD 的各边长均相等,AB AD ⊥,BC CD ⊥,平面ABD ⊥平面CBD ,给出下列四个结论:①AC BD ⊥;②异面直线AB 与CD 所成的角为60 ;③ADC △为等边三角形;④AB 与平面BCD 所成的角为60 .其中正确结论的序号是________.(请将正确结论的序号都填上)【正确答案】①②③【分析】将空间四边形ABCD 放入到底面棱长分别为1,2,高为1的长方体中.再分别分析线线垂直得线面垂直,线线垂直,通过线段长度得等边三角形,根据线面垂直得线面角.【详解】由题意,不妨将空间四边形ABCD 放入到底面棱长分别为1,2,高为1的长方体中.如图所示,过点C 作CO BD ⊥于O ,连接AO .对于①,因为四边形ABCD 的各边长均相等且AB AD ⊥,BC CD ⊥,因为AB AD =,从而可知BD AO ⊥,又AO ⊂平面AOC ,OC ⊂平面AOC ,且=AO OC O ⋂,所以BD ⊥平面AOC ,又AC ⊂平面AOC ,所以AC BD ⊥,故①正确;对于②,将AB 平移到OE ,CD 平移到OF ,连接EF ,可得=2OE OF =6EF =所以在OEF 中,2221cos 22222OE OF EF EOF OE OF +-∠===-⨯⨯⨯⨯,从而可知异面直线AB 与CD 所成的角为60 ,故②正确;对于③,易得2AC AD CD ===,故③正确;对于④,由②可知AO ⊥平面BCD ,因此AB 与平面BCD 所成的角为45DBA ︒∠=,故④不正确.故①②③五、解答题16.在ABC 中,222b c a +=.(1)求A ∠的大小;(2)以下三组条件中恰有一组条件使得三角形存在且唯一确定,请选出该组条件并求ABC 的面积.条件①:sin B =b =;条件②:cos 3B =,a =条件③:1a =,b =.注:条件选择错误,第(2)问得0分.【正确答案】(1)6A π=(2)【分析】(1)由余弦定理与已知条件结合可得cos 2A =,再由()0,A π∈,所以得6A π=;(2)由6A π=,再结合cos 3B =,a =可判断出条件②能使三角形存在且唯一确定,然后由正弦定理计算b ,sin C ,再代入三角形面积公式计算.【详解】(1)由余弦定理2222cos a b c bc A =+-,又222b c a +=,可得2cos bc A =,所以cos A =()0,A π∈,所以6A π=(2)由(1)知,6A π=,根据条件②中cos 3B =,()0,B π∈,所以B ∠也是唯一确定的,从而可得C ∠也是唯一确定的,再由a =,b c 也是唯一确定的,故选择条件②.因为cos 3B =,()0,B π∈,所以1sin 3B =.由正弦定理sin sin a bA B=,可得1sin 31sin 32B b a A ===,所以()11sin sin sin cos cos sin 23236C A B A B A B =+=+=⨯+=所以三角形面积1sin 2S ab C ==关于解三角形的问题,需要判断清楚选用合适的公式求解,一般涉及二次方以及三边一角的关系时都用余弦定理,涉及两边两角的关系一般用正弦定理.17.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):场次投篮次数命中次数场次投篮次数命中次数主场12212客场1188主场21512客场21312主场3128客场3217主场4238客场41815主场52420客场52512(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数,从上述比赛中随机选择一场,记为李明在这场比赛中的命中次数,比较与x 的大小(只需写出结论)【正确答案】(1)0.5;(2);(3).【详解】试题分析:(1)根据表中数据,在10场比赛中,李明投篮命中超过0.6的场次有5场,利用古典概型公式求解;(2)设事件为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”则,事件、独立,利用独立事件、互斥事件的概率公式求解;(3)用公式分别计算、再比较大小.(1)根据投篮统计数据,在10场比赛中,李明投篮命中超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4,所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”则,事件、独立,根据投篮统计数据,,,.所以,在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为.(3).概率的计算、数学期望,平均数,互斥事件的概率.18.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,PA AD ⊥,2PA AB ==,在棱PD 上取点Q ,使得PB ∥平面ACQ .(1)求证:Q 为PD 中点;(2)求平面ACQ 与平面ABCD 夹角的余弦值;(3)求直线PB 到平面ACQ 的距离.【正确答案】(1)证明见解析【分析】(1)由线面平行的性质得线线平行,再根据中点可证明结论.(2)判断出Q 点的位置,建立空间直角坐标系,利用向量法求得平面ACQ 与平面ABCD 夹角的余弦值.(3)利用向量法求得直线PB 到平面ACQ 的距离.【详解】(1)连接BD ,交AC 于点O ,则平面PBD平面ACQ OQ =,又因为PB ∥平面ACQ ,PB ⊂平面PBD ,则PB OQ ∥,由于底面ABCD 为正方形,所以点O 为BD 的中点,因此可得Q 为PD 中点.(2)由(1)知Q 是PD 的中点.由于PA ⊥平面ABCD ,所以,PA AD PA AB ⊥⊥,故,,AB AD AP 两两垂直,以A 为原点建立空间直角坐标系,如图所示,()()2,2,0,0,1,1C Q ,设平面ACQ 的法向量为(),,n x y z = ,所以0220n AQ y z n AC x y ⎧⋅=+=⎨⋅=+=⎩ ,故可设()1,1,1n =-- ,平面ABCD 的法向量为()0,0,1m = ,平面ACQ 与平面ABCD 夹角为θ,则cos 3m n m nθ⋅=⋅ .(3)由于//PB 平面ACQ ,则PB 到平面ACQ 的距离,即B 到平面ACQ 的距离.()0,2,0BC AD == ,B 到平面ACQ的距离为BC n n⋅= .即直线PB 到平面ACQ19.已知椭圆()2222:10x y C a b a b+=>>的一个顶点为()0,1P ,离心率为2.(1)求椭圆C 的方程;(2)过点P 作斜率为1k 的直线1l 交椭圆C 于另一点A ,过点P 作斜率为()221≠k k k 的直线2l 交椭圆C 于另一点B .若121k k =,求证:直线AB 经过定点.【正确答案】(1)2212x y +=(2)证明见解析【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出椭圆C 的方程;(2)对直线AB 的斜率是否存在进行分类讨论,在直线AB 斜率存在时,设出直线AB 的方程,将直线AB 的方程与椭圆C 的方程联立,列出韦达定理,根据121k k =可得出参数之间的关系,化简直线AB 的方程,即可得出结论;在直线AB 斜率不存在时,根据121k k =计算可得出结论.【详解】(1)解:由已知可得22221c a b a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得11a b c ⎧=⎪=⎨⎪=⎩,因此,椭圆C 的方程为2212x y +=.(2)证明:当直线AB 的斜率存在时,设直线AB 的方程为y kx m =+,若直线AB 过点P ,则A 、B 必有一点与点P 重合,不合乎题意,所以,1m ≠,设点()11,A x y 、()22,B x y ,联立2222y kx m x y =+⎧⎨+=⎩可得()222214220k x kmx m +++-=,()()22221682110k m k m ∆=-+->,可得2221m k <+,由韦达定理可得122421km x x k +=-+,21222221m x x k -=+,1111111y kx m k x x -+-==,同理可得2221kx m k x +-=,由()()121212111kx m kx m k k x x +-+-==可得()()()()2212121110k x x k m x x m -+-++-=,即()()()()()22222221141211021k m k m m k m k ----++-=+,因为1m ≠,整理可得30m --=,解得3m =-,所以,直线AB 的方程为3y kx =-,所以,直线AB 过定点()0,3-;若直线AB 的斜率不存在,则12x x =,12y y =-,则2111122111111112y y y k k x x x ----=⋅==≠,不合乎题意.综上所述,直线AB 过定点()0,3-.方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.20.已知函数1()ln =+f x a x x.()a R ∈(1)若2a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的极值和单调区间;(3)若()f x 在[]1,e 上不是单调函数,且()e f x ≤在[]1,e 上恒成立,求实数a 的取值范围.【正确答案】(1)y x=(2)答案见解析(3)1,1e ⎛⎫ ⎪⎝⎭【分析】(1)求出导函数()f x ',计算出切线斜率(1)f ',然后由点斜式得切线方程;(2)求出导函数()f x ',分类讨论确定()f x '的正负,确定函数()f x 单调性、极值.(3)由函数不单调,结合(2)得出函数在[1,e]的最值,由最大值满足的不等关系可得a 的范围.【详解】(1)当2a =时,函数()12ln f x x x =+,()221f x x x '=-.所以()11f =,()11f '=.所以曲线()y f x =在点(1,(1))f 处的切线方程y x =.(2)函数()f x 定义域()0,x ∈+∞.求导得2211()a ax f x x x x-'=-=.①当0a ≤时,因为()0,x ∈+∞,所以()0f x '<.故()f x 的单调递减区间是(0,)+∞,此时()f x 无极值.②当0a >时,x 变化时,(),()f x f x '变化如下表:x 1(0,)a1a 1(,)a +∞()f x '-0+()f x 极小值所以()f x 的单调递减区间是1(0,)a,单调递增区间是1(,)a +∞.此时函数()f x 的极小值是1(ln f a a a a=-,无极大值.(3)因为()f x 在[]1,e 不是单调函数,由第(2)可知此时0a >,且[]11,e a ∈,x 11(1,)a1a 1(,)e a e ()f x '-0+()f x (1)f 极小值()f e 又因为()e f x ≤在[]1,e 上恒成立,只需11e (1)e (e)e a f f ⎧<<⎪⎪≤⎨⎪≤⎪⎩即可,所以1e e 1e 11ea a ⎧+≤⎪⎪≤⎨⎪⎪<<⎩,解得a 的取值范围是1,1e ⎛⎫ ⎪⎝⎭21.对于项数为m (1m >)的有穷正整数数列{}n a ,记12max{,,,}k k b a a a = (1,2,,k m = ),即k b 为12,,k a a a 中的最大值,称数列{}n b 为数列{}n a 的“创新数列”.比如1,3,2,5,5的“创新数列”为1,3,3,5,5.(1)若数列{}n a 的“创新数列”{}n b 为1,2,3,4,4,写出所有可能的数列{}n a ;(2)设数列{}n b 为数列{}n a 的“创新数列”,满足12018k m k a b -++=(1,2,,k m = ),求证:k k a b =(1,2,,k m = );(3)设数列{}n b 为数列{}n a 的“创新数列”,数列{}n b 中的项互不相等且所有项的和等于所有项的积,求出所有的数列{}n a .【正确答案】(1)见解析;(2)见解析;(3)1,2,3【详解】试题分析:(1)创新数列为1,2,3,4,4的所有数列{}n a ,可知其首项是1,第二项是2,第三项是3,第四项是4,第五项是1或2或3或4,可写出{}n a ;(2)由题意易得1k k b b +≥,12018k m k a b +-+=,从而可得110k k m k m k a a b b +-+--=-≥,整理即证得结论;(3)验证当2m =时,不满足题意,当3m =时,根据12333,b b b b ++<而12336b b b b >得11b =,同理22b =,33b =,而当4m ≥时不满足题意.试题解析:(1)所有可能的数列{}n a 为1,2,3,4,1;1,2,3,4,2;1,2,3,4,3;1,2,3,4,4(2)由题意知数列{}n b 中1k k b b +≥.又12018k m k a b -++=,所以12018k m k a b +-+=()()111201820180k k m k m k m k m k a a b b b b +--+-+--=---=-≥,所以1k k a a +≥,即k k a b =(1,2,,k m = )(3)当2m =时,由1212b b b b +=得()()12111b b --=,又*12,b b N ∈所以122b b ==,不满足题意;当3m =时,由题意知数列{}n b 中1n n b b +>,又123123b b b b b b ++=当11b ≠时,此时33b >,12333,b b b b ++<而12336b b b b >,所以等式123123b b b b b b ++=不成立,因此11b =;当22b ≠时,此时33b >,12333,b b b b ++<而12333b b b b ≥,所以等式123123b b b b b b ++=不成立,因此22b =;当11b =,22b =得33b =,此时数列{}n a 为1,2,3.当4m ≥时,12m m b b b mb +++< ,而()121!m m m b b b m b mb ≥-> ,所以不存在满足题意的数列{}n a .综上数列{}n a 依次为1,2,3.。

2020-2021学年北京顺义区第二中学高三数学理测试题含解析

2020-2021学年北京顺义区第二中学高三数学理测试题含解析

2020-2021学年北京顺义区第二中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知向量=(-2,1),=(-1,3),则( )A.∥ B.⊥ C.∥(-) D.⊥(-)参考答案:D2. 命题“若一个数是负数,则它的平方是正数”的否命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”参考答案:C略3.如上右图所示,C是半圆弧上一点,连接AC并延长至D,使|CD|=|CB|,则当C点在半圆弧上从B点移动至A点时,D点所经过的路程为()A. B. C. D.2参考答案:答案:C4.已知向量a=(1,2),b=(-2,1),则向量a 与bA.垂直 B. 不垂直也不平行 C. 平行且反向 D.平行且同向参考答案:答案:A5. 复数()(A)(B)(C)(D)参考答案:A,选A.6. 已知向量,,且,则的值为 ( ) A.B.C.D.参考答案:B7. (09年湖北重点中学4月月考理)已知不等式,对任意恒成立,则a 的取值范围为()A. B.C.(1,5) D.(2,5)参考答案:B8.若P为双曲线右支上一点,P到右准线的距离为,则点P到双曲线左焦点的距离为()A.1 B.2 C.6 D.8参考答案:答案:D9.设实数,满足,,,则下列不等式一定成立的是A. B. C.D.参考答案:答案:C10. 已知直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,点E在梯形内,那么∠AEB 为钝角的概率为()A.B.C.D.参考答案:A【考点】几何概型.【分析】本题为几何概型,由题意以AB为直径半圆内的区域为满足∠AEB为钝角的区域,分别找出满足条件的点集对应的图形面积,及图形的总面积,作比值即可.【解答】解:以AB为直径半圆内的区域为满足∠AEB为钝角的区域,AB=4,故半圆的面积是2π,梯形ABCD的面积是25,∴满足∠AEB为钝角的概率为p=.故选:A.二、填空题:本大题共7小题,每小题4分,共28分11. 下面是某小组学生在一次数学测验中的得分茎叶图,则该组男生的平均得分与女生的平均得分之差是▲.参考答案:答案:1.512. 设的展开式的各项系数之和为M,二项式系数之和为N,若M+N=16,则展开式中的常数项为.参考答案:略13. 在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k =0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a-b∈[0]”.其中正确命题的序号是________.参考答案:①③④ 略14. 运行如图所示程序框图,如果输入的t∈[﹣1,3],则输出s 属于 .参考答案:[﹣3,4]【考点】程序框图. 【专题】算法和程序框图.【分析】根据程序框图的功能进行求解即可.【解答】解:本程序为条件结果对应的表达式为s=,则当输入的t∈[﹣1,3],则当t∈[﹣1,1)时,s=3t∈[﹣3,3),当t∈[1,3]时,s=4t ﹣t 2=﹣(t ﹣2)2+4∈[3,4], 综上s∈[﹣3,4], 故答案为:[﹣3,4].【点评】本题主要考查程序框图的识别和判断,根据条件结构,结合分段函数的表达式是解决本题的关键.15. 设是两条不同的直线,是两个不同的平面,则下列四个命题:①若则; ②若则;③若则;④若则.其中正确的命题序号是 .参考答案:③④ 略 16. 在中,,,,则的面积等于 .参考答案:或17. 已知函数,则函数在时的最大值为 .参考答案:三、 解答题:本大题共5小题,共72分。

北京市顺义区2019-2020学年高考二诊数学试题含解析

北京市顺义区2019-2020学年高考二诊数学试题含解析

北京市顺义区2019-2020学年高考二诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A .17B .32C .53D .10 【答案】D 【解析】 【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF , 设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =; 'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力. 2.设3log 0.5a =,0.2log 0.3b =,0.32c =,则,,a b c 的大小关系是( ) A .a b c << B .a c b <<C .c a b <<D .c b a <<【答案】A 【解析】 【分析】选取中间值0和1,利用对数函数3log y x =,0.2log y x =和指数函数2xy =的单调性即可求解.【详解】因为对数函数3log y x =在()0,∞+上单调递增, 所以33log 0.5log 10<=,因为对数函数0.2log y x =在()0,∞+上单调递减, 所以0.20.20.20log 1log 0.3log 0.21=<<=, 因为指数函数2xy =在R 上单调递增, 所以0.30221>=, 综上可知,a b c <<. 故选:A 【点睛】本题考查利用对数函数和指数函数的单调性比较大小;考查逻辑思维能力和知识的综合运用能力;选取合适的中间值是求解本题的关键;属于中档题、常考题型.3.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( ) A .(1,2) B .(0,3)C .(0,2)D .(0,1)【答案】D 【解析】 【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围. 【详解】由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111111111133n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D. 【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.4.已知复数1cos23sin 23z i =+oo和复数2cos37sin37z i =+oo,则12z z ⋅为 A.122- B.122i + C.12+ D12i - 【答案】C 【解析】 【分析】利用复数的三角形式的乘法运算法则即可得出. 【详解】z 1z 2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=122+. 故答案为C . 【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.5.已知双曲线221x y a+=的一条渐近线倾斜角为56π,则a =( )A .3 B.C.-D .3-【答案】D 【解析】【分析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果. 【详解】由双曲线方程可知:0a <,渐近线方程为:y x=,Q 一条渐近线的倾斜角为56π,5tan 6π==,解得:3a =-. 故选:D . 【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于a 的范围的要求.6.已知33a b ==r r ,且(2)(4)a b a b -⊥+r r r r ,则2a b -r r 在a r 方向上的投影为( )A .73B .14C .203D .7【答案】C 【解析】 【分析】由向量垂直的向量表示求出a b ⋅r r,再由投影的定义计算.【详解】由(2)(4)a b a b -⊥+r r r r可得22(2)(4)2740a b a b a a b b -⋅+=+⋅-=r r r r r r r r ,因为||3||3a b ==r r ,所以2a b ⋅=-r r .故2a b -r r 在a r 方向上的投影为2(2)218220||||33a b a a a b a a -⋅-⋅+===r rr r r r r r. 故选:C . 【点睛】本题考查向量的数量积与投影.掌握向量垂直与数量积的关系是解题关键. 7.执行如图所示的程序框图后,输出的值为5,则P 的取值范围是( ).A .37,48⎛⎤⎥⎝⎦B .59,610⎛⎤⎥⎝⎦C .715,816⎛⎤⎥⎝⎦D .1531,1632⎛⎤⎥⎝⎦ 【答案】C 【解析】 【分析】框图的功能是求等比数列的和,直到和不满足给定的值时,退出循环,输出n. 【详解】第一次循环:1,22S n ==;第二次循环:2113,3224S n =+==;第三次循环:231117,42228S n =++==;第四次循环:234111115,5222216S n =+++==; 此时满足输出结果,故715816P <≤. 故选:C. 【点睛】本题考查程序框图的应用,建议数据比较小时,可以一步一步的书写,防止错误,是一道容易题. 8.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4 B .3C .2D .1【答案】A 【解析】 【分析】根据等差数列和等比数列公式直接计算得到答案.【详解】由136,,a a a 成等比数列得2316a a a =⋅,即()()211125a d a a d +=+,已知0d ≠,解得14a d=. 故选:A . 【点睛】本题考查了等差数列,等比数列的基本量的计算,意在考查学生的计算能力.9.设点P 是椭圆2221(2)4x y a a +=>上的一点,12F F ,是椭圆的两个焦点,若12F F =12PF PF +=( )A .4B .8C .D .【答案】B 【解析】∵12F F =∵122F F c ==∴c =∵222c a b =-,24b = ∴4a =∴1228PF PF a +== 故选B点睛:本题主要考查利用椭圆的简单性质及椭圆的定义. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.10.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”。

2020届北京各区高三二模数学分类汇编—直线、圆与圆锥曲线(含答案)

2020届北京各区高三二模数学分类汇编—直线、圆与圆锥曲线(含答案)

2020北京各区高三二模数学分类汇编—直线、圆与圆锥曲线1.(2020▪海淀二模)若抛物线212y x =的焦点为F ,点P 在此抛物线上且横坐标为3,则||PF 等于(A )4(B )6(C )8(D )102.(2020▪西城高三二模)抛物线24x y =的准线方程为(A )1x =(B )1x =-(C )1y =(D )1y =-3.(2020▪西城高三二模)若圆22420x y x y a +-++=与x 轴,y 轴均有公共点,则实数a 的取值范围是(A )(,1]-∞(B )(,0]-∞(C )[0,)+∞(D )[5,)+∞4.(2020▪东城高三二模)双曲线222:1y C x b-=的渐近线与直线1x =交于,A B 两点,且4AB =,那么双曲线C的离心率为(C) 2 5.(2020▪朝阳高三二模)圆心在直线0x y -=上且与y 轴相切于点()0,1的圆的方程是(A )22(1)1y +-=(x-1) (B )22(1)1y ++=(x+1) (C )22(1)2y +-=(x-1) (D )22(1)2y ++=(x+1) 6.(2020▪朝阳高三二模)直线l 过抛物线22x y=的焦点F ,且l 与该抛物线交于不同的两点1122(,),(,).A x yB x y 若123x x +=,则弦AB 的长是 (A )4(B )5(C )6 (D )87. (2020▪西城高三(下)6月模拟)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是(A)24x y =(B)24y x =(C)28x y =(D)28y x =8. (2020▪西城高三(下)6月模拟)圆224210x y x y ++-+=截x 轴所得弦的长度等于(A)2(B)(C)(D)49.(2020▪昌平高三二模)已知点是双曲线的一条渐近线上一点,是双曲线的右焦点,若△的面积为,则点的横.坐标为(A ) (B ) (C ) (D )10.(2020▪丰台高三二模)已知抛物线M :)0(22>=p py x 的焦点与双曲线13:22=-x y N 的一个焦点重合,则=p(A )2(B )2(C )22(D )411.(2020▪房山高三二模)若双曲线22221x y a b-=(0,0)a b >>的一条渐近线经过点(1,3),则该双曲线的离心率为 (A )2 (B )3 (C )2(D )512.(2020▪密云高三二模)已知双曲线的一条渐近线方程为,则其离心率为A. B. C. D.13.(2020▪密云高三二模)已知圆,若点P 在圆上,并且点P 到直线的距离为,则满足条件的点P 的个数为A .1B .2C .3D .414.(2020▪海淀二模)已知双曲线E 的一条渐近线方程为y x =,且焦距大于4,则双曲线E 的标准方程可以为_______.(写出一个即可)15. (2020▪丰台高三二模)双曲线)0,0(1:2222>>=-b a by a x M 的离心率为3,则其渐近线方程为_______.16.(2020▪丰台高三二模)已知集合{}22()|(cos )(sin )40P x y x y θθθ=-+-=≤≤π,,.由集合P 中所有的点组成的图形如图中阴影部分所示,中间白色部分形如美丽的“水滴”.给出下列结论: ① “水滴”图形与y 轴相交,最高点记为A ,则点A 的坐标为(0,1); ②在集合P 中任取一点M ,则M 到原点的距离的最大值为3;③阴影部分与y 轴相交,最高点和最低点分别记为C ,D ,则33CD =+;④白色“水滴”图形的面积是116π其中正确的有__________.17.(2020▪西城高三二模)若双曲线2221(0)16x y a a -=>经过点(2,0),则该双曲线渐近线的方程为____.18.(2020▪朝阳高三二模)已知双曲线C 的焦点为12(0,2),(0,2),F F -实轴长为2,则双曲线C 的离心率是;若点Q 是双曲线C 的渐近线上一点,且12,FQ F Q ⊥则12QF F V 的面积为19. (2020▪西城高三(下)6月模拟)能说明“若()20m n +≠,则方程2212mn yx+=+表示的曲线为椭圆或双曲线”是错误的一组,m n 的值是_______ 20.(2020▪昌平高三二模)已知点在抛物线上,若以点为圆心的圆与轴和其准线都相切,则点到其顶点的距离为_______ .21.(2020▪昌平高三二模)曲线C :,点在曲线上.给出下列三个结论:①曲线关于轴对称;②曲线上的点的横坐标的取值范围是;③若,,则存在点,使△的面积大于.其中,所有正确结论的序号是________.22.(2020▪房山高三二模)若直线3x =与圆2220x y x a +--=相切,则a = .23.(2020▪房山高三二模)已知抛物线C :22y x =的焦点为F ,点M 在抛物线C 上,||1MF =,则点M 的横坐标是_______,△MOF (O 为坐标原点)的面积为 . 24.(2020▪密云高三二模)抛物线过点,则抛物线的焦点坐标为_______.25.(2020▪海淀二模)(本小题共15分)已知椭圆2222:1x y W a b+=(0)a b >>过(0,1),(0,1)A B -.(Ⅰ)求椭圆W 的方程;(Ⅱ)过点A 的直线l 与椭圆W 的另一个交点为C ,直线l 交直线2y =于点M ,记直线BC ,BM 的斜率分别为1k ,2k ,求12k k 的值.26.(2020▪西城高三二模)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,右焦点为F ,点(,0)A a ,且1AF =.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点F 的直线l (不与x 轴重合)交椭圆C 于点,M N ,直线,MA NA 分别与直线4x =交于点P ,Q ,求PFQ ∠的大小.27.(2020▪东城高三二模)(本小题14分)已知椭圆2222:1(0)x y C a b a b +=>>的一个顶点坐标为(0,1)A -,离心率为23.(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线(1)(0)y k x k =-≠与椭圆C 交于不同的两点P ,Q ,线段PQ 的中点为M ,点(1,0)B ,求证:点M 不在以AB 为直径的圆上.28.(2020▪朝阳高三二模)(本小题14分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为2,且椭圆C 经过点 (I )求椭圆C 的方程;(II )已知过点(4,0)P 的直线l 与椭圆C 交于不同的两点,,A B 与直线1x =交于点Q ,设,(,),AP PB AQ QB R λμλμ==∈u u u r u u u r u u u r u u u r求证:λμ+为定值.29. (2020▪西城高三(下)6月模拟)(本小题满分14分)已知椭圆()2222:10yE a b x a b+=>>经过点()0,1C ,离心率为2.O 为坐标原点. (Ⅰ)求椭圆E 的方程;(Ⅱ)设,A B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点,P Q 为直线AD 上一点,且OP OQ 4=u u u r u u u rg ,求证:,,C B Q 三点共线.30.(2020▪昌平高三二模)(本小题15分)已知椭圆的离心率为,椭圆与轴交于两点(在下方),且.过点的直线与椭圆交于两点(不与重合).(Ⅰ)求椭圆的方程;(Ⅱ)证明:直线的斜率与直线的斜率乘积为定值.31. (2020▪丰台高三二模)(本小题共14分)已知椭圆2222:1(0)x y C a b ab+=>>经过(10)A ,,(0)B b ,两点.O 为坐标原点,且△AOB 4.过点(01)P ,且斜率为(0)k k >的直线l 与椭圆C 有两个不同的交点M N ,,且直线AM ,AN 分别与y 轴交于点S ,T .(Ⅰ)求椭圆C 的方程;(Ⅱ)求直线l 的斜率k 的取值范围;(Ⅲ)设PS PO PT PO λμ==u u r u u u r u u u r u u u r,,求λμ+的取值范围.32.(2020▪房山高三二模)(本小题14分).已知椭圆C的两个顶点分别为(2,0)B,焦点在x轴上,离心率为1A ,(2,0)2(Ⅰ)求椭圆C的方程;(Ⅱ)设O为原点,点P在椭圆C上,点Q和点P关于x轴对称,直线AP与直线BQ交于点M,求证:P,M两点的横坐标之积等于4,并求OM的取值范围.33.(2020▪密云高三二模)(本小题满分14分)已知椭圆:过点,设它的左、右焦点分别为,,左顶点为,上顶点为,且满足.(Ⅰ)求椭圆的标准方程和离心率;(Ⅱ)过点作不与轴垂直的直线交椭圆于,(异于点)两点,试判断的大小是否为定值,并说明理由.2020北京各区高三二模数学分类汇编—直线、圆与圆锥曲线参考答案1.B2.D3.A4.D5.A6.A7.D8.B9.A 10.D 11.C 12.A 13.C;14. 15. 16. ②③④ 17. 18. ;19. 答案不唯一. 如, 20. 21. ①② 22. 3 23. ;24.25.(本小题共15分)解:(Ⅰ)由题意,2221.b ca abc =⎧⎪⎪=⎨⎪⎪=+⎩, 解得2,1.a b =⎧⎨=⎩所以椭圆W 的方程为2214x y +=.(Ⅱ)由题意,直线l 不与坐标轴垂直. 设直线l 的方程为:1y kx =+(0k ≠). 由221,4 4.y kx x y =+⎧⎨+=⎩得22(41)80k x kx ++=. 设11(,)C x y ,因为10x ≠,所以12841kx k -=+. 得21122814114141k k y kx k k k --=+=⋅+=++. 即222814(,)4141k k C k k --++.又因为(0,1)B -,所以22121411418441k k k k k k -++==--+. 由1,2.y kx y =+⎧⎨=⎩得1,2.x k y ⎧=⎪⎨⎪=⎩ 所以点M 的坐标为1(,2)k.所以22131k k k+==. 所以1213344k k k k ⋅=-⋅=-. 26.(本小题满分14分)解:(Ⅰ)由题意得1,21,c a a c ⎧=⎪⎨⎪-=⎩解得2a =,1c =,……………3分 从而223b a c =-=, 所以椭圆C 的方程为22143x y +=.…5分 (Ⅱ)当直线l 的斜率不存在时,有3(1,)2M ,3(1,)2N -,(4,3)P -,(4,3)Q ,(1,0)F ,则(3,3)FP =-u u u r ,(3,3)FQ =u u u r ,故0FP FQ ⋅=u u u r u u u r ,即90PFQ ∠=o .…………6分 当直线l 的斜率存在时,设:(1)l y k x =-,其中0k ≠.………………7分 联立22(1),3412,y k x x y =-⎧⎨+=⎩得2222(43)84120k x k x k +-+-=.………………8分由题意,知0∆>恒成立, 设11(,)M x y ,22(,)N x y ,则2122843k x x k +=+,212241243k x x k -=+.…………9分MPAF NxyOQ直线MA 的方程为11(2)2y y x x =--.………………10分 令4x =,得1122P y y x =-,即112(4,)2y P x -.………………11分 同理可得222(4,)2y Q x -.………………12分所以112(3,)2y FP x =-u u u r ,222(3,)2y FQ x =-u u u r .因为121249(2)(2)y y FP FQ x x ⋅=+--u u u r u u u r212124(1)(1)9(2)(2)k x x x x --=+--2121212124[()1]92()4k x x x x x x x x -++=+-++ 22222222241284(1)434394121644343k k k k k k kk k --+++=+--+++22222224[(412)8(43)]9(412)164(43)k k k k k k k --++=+--++0=, 所以90PFQ ∠=o .综上,90PFQ ∠=o .………………14分 27.(本小题14分)(Ⅰ)解:由题意可知⎪⎪⎩⎪⎪⎨⎧===+,1,23,222b a ca c b解得⎪⎩⎪⎨⎧===,3,1,2c b a所以椭圆C 的方程为1422=+y x .………………………………4分(Ⅱ)证明:设11(,)P x y ,22(,)Q x y ,),(00y x M .由221,4(1),x y y k x ⎧+=⎪⎨⎪=-⎩得2222(4+1)8440k x k x k -+-=,所以22222(8)4(41)(44)4816k k k k ∆=--⨯+-=+. 所以当k 为任何实数时,都有0∆>. 所以2122841k x x k +=+,2122444+1k x x k -=.因为线段PQ 的中点为M , 所以212024241x x k x k +==+,002(1)41-=-=+k y k x k , 因为(1,0)B , 所以00(,1)AM x y =+uuu r,00(1,)BM x y =-uuur .所以2200000000(1)(1)=AM BM x x y y x x y y ⋅=-++-++uuu r uuur2222222244=()()41414141k k k k k k k k ---++++++322243=41k k k k ---+() 222(431)=41k k k k -+++()22237[4()]816=41k k k -+++().又因为0k ≠,2374()0816k ++>, 所以0AM BM ⋅≠uuu r uuu r,所以点M 不在以AB 为直径的圆上.………………………………14分 28.(本小题14分)解:(Ⅰ)由题意可知222222,121,⎧=+⎪⎪⎪+=⎨⎪⎪=⎪⎩a b c a b c a 得22=b ,24=a .所以椭圆C 的方程为22142+=x y .……………5分 (Ⅱ)由题意可知,直线l 的斜率存在,设直线l 的方程为(4)=-y k x . 由(4),10=-⎧⎨-=⎩y k x x 得1,3.=⎧⎨=-⎩x y k 所以(1,3)-Q k . 由22(4),24=-⎧⎨+=⎩y k x x y 得222(4)4+-=x kx k . 整理得2222(12)16(324)0+-+-=k x k x k .由2222(16)4(12)(324)0∆=--+->k k k,得<<k .设直线l 与椭圆C 的交点11(,)A x y ,22(,)B x y , 则21221612+=+k x x k ,212232412-=+k x x k .因为λ=u u u r u u u r AP PB ,μ=u u u r u u u r AQ QB 且11(4,)=--u u u r AP x y ,22(4,)=-u u u r PB x y ,11(1,3)=---u u u r AQ x k y ,22(1,3)=-+u u u r QB x y k , 所以111212222241(4)(1)(1)(4)41(4)(1)λμ----+--+=+=----x x x x x x x x x x1212225()28(4)(1)+--=--x x x x x x . 因为22121222163245()285281212-+--=⨯-⨯-++k k x x x x k k22228064881612-+--=+k k k k 0=,所以0λμ+=.……………14分29.(本小题满分14分)解:(Ⅰ)由题意,得,.………………2分又因为,………………3分 所以,.故椭圆的方程为.………………5分(Ⅱ),.设,则.………………6分所以直线的方程为,………………7分令,得点的坐标为.………………8分设,由,得(显然).……9分 直线的方程为,………………10分将代入,得,即. ………………11分故直线的斜率存在,且……12分.…………13分又因为直线的斜率,所以,即三点共线.………………14分30.(本小题满分15分)解:(Ⅰ)由题意得解得…………….3分即椭圆的方程为.…………….5分(Ⅱ)法一由题意,直线的斜率存在.当时,直线的方程为.代入椭圆方程有.则.所以所以…………….8分当时,则直线的方程为.由,得.…………….9分设,,则.…………10分又,所以,.…………….11分因为即直线的斜率与直线的斜率乘积为定值.…………….15分法二设直线的斜率为,则直线的方程为.…………….6分由,得.…………….7分设,,则.…………….9分又,所以,.…………….11分因为即直线的斜率与直线的斜率乘积为定值.…………….15分31.(本小题共14分) 解:(Ⅰ)因为椭圆2222:1x y C a b +=经过点(10)A ,,所以21a =解得1a =.由△AOB的面积为4可知,124ab =,解得2b =,所以椭圆C 的方程为2221x y +=.………3分(Ⅱ)设直线l 的方程为1y kx =+,1122()()M x y N x y ,,,. 联立22211x y y kx +==+⎧⎨⎩,消y 整理可得:22(21)410k x kx +++=.因为直线与椭圆有两个不同的交点,所以22164(21)0k k ∆=-+>,解得212k >.因为0k >,所以k的取值范围是)2+∞.………7分 (Ⅲ)因为(10)(01)A P ,,,1122()()M x y N x y ,,,,所以直线AM 的方程是:11(1)1y y x x =--. 令0x =,解得111y y x -=-.所以点S 的坐标为11(0)1y x --,. 同理可得:点T 的坐标为22(0)1y x --,. 所以11(01)1y PS x -=--u u r ,,22(01)1y PT x -=--u u u r ,,(01)PO =-u u u r,. 由,,μλ== 可得:12121111y y x x λμ---=--=---,, 所以111111111y kx x x λ+=+=+--. 同理22111kx x μ+=+-.由(Ⅱ)得121222412121kx x x x k k +=-=++,, 所以121211211kx kx x x λμ+++=++--()121212122(1)()221kx x k x x x x x x +-+-=+-++22222222142(1)()22121214()121212442(21)21421(1)2(1)121kk k k k kk k k k k k k k k k k ⋅+---++=+--+++-+-+=++++-+=++=-++g所以λμ+的范围是2).………14分32.(本小题14分)解:(Ⅰ)设椭圆C 的方程为22221(0)x y a b a b+=>>. 依题意,2a =,12c a =.得1c =,2223b a c =-=.所以,椭圆C 的方程为22143x y +=. (Ⅱ)依题意,可设(,)P m n (22m -<<且0m ≠),则(,)Q m n -. 点P 在椭圆C 上,则22143m n +=, AP 的斜率为12n k m =+,直线AP 方程为(2)2n y x m =++, BQ 的斜率为12n k m -=-,直线BQ 的方程为(2)2n y x m -=--. 设(,)M x y ,由(2)2(2)2n y x m n y x m ⎧=+⎪⎪+⎨-⎪=-⎪-⎩ 得42x m ny m ⎧=⎪⎪⎨⎪=⎪⎩,所以M 的坐标为42(,)n m m. 所以P ,M 的横坐标之积等于44m m⋅=. OM ==== 由204m <<, 所以,OM 的取值范围是()2,+∞.33.(本小题满分14分)(Ⅰ)解:根据题意得解得所以椭圆的方程为,离心率.(Ⅱ)解:方法一因为直线不与轴垂直,所以直线的斜率不为.设直线的方程为:,联立方程化简得.显然点在椭圆的内部,所以.设,,则,.又因为,所以,.所以=0所以,即是定值.方法二(1)当直线垂直于轴时解得与的坐标为.由点,易证.(2)当直线斜率存在时设直线的方程为:,联立方程化简得.显然点在椭圆的内部,所以.设,,则,.又因为,所以,.所以=0所以,即是定值.。

2020年北京市顺义区中考数学二模试卷-解析版

2020年北京市顺义区中考数学二模试卷-解析版

2020年北京市顺义区中考数学⼆模试卷-解析版2020年北京市顺义区中考数学⼆模试卷⼀、选择题(本⼤题共8⼩题,共16.0分)1. 如图所⽰,l 1//l 2,则平⾏线l 1与l 2间的距离是( )A. 线段AB 的长度B. 线段BC 的长度C. 线段CD 的长度D. 线段DE 的长度2. ?5的倒数是( )A. ?5B. 15C. ?15D. 53. 如图,平⾯直⾓坐标系xOy 中,有A 、B 、C 、D 四点.若有⼀直线l 经过点(?1,3)且与y 轴垂直,则l 也会经过的点是( )A. 点AB. 点BC. 点CD. 点D4. 如果a 2+4a ?4=0,那么代数式(a ?2)2+4(2a ?3)+1的值为( )A. 13B. ?11C. 3D. ?3 5. 如图,四边形ABCD 中,过点A 的直线l 将该四边形分割成两个多边形,若这两个多边形的内⾓和分别为α和β,则α+β的度数是( ) A. 360° B. 540° C. 720° D. 900°6. 《九章算术》是中国古代重要的数学著作,其中“盈不⾜术”记载:今有共买鸡,⼈出九,盈⼗⼀;⼈出六,不⾜⼗六.问⼈数鸡价各⼏何?译⽂:今有⼈合伙买鸡,每⼈出九钱,会多出11钱;每⼈出6钱,⼜差16钱.问⼈数、买鸡的钱数各是多少?设⼈数为x ,买鸡的钱数为y ,可列⽅程组为( )A. {9x +11=y6x +16=yB. {9x ?11=y6x ?16=yC. {9x +11=y6x ?16=yD. {9x ?11=y6x +16=y7.去年某果园随机从甲、⼄、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数?(22甲⼄丙丁x?24242320S2 1.9 2.12 1.9今年准备从四个品种中选出⼀种产量既⾼⼜稳定的葡萄树进⾏种植,应选的品种是()A. 甲B. ⼄C. 丙D. 丁8.正⽅形ABCD的边AB上有⼀动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的⾯积为y,则y与x之间的关系描述正确的是()A. y与x之间是函数关系,且当x增⼤时,y先增⼤再减⼩B. y与x之间是函数关系,且当x增⼤时,y先减⼩再增⼤C. y与x之间是函数关系,且当x增⼤时,y⼀直保持不变D. y与x之间不是函数关系⼆、填空题(本⼤题共8⼩题,共16.0分)9.分解因式:2mn2?2m=______.10.图中的四边形均为矩形,根据图形,写出⼀个正确的等式:______.______0.5.11.⽐较⼤⼩:√5?1212.如图,在每个⼩正⽅形的边长为1cm的⽹格中,画出了⼀个过格点A,B的圆,通过测量、计算,求得该圆的周长是______cm.(结果保留⼀位⼩数)13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是______.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=______.15.数学活动课上,⽼师拿来⼀个不透明的袋⼦,告诉学⽣⾥⾯装有4个除颜⾊外均相同的⼩球,并且球的颜⾊为红⾊和⽩⾊,让学⽣通过多次有放回的摸球,统计摸出红球和⽩球的次数,由此估计袋中红球和⽩球的个数.下⾯是全班分成的三个⼩组各摸球20次的结果,请你估计袋中有______个红球.摸到红球的次数摸到⽩球的次数⼀组137⼆组146三组15516.⽅形的内部及边界通过移转(即平移或旋转)的⽅式,⾃由地从横放移转到竖放,求正⽅形边长的最⼩整数n.”甲、⼄、丙作了⾃认为边长最⼩的正⽅形,先求出该边长x,再取最⼩整数n.甲:如图2,思路是当x为矩形对⾓线长时就可移转过去;结果取n=14.⼄:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的√22倍时就可移转过去;结果取n=13.甲、⼄、丙的思路和结果均正确的是______.三、解答题(本⼤题共12⼩题,共68.0分)17.计算:(?2)0+√12cos45°32.18.解不等式:x?13≥x?22+1,并把解集在数轴上表⽰出来.19.已知:关于x的⽅程mx2?4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若⽅程的根为有理数,求正整数m的值.20.下⾯是⼩东设计的“以线段AB为⼀条对⾓线作⼀个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆⼼,以AB长为半径作⊙A;②以点B为圆⼼,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据⼩东设计的尺规作图过程,(1)使⽤直尺和圆规,补全图形(保留作图痕迹);(2)完成下⾯的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(______)(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴______═______=______=______.∴四边形ACBD是菱形.(______)(填推理的依据).CD,点E是CD 21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=12的中点.(1)求证:四边形ABCE是平⾏四边形;(2)若AC=4,AD=4√2,求四边形ABCE的⾯积.22.为了研究⼀种新药的疗效,选100名患者随机分成两组,每组各50名,⼀组服药,另⼀组不服药,12周后,记录了两组患者的⽣理指标x和y的数据,并制成图1,其中“?”表⽰服药者,“+”表⽰未服药者;同时记录了服药患者在4周、8周、12周后的指标z的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出⼀⼈,求此⼈指标x的值⼤于1.7的概率;(2)设这100名患者中服药者指标y数据的⽅差为S12,未服药者指标y数据的⽅差为S22,则S12______S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是______.①服药4周后,超过⼀半的患者指标z没有改善,说明此药对指标z没有太⼤作⽤;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上⼀动点,从点B出发,运动到点A停⽌,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.⼩涛根据学习函数的经验,对函数y随⾃变量x的变化⽽变化的规律进⾏了探究.下⾯是⼩涛的探究过程,请补充完整.(1)列表:按照下表中⾃变量x的值进⾏取点、画图、测量,分别得到了y与x的⼏组对应值:x00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0/cmy2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.93.08 3.2/cm(2)描点、连线:在平⾯直⾓坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度⼤约是______cm.(结果保留⼀位⼩数)(x<0)的图象上.25.已知:在平⾯直⾓坐标系xOy中,点A(?1,2)在函数y=mx(1)求m的值;(x<(2)过点A作y轴的平⾏线l,直线y=?2x+b与直线l交于点B,与函数y=mx0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC26.在平⾯直⾓坐标系xOy中,已知抛物线y=mx2?3(m?1)x+2m?1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有⼀个公共点,求m的取值范围.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上⼀动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是______;(3)连接AF,⼩昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF的度数始终保持不变,⼩昊把这个猜想与同学们进⾏了交流,经过测量,⼩昊猜想∠DAF=______°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正⽅形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG//AF,交直线FC于点G,构造?ABGF,然后可证△AFE≌△BGC…请你参考上⾯的想法,帮助⼩昊完成证明(⼀种⽅法即可).28.已知:如图,⊙O的半径为r,在射线OM上任取⼀点P(不与点O重合),如果射线OM上的点P′,满⾜OP?OP′=r2,则称点P′为点P关于⊙O的反演点.在平⾯直⾓坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A′的坐标;(2)若点B关于⊙O的反演点B′恰好为直线y=√3x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=√3x上⼀动点,且点C关于⊙O的反演点C′在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上⼀动点,直接写出点D关于⊙O的反演点D′的横坐标t的范围.答案和解析1.【答案】B【解析】解:如图所⽰,l1//l2,则平⾏线l1与l2间的距离是线段BC的长度.故选:B.利⽤平⾏线间距离的定义判断即可.此题考查了平⾏线的性质,熟练掌握平⾏线的性质是解本题的关键.2.【答案】C【解析】解:?5的倒数是?1;5故选:C.根据倒数的定义即可得出答案.此题主要考查了倒数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.3.【答案】D 【解析】解:如图所⽰:有⼀直线L通过点(?1,3)且与y轴垂直,故L也会通过D点.故选:D.直接利⽤点的坐标,正确结合坐标系分析即可.此题主要考查了点的坐标,正确结合平⾯直⾓坐标系分析是解题关键.4.【答案】D【解析】解:原式=a2?4a+4+8a?12+1=a2+4a?7,由a2+4a?4=0,得到a2+4a=4,则原式=4?7=?3.故选:D.原式利⽤完全平⽅公式化简,去括号合并得到最简结果,把已知等式变形后代⼊计算即可求出值.此题考查了整式的混合运算?化简求值,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:如图:四边形ABCE 的内⾓和为:(4?2)×180°=360°,△ADE 的内⾓和为180°,∴α+β=360°+180°=540°.故选:B .根据多边形的内⾓和公式计算即可.本题主要考查了多边形的内⾓和,熟记多边形的内⾓和公式是解答本题的关键. 6.【答案】D【解析】解:设⼈数为x ,买鸡的钱数为y ,可列⽅程组为: {9x ?11=y 6x +16=y.故选:D .直接利⽤每⼈出九钱,会多出11钱;每⼈出6钱,⼜差16钱,分别得出⽅程求出答案.此题主要考查了由实际问题抽象出⼆元⼀次⽅程组,正确得出等量关系是解题关键. 7.【答案】A【解析】解:因为甲品种的葡萄树、⼄品种的葡萄树的平均数丙品种的葡萄树⽐丁品种的葡萄树⼤,⽽甲品种的葡萄树的⽅差⽐⼄品种的葡萄树的⼩,所以甲品种的葡萄树的产量⽐较稳定,所以甲品种的葡萄树的产量既⾼⼜稳定.故选:A .先⽐较平均数得到甲品种的葡萄树和⼄品种的葡萄树产量较好,然后⽐较⽅差得到甲品种的葡萄树的状态稳定,从⽽求解.本题考查了⽅差:⼀组数据中各数据与它们的平均数的差的平⽅的平均数,叫做这组数据的⽅差.⽅差是反映⼀组数据的波动⼤⼩的⼀个量.⽅差越⼤,则平均值的离散程度越⼤,稳定性也越⼩;反之,则它与其平均值的离散程度越⼩,稳定性越好.也考查了平均数的意义. 8.【答案】C【解析】解:连接DE ,∵S △CDE =12×CE ×GE =12S 矩形ECFG ,同理S△CDE=12S正⽅形ABCD,故y=S矩形ECFG=S正⽅形ABCD,为常数,故选:C.连接DE,△CDE的⾯积是矩形CFGE的⼀半,也是正⽅形ABCD的⼀半,则矩形与正⽅形⾯积相等.此题考查了正⽅形的性质、矩形的性质,连接DE由⾯积关系进⾏转化是解题的关键.9.【答案】2m(n+1(n?1)【解析】解:2mn2?2m=2m(n2?1)=2m(n+1)(n?1).故答案为:2m(n+1(n?1).⾸先提取公因式2m,再利⽤平⽅差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,正确运⽤乘法公式是解题关键.10.【答案】(x+p)(x+q)=x2+px+qx+pq【解析】解:矩形的⾯积可看作(x+p)(x+q),也可看作四个⼩矩形的⾯积和,即x2+ px+qx+pq,所以可得等式为:(x+p)(x+q)=x2+px+qx+pq,故答案为:(x+p)(x+q)=x2+px+qx+pq.根据多项式的乘法展开解答即可.此题考查多项式的乘法,关键是根据图形的⾯积公式解答.11.【答案】>【解析】解:∵0.5=12,2<√5<3,∴√5?1>1,∴√5?12>0.5故答案为:>.⾸先把0.5变为12,然后估算√5的整数部分,再根据⽐较实数⼤⼩的⽅法进⾏⽐较即可.此题主要考查了实数的⼤⼩⽐较.此题应把0.5变形为分数,然后根据⽆理数的整数部分再来⽐较即可解决问题.12.【答案】8.9【解析】解:由垂径定理可知,圆的圆⼼在点O处,连接OA,由勾股定理得,OA=√12+12=√2,∴圆的周长=2√2π≈8.9,故答案为:8.9.根据垂径定理确定圆的圆⼼,根据勾股定理求出圆的半径,根据圆的周长公式计算,得到答案.本题考查的是垂径定理、勾股定理的应⽤,掌握弦的垂直平分线经过圆⼼是解题的关键.13.【答案】1【解析】解:如图,过点B作BC⊥AN于点C,∵在直⾓△ABC中,∠A=30°,AB=2,∴BC=12AB=12×2=1.即点B到射线AN的距离是1.故答案是:1.如图,过点B作BC⊥AN于点C,则BC线段的长度即为所求,根据“在直⾓三⾓形中,30°⾓所对的直⾓边等于斜边的⼀半”解答.本题主要考查了点到直线的距离,含30度⾓的直⾓三⾓形,解题的关键是找到符合条件的线段BC.14.【答案】5【解析】解:∵∠C=90°,∴∠B+∠BAC=90°,∵α+β=∠B,∴α+β+∠BAC=90°,即∠DAE=90°,∵AD=AB=4,AE=AC=3,∴DE=√AD2+AE2=5,故答案为:5.根据直⾓三⾓形的性质得到∠DAE=90°,根据勾股定理计算,得到答案.本题考查的是勾股定理,如果直⾓三⾓形的两条直⾓边长分别是a,b,斜边长为c,那么a2+b2=c2.15.【答案】3【解析】解:∵三个⼩组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为4220×3=710,∴估计袋中有4×710≈3个红球.故答案为:3.由三个⼩组摸到红球的次数为13+14+15=42次得出袋⼦中红⾊球的概率,进⽽求出红球个数即可.此题主要考查了利⽤频率估计概率,根据⼤量反复试验下频率稳定值(即概率)是解本题的关键.16.【答案】甲【解析】解:∵矩形长为12宽为6,∴矩形的对⾓线长为:√62+122=6√5,∵矩形在该正⽅形的内部及边界通过平移或旋转的⽅式,⾃由地从横放变换到竖放,∴该正⽅形的边长不⼩于6√5,∵13<6√5<15,∴该正⽅形边长的最⼩正数n为14.故甲的思路正确,长⽅形对⾓线最长,只要对⾓线能通过就可以,n=14;故答案为:甲.根据矩形长为12宽为6,可得矩形的对⾓线长为6√5,由矩形在该正⽅形的内部及边界通过平移或旋转的⽅式,⾃由地从横放变换到竖放,可得该正⽅形的边长不⼩于6√5,进⽽可得正⽅形边长的最⼩整数n的值.本题考查了矩形的性质与旋转的性质,熟练运⽤矩形的性质是解题的关键.17.【答案】解:原式=1+√22?√2219=89.【解析】直接利⽤零指数幂的性质以及特殊⾓的三⾓函数值、负整数指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】解:去分母得:2(x?1)≥3(x?2)+6,去括号得:2x?2≥3x?6+6,移项并合并同类项得:?x≥2,系数化为1得:x≤?2,解集在数轴上表⽰为:.【解析】直接利⽤⼀元⼀次不等式的解法分析得出答案.此题主要考查了解⼀元⼀次不等式,正确掌握解题⽅法是解题关键.19.【答案】解:(1)∵m≠0,∴关于x的⽅程mx2?4x+1=0为⼀元⼆次⽅程,∵关于x的⼀元⼆次⽅程mx2?4x+1=0有实数根,∴△=b2?4ac=(?4)2?4×m×1=16?4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16?4m=12;当m=2时,△=16?4m=8;当m=3时,△=16?4m=4;当m=4时,△=16?4m=0.∵⽅程为有理根,∴m=3或m=4.【解析】(1)根据⽅程的系数结合根的判别式△≥0,即可得出关于m的⼀元⼀次不等式,解之即可得出m的取值范围;(2)由m为正整数可得出m的可能值,将其分别代⼊△=16?4m中求出△的值,再结合⽅程的根为有理数即可得出结论.本题考查了根的判别式以及⼀元⼆次⽅程的解,解题的关键是:(1)牢记“当△≥0时,⽅程有实数根”;(2)根据⽅程的根为有理数,确定m的值.20.【答案】圆的半径AD AC BC BD四边相等的四边形为菱形【解析】解:(1)如图,四边形ACBD为所作;(2)完成下⾯的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径相等),同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD=AC=BC=AD,∴四边形ACBD是菱形.(四边相等的四边形为菱形).故答案为:圆的半径相等;AD、AC、BC、AD;四边相等的四边形为菱形.(1)根据作法画出⼏何图形;(2)利⽤圆的半径相等得到四边形ACBD的边长都等于AB,然后根据菱形的判定可判断四边形ACBD就是所求作的菱形.本题考查了作图?复杂作图:复杂作图是在五种基本作图的基础上进⾏作图,⼀般是结合了⼏何图形的性质和基本作图⽅法.解决此类题⽬的关键是熟悉基本⼏何图形的性质,结合⼏何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.21.【答案】(1)证明:∵∠BAC=∠ACD=90°,∴AB//EC,∵点E是CD的中点,CD,∴EC=12∵AB=1CD,2∴AB=EC,∴四边形ABCE是平⾏四边形;(2)解:∵∠ACD=90°,AC=4,AD=4√2,∴CD=√AD2?AC2=4,CD,∵AB=12∴AB=2,=AB?AC=2×4=8.∴S平⾏四边形ABCE【解析】(1)根据平⾏线的判定定理得到AB//EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到CD=√AD2?AC2=4,求得AB=2,根据平⾏四边形的⾯积公式即可得到结论.本题考查了平⾏四边形的判定,勾股定理,平⾏四边形的⾯积的计算,正确的识别图形是解题的关键.22.【答案】>②【解析】解:(1)指标x的值⼤于1.7的概率为:3÷50=350=0.06;(2)由图1可知,S12>S22,故答案为:>;(3)由图2可知,推断合理的是②,故答案为:②.(1)根据图1,可以的打指标x的值⼤于1.7的概率;(2)根据图1,可以得到S12和S22的⼤⼩情况;(3)根据图2,可以判断哪个推断合理.本题考查条形统计图、其他统计图、⽅差、概率,解题本题的关键是明确题意,利⽤数形结合的思想解答,这道题⽬属于中考常考题型.23.【答案】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°.∵AD平分∠CAB,∴∠CAD=∠DAB.⼜∵OA=OD,∴∠DAB=∠ADO.∴∠CAD=∠ADO.∴AF//OD.∴∠F+∠ODF=180°.∴∠F=180°?∠ODF=90°.∴DF⊥AF.(2)解:连接DB.∵AB是直径,⊙O的半径是5,AD=8,∴∠ADB=90°,AB=10.∴BD=6.∵∠F=∠ADB=90°,∠FAD=∠DAB,∴△FAD∽△DAB.∴DFBD =ADAB.∴DF=AD?BDAB =8×610=245.【解析】(1)连接OD,根据切线的性质得到∠ODF=90°,根据⾓平分线的定义得到∠CAD=∠DAB,由等腰三⾓形的性质得到∠DAB=∠ADO,等量代换得到∠CAD=∠ADO,推出AF//OD,根据平⾏线的性质即可得到结论;(2)连接DB,根据圆周⾓定理得到∠ADB=90°,根据勾股定理得到BD=6,再根据相似三⾓形的判定与性质即可求解.本题考查了切线的性质,相似三⾓形的判定与性质,⾓平分线的定义,勾股定理,正确的作出辅助线是解题的关键.24.【答案】1.7,1.9,4.7【解析】解:(1)x=BM=1.8,在△MBD中,BD=3,cos∠B =35,设cosB =cosβ,tanβ=43,过点M 作MH ⊥BD 于点H ,则BH =BMcosβ=1.8×35=1.08,同理MH =1.44, HD =BD ?BH =3?1.08=1.92, MD =√MH 2+HD 2=2.4, MD 2=HD 2+MH 2=9,则BD 2=BM2+MD 2,故∠BMD =90°,则y =MN =MDtanβ=(DBsinβ)tanβ=2.4×43=3.2,补全的表格数据如下: x/cm 00.3 0.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0y/cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2(3)当MN =BD 时,即y =3,从图象看x 即BM 的长度⼤约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).(1)证明∠BMD =90°,则y =MN =MDtanβ=(DBsinβ)tanβ=2.4×43=3.2; (2)描点、连线得函数图象;(3)当MN =BD 时,即y =3,从图象看x 的值即可.本题为动点问题的函数图象,涉及到解直⾓三⾓形、函数作图等,此类题⽬难点于弄懂x 、y 代表的意义,估计或计算解出表格空出的数据.25.【答案】解:(1)把A(?1,2)代⼊函数y =mx (x <0)中,∴m =?2;(2)①过点C 作EF ⊥y 轴于F ,交直线l 于E ,∵直线l//y 轴,∴EF ⊥直线l .∴∠BEC =∠DFC =90°.∵点A 到y 轴的距离为 1,∴EF =1.∵直线 l//y 轴,∴∠EBC =∠FDC .∵点C 是BD 的中点,∴CB =CD .∴△EBC≌△FDC(AAS),∴EC =CF ,即CE =CF =12.∴点C 的横坐标为?12.把x =?12代⼊函数y =?2x 中,得y =4.∴点C 的坐标为(?12,4),把点C 的坐标为(?12,4)代⼊函数y =?2x +b 中,得b =3;②当C 在下⽅时,C(12,?4),把C(12,?4)代⼊函数y =?2x +b 中得:?4=?2×12+b ,得b =?3,则BC ?3,故b 的取值范围为b >?3.【解析】(1)根据待定系数法求得即可;(2)①根据题意求得C 点的坐标,然后根据待定系数法即可求得b 的值;②根据①结合图象即可求得.本题考查了反⽐例函数综合运⽤,主要考查的是⼀次函数和反⽐例函数的交点问题,待定系数法求反⽐例的解析式,求得C点的坐标是解题的关键.26.【答案】解:(1)把m=3代⼊y=mx2?3(m?1)x+2m?1中,得y=3x2?6x+ 5=3(x?1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m?3(m?1)+2m?1=m?3m+3+2m?1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有⼀个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代⼊抛物线表达式,得2m?1=2.>0.∴m=32此时抛物线开⼝向上(如图1).∴当0时,抛物线与线段BC只有⼀个公共点.2③当抛物线过点C(3,2)时,将点C(3,2)代⼊抛物线表达式,得9m?9(m?1)+2m?1=2.∴m=?3<0.此时抛物线开⼝向下(如图2).∴当?3综上,m的取值范围是m=3或0或?32【解析】(1)求出抛物线的解析式,由配⽅法可得出答案;(2)把x=1,y=2代⼊y=mx2?3(m?1)x+2m?1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有⼀个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代⼊抛物线表达式,得2m?1=2.解得m=3,2则当0时,抛物线与线段BC只有⼀个公共点.2③当抛物线过点C(3,2)时,将点C(3,2)代⼊抛物线表达式,得m=?3<0.则当?3<m<0时,抛物线与线段BC只有⼀个公共点.本题是⼆次函数综合题,考查了⼆次函数的图象及其性质,⼆次函数图象上点的坐标特征,平移的性质等知识,熟练利⽤数形结合的解题⽅法是解决本题的关键.27.【答案】AE⊥DF45【解析】解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,。

2020年北京市顺义区中考数学二模试卷 (解析版)

2020年中考数学二模试卷一、选择题(共8小题).1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度2.﹣5的倒数是()A.﹣5B.C.﹣D.53.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣35.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=.10.图中的四边形均为矩形,根据图形,写出一个正确的等式:.11.比较大小:0.5.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是cm.(结果保留一位小数)13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有个红球.摸到红球的次数摸到白球的次数一组137二组146三组15516.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.18.解不等式:≥+1,并把解集在数轴上表示出来.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD()(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴═==.∴四边形ACBD是菱形.()(填推理的依据).21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是cm.(结果保留一位小数)25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.如图所示,l1∥l2,则平行线l1与l2间的距离是()A.线段AB的长度B.线段BC的长度C.线段CD的长度D.线段DE的长度【分析】利用平行线间距离的定义判断即可.解:如图所示,l1∥l2,则平行线l1与l2间的距离是线段BC的长度.故选:B.2.﹣5的倒数是()A.﹣5B.C.﹣D.5【分析】根据倒数的定义即可得出答案.解:﹣5的倒数是﹣;故选:C.3.如图,平面直角坐标系xOy中,有A、B、C、D四点.若有一直线l经过点(﹣1,3)且与y轴垂直,则l也会经过的点是()A.点A B.点B C.点C D.点D【分析】直接利用点的坐标,正确结合坐标系分析即可.解:如图所示:有一直线L通过点(﹣1,3)且与y轴垂直,故L也会通过D点.故选:D.4.如果a2+4a﹣4=0,那么代数式(a﹣2)2+4(2a﹣3)+1的值为()A.13B.﹣11C.3D.﹣3【分析】原式利用完全平方公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解:原式=a2﹣4a+4+8a﹣12+1=a2+4a﹣7,由a2+4a﹣4=0,得到a2+4a=4,则原式=4﹣7=﹣3.故选:D.5.如图,四边形ABCD中,过点A的直线l将该四边形分割成两个多边形,若这两个多边形的内角和分别为α和β,则α+β的度数是()A.360°B.540°C.720°D.900°【分析】根据多边形的内角和公式计算即可.解:如图:四边形ABCE的内角和为:(4﹣2)×180°=360°,△ADE的内角和为180°,∴α+β=360°+180°=540°.故选:B.6.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x,买鸡的钱数为y,可列方程组为()A.B.C.D.【分析】直接利用每人出九钱,会多出11钱;每人出6钱,又差16钱,分别得出方程求出答案.解:设人数为x,买鸡的钱数为y,可列方程组为:.故选:D.7.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每个品种的10棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24242320 S2 1.9 2.12 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁【分析】先比较平均数得到甲品种的葡萄树和乙品种的葡萄树产量较好,然后比较方差得到甲品种的葡萄树的状态稳定,从而求解.解:因为甲品种的葡萄树、乙品种的葡萄树的平均数丙品种的葡萄树比丁品种的葡萄树大,而甲品种的葡萄树的方差比乙品种的葡萄树的小,所以甲品种的葡萄树的产量比较稳定,所以甲品种的葡萄树的产量既高又稳定.故选:A.8.正方形ABCD的边AB上有一动点E,以EC为边作矩形ECFG,且边FG过点D.设AE=x,矩形ECFG的面积为y,则y与x之间的关系描述正确的是()A.y与x之间是函数关系,且当x增大时,y先增大再减小B.y与x之间是函数关系,且当x增大时,y先减小再增大C.y与x之间是函数关系,且当x增大时,y一直保持不变D.y与x之间不是函数关系【分析】连接DE,△CDE的面积是矩形CFGE的一半,也是正方形ABCD的一半,则矩形与正方形面积相等.解:连接DE,∵S△CDE=×CE×GE=S矩形ECFG,同理S△CDE=S正方形ABCD,故y=S矩形ECFG=S正方形ABCD,为常数,故选:C.二、填空题(本题共16分,每小题2分)9.分解因式:2mn2﹣2m=2m(n+1(n﹣1).【分析】首先提取公因式2m,再利用平方差公式分解因式得出答案.解:2mn2﹣2m=2m(n2﹣1)=2m(n+1)(n﹣1).故答案为:2m(n+1(n﹣1).10.图中的四边形均为矩形,根据图形,写出一个正确的等式:(x+p)(x+q)=x2+px+qx+pq.【分析】根据多项式的乘法展开解答即可.解:矩形的面积可看作(x+p)(x+q),也可看作四个小矩形的面积和,即x2+px+qx+pq,所以可得等式为:(x+p)(x+q)=x2+px+qx+pq,故答案为:(x+p)(x+q)=x2+px+qx+pq.11.比较大小:>0.5.【分析】首先把0.5变为,然后估算的整数部分,再根据比较实数大小的方法进行比较即可.解:∵0.5=,2<<3,∴>1,∴故填空答案:>.12.如图,在每个小正方形的边长为1cm的网格中,画出了一个过格点A,B的圆,通过测量、计算,求得该圆的周长是8.9cm.(结果保留一位小数)【分析】根据垂径定理确定圆的圆心,根据勾股定理求出圆的半径,根据圆的周长公式计算,得到答案.解:由垂径定理可知,圆的圆心在点O处,连接OA,由勾股定理得,OA==,∴圆的周长=2π≈8.9,故答案为:8.9.13.如图,∠MAN=30°,点B在射线AM上,且AB=2,则点B到射线AN的距离是1.【分析】如图,过点B作BC⊥AN于点C,则BC线段的长度即为所求,根据“在直角三角形中,30°角所对的直角边等于斜边的一半”解答.解:如图,过点B作BC⊥AN于点C,∵在直角△ABC中,∠A=30°,AB=2,∴BC=AB==1.即点B到射线AN的距离是1.故答案是:1.14.如图,Rt△ABC中,∠C=90°,在△ABC外取点D,E,使AD=AB,AE=AC,且α+β=∠B,连结DE.若AB=4,AC=3,则DE=5.【分析】根据直角三角形的性质得到∠DAE=90°,根据勾股定理计算,得到答案.解:∵∠C=90°,∴∠B+∠BAC=90°,∵α+β=∠B,∴α+β+∠BAC=90°,即∠DAE=90°,∵AD=AB=4,AE=AC=3,∴DE==5,故答案为:5.15.数学活动课上,老师拿来一个不透明的袋子,告诉学生里面装有4个除颜色外均相同的小球,并且球的颜色为红色和白色,让学生通过多次有放回的摸球,统计摸出红球和白球的次数,由此估计袋中红球和白球的个数.下面是全班分成的三个小组各摸球20次的结果,请你估计袋中有3个红球.摸到红球的次数摸到白球的次数一组137二组146三组155【分析】由三个小组摸到红球的次数为13+14+15=42次得出袋子中红色球的概率,进而求出红球个数即可.解:∵三个小组摸到红球的次数为13+14+15=42(次),∴摸到红球的概率为=,∴估计袋中有4×≈3个红球.故答案为:3.16.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n.”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x,再取最小整数n.甲:如图2,思路是当x为矩形对角线长时就可移转过去;结果取n=14.乙:如图3,思路是当x为矩形外接圆直径长时就可移转过去;结果取n=14.丙:如图4,思路是当x为矩形的长与宽之和的倍时就可移转过去;结果取n=13.甲、乙、丙的思路和结果均正确的是甲.【分析】根据矩形长为12宽为6,可得矩形的对角线长为6,由矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,可得该正方形的边长不小于6,进而可得正方形边长的最小整数n的值.解:∵矩形长为12宽为6,∴矩形的对角线长为:=6,∵矩形在该正方形的内部及边界通过平移或旋转的方式,自由地从横放变换到竖放,∴该正方形的边长不小于6,∵13<6<15,∴该正方形边长的最小正数n为14.故甲的思路正确,长方形对角线最长,只要对角线能通过就可以,n=14;故答案为:甲.三、解答题(本题共68分,第17-21题,每小题5分,第22-23题,每小题5分,第24题5分,第25-26题,每小题5分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.计算:(﹣2)0+﹣cos45°﹣3﹣2.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、负整数指数幂的性质分别化简得出答案.解:原式==.18.解不等式:≥+1,并把解集在数轴上表示出来.【分析】直接利用一元一次不等式的解法分析得出答案.解:去分母得:2(x﹣1)≥3(x﹣2)+6,去括号得:2x﹣2≥3x﹣6+6,移项并合并同类项得:﹣x≥2,系数化为1得:x≤﹣2,解集在数轴上表示为:.19.已知:关于x的方程mx2﹣4x+1=0(m≠0)有实数根.(1)求m的取值范围;(2)若方程的根为有理数,求正整数m的值.【分析】(1)根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由m为正整数可得出m的可能值,将其分别代入△=16﹣4m中求出△的值,再结合方程的根为有理数即可得出结论.解:(1)∵m≠0,∴关于x的方程mx2﹣4x+1=0为一元二次方程,∵关于x的一元二次方程mx2﹣4x+1=0有实数根,∴△=b2﹣4ac=(﹣4)2﹣4×m×1=16﹣4m≥0,解得:m≤4.∴m的取值范围是m≤4且m≠0.(2)∵m为正整数,∴m可取1,2,3,4.当m=1时,△=16﹣4m=12;当m=2时,△=16﹣4m=8;当m=3时,△=16﹣4m =4;当m=4时,△=16﹣4m=0.∵方程为有理根,∴m=3或m=4.20.下面是小东设计的“以线段AB为一条对角线作一个菱形”的尺规作图过程.已知:线段AB.求作:菱形ACBD.作法:如图,①以点A为圆心,以AB长为半径作⊙A;②以点B为圆心,以AB长为半径作⊙B,交⊙A于C,D两点;③连接AC,BC,BD,AD.所以四边形ACBD就是所求作的菱形.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径)(填推理的依据).同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD═AC=BC=BD.∴四边形ACBD是菱形.(四边相等的四边形为菱形)(填推理的依据).【分析】(1)根据作法画出几何图形;(2)利用圆的半径相等得到四边形ACBD的边长都等于AB,然后根据菱形的判定可判断四边形ACBD就是所求作的菱形.解:(1)如图,四边形ACBD为所作;(2)完成下面的证明.证明:∵点B,C,D在⊙A上,∴AB=AC=AD(圆的半径相等),同理∵点A,C,D在⊙B上,∴AB=BC=BD.∴AD=AC=BC=AD,∴四边形ACBD是菱形.(四边相等的四边形为菱形).故答案为:圆的半径相等;AD、AC、BC、AD;四边相等的四边形为菱形.21.已知:如图,在四边形ABCD中,∠BAC=∠ACD=90°,AB=CD,点E是CD 的中点.(1)求证:四边形ABCE是平行四边形;(2)若AC=4,AD=4,求四边形ABCE的面积.【分析】(1)根据平行线的判定定理得到AB∥EC,推出AB=EC,于是得到结论;(2)根据勾股定理得到,求得AB=2,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵∠BAC=∠ACD=90°,∴AB∥EC,∵点E是CD的中点,∴,∵,∴AB=EC,∴四边形ABCE是平行四边形;(2)解:∵∠ACD=90°,AC=4,,∴,∵,∴AB=2,∴S平行四边形ABCE=AB•AC=2×4=8.22.为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药,12周后,记录了两组患者的生理指标x和y的数据,并制成图1,其中“*”表示服药者,“+”表示未服药者;同时记录了服药患者在4周、8周、12周后的指标z 的改善情况,并绘制成条形统计图2.根据以上信息,回答下列问题:(1)从服药的50名患者中随机选出一人,求此人指标x的值大于1.7的概率;(2)设这100名患者中服药者指标y数据的方差为S12,未服药者指标y数据的方差为S22,则S12>S22;(填“>”、“=”或“<”)(3)对于指标z的改善情况,下列推断合理的是②.①服药4周后,超过一半的患者指标z没有改善,说明此药对指标z没有太大作用;②在服药的12周内,随着服药时间的增长,对指标z的改善效果越来越明显.【分析】(1)根据图1,可以的打指标x的值大于1.7的概率;(2)根据图1,可以得到S12和S22的大小情况;(3)根据图2,可以判断哪个推断合理.解:(1)指标x的值大于1.7的概率为:=0.06;(2)由图1可知,S12>S22,故答案为:>;(3)由图2可知,推断合理的是②,故答案为:②.23.已知:如图,AB是⊙O的直径,△ABC内接于⊙O.点D在⊙O上,AD平分∠CAB 交BC于点E,DF是⊙O的切线,交AC的延长线于点F.(1)求证;DF⊥AF;(2)若⊙O的半径是5,AD=8,求DF的长.【分析】(1)连接OD,根据切线的性质得到∠ODF=90°,根据角平分线的定义得到∠CAD=∠DAB,由等腰三角形的性质得到∠DAB=∠ADO,等量代换得到∠CAD=∠ADO,推出AF∥OD,根据平行线的性质即可得到结论;(2)连接DB,根据圆周角定理得到∠ADB=90°,根据勾股定理得到BD=6,再根据相似三角形的判定与性质即可求解.【解答】(1)证明:连接OD.∵DF是⊙O的切线,∴OD⊥DF,∴∠ODF=90°.∵AD平分∠CAB,∴∠CAD=∠DAB.又∵OA=OD,∴∠DAB=∠ADO.∴∠CAD=∠ADO.∴AF∥OD.∴∠F+∠ODF=180°.∴∠F=180°﹣∠ODF=90°.∴DF⊥AF.(2)解:连接DB.∵AB是直径,⊙O的半径是5,AD=8,∴∠ADB=90°,AB=10.∴BD=6.∵∠F=∠ADB=90°,∠FAD=∠DAB,∴△FAD∽△DAB.∴.∴.24.如图,在△ABC中,AB=AC=5cm,BC=6cm,点D为BC的中点,点E为AB的中点.点M为AB边上一动点,从点B出发,运动到点A停止,将射线DM绕点D顺时针旋转α度(其中α=∠BDE),得到射线DN,DN与边AB或AC交于点N.设B、M两点间的距离为xcm,M,N两点间的距离为ycm.小涛根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小涛的探究过程,请补充完整.(1)列表:按照下表中自变量x的值进行取点、画图、测量,分别得到了y与x的几组对应值:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2请你通过测量或计算,补全表格;(2)描点、连线:在平面直角坐标系xOy中,描出补全后的表格中各组数值所对应的点(x,y),并画出函数y关于x的图象.(3)结合函数图象,解决问题:当MN=BD时,BM的长度大约是 1.7,1.9,4.7cm.(结果保留一位小数)【分析】(1)证明∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2;(2)描点、连线得函数图象;(3)当MN=BD时,即y=3,从图象看x的值即可.解:(1)x=BM=1.8,在△MBD中,BD=3,cos∠B=,设cos B=cosβ,tanβ=,过点M作MH⊥BD于点H,则BH=BM cosβ=1.8×=1.08,同理MH=1.44,HD=BD﹣BH=3﹣1.08=1.92,MD==2.4,MD2=HD2+MH2=9,则BD2=BM2+MD2,故∠BMD=90°,则y=MN=MD tanβ=(DB sinβ)tanβ=2.4×=3.2,补全的表格数据如下:x/cm00.30.5 1.0 1.5 1.8 2.0 2.5 3.0 3.5 4.0 4.5 4.8 5.0 y/cm 2.5 2.44 2.42 2.47 2.79 3.2 2.94 2.52 2.41 2.48 2.66 2.9 3.08 3.2(2)描点、连线得到以下函数图象:(3)当MN=BD时,即y=3,从图象看x即BM的长度大约是1.7,1.9,4.7;故答案为:1.7,1.9,4.7(填的数值上下差0.1都算对).25.已知:在平面直角坐标系xOy中,点A(﹣1,2)在函数y=(x<0)的图象上.(1)求m的值;(2)过点A作y轴的平行线l,直线y=﹣2x+b与直线l交于点B,与函数y=(x<0)的图象交于点C,与y轴交于点D.①当点C是线段BD的中点时,求b的值;②当BC<BD时,直接写出b的取值范围.【分析】(1)根据待定系数法求得即可;(2)①根据题意求得C点的坐标,然后根据待定系数法即可求得b的值;②根据①结合图象即可求得.解:(1)把A(﹣1,2)代入函数(x<0)中,∴m=﹣2;(2)①过点C作EF⊥y轴于F,交直线l于E,∵直线l∥y轴,∴EF⊥直线l.∴∠BEC=∠DFC=90°.∵点A到y轴的距离为1,∴EF=1.∵直线l∥y轴,∴∠EBC=∠FDC.∵点C是BD的中点,∴CB=CD.∴△EBC≌△FDC(AAS),∴EC=CF,即CE=CF=.∴点C的横坐标为.把代入函数中,得y=4.∴点C的坐标为(,4),把点C的坐标为(,4)代入函数y=﹣2x+b中,得b=3;②当C在下方时,C(,﹣4),把C(,﹣4)代入函数y=﹣2x+b中得:﹣4=﹣2×+b,得b=﹣3,则BC<BD时,则b>﹣3,故b的取值范围为b>﹣3.26.在平面直角坐标系xOy中,已知抛物线y=mx2﹣3(m﹣1)x+2m﹣1(m≠0).(1)当m=3时,求抛物线的顶点坐标;(2)已知点A(1,2).试说明抛物线总经过点A;(3)已知点B(0,2),将点B向右平移3个单位长度,得到点C,若抛物线与线段BC只有一个公共点,求m的取值范围.【分析】(1)求出抛物线的解析式,由配方法可得出答案;(2)把x=1,y=2代入y=mx2﹣3(m﹣1)x+2m﹣1,可得出答案;(3)分三种情况:①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点,求出m=3;②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.解得m=,则当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得m=﹣3<0.则当﹣3<m<0时,抛物线与线段BC只有一个公共点.解:(1)把m=3代入y=mx2﹣3(m﹣1)x+2m﹣1中,得y=3x2﹣6x+5=3(x﹣1)2+2,∴抛物线的顶点坐标是(1,2).(2)当x=1时,y=m﹣3(m﹣1)+2m﹣1=m﹣3m+3+2m﹣1=2.∵点A(1,2),∴抛物线总经过点A.(3)∵点B(0,2),由平移得C(3,2).①当抛物线的顶点是点A(1,2)时,抛物线与线段BC只有一个公共点.由(1)知,此时,m=3.②当抛物线过点B(0,2)时,将点B(0,2)代入抛物线表达式,得2m﹣1=2.∴m=>0.此时抛物线开口向上(如图1).∴当0<m<时,抛物线与线段BC只有一个公共点.③当抛物线过点C(3,2)时,将点C(3,2)代入抛物线表达式,得9m﹣9(m﹣1)+2m﹣1=2.∴m=﹣3<0.此时抛物线开口向下(如图2).∴当﹣3<m<0时,抛物线与线段BC只有一个公共点.综上,m的取值范围是m=3或0<m<或﹣3<m<0.27.已知:在△ABC中,∠ABC=90°,AB=BC,点D为线段BC上一动点(点D不与点B、C重合),点B关于直线AD的对称点为E,作射线DE,过点C作BC的垂线,交射线DE于点F,连接AE.(1)依题意补全图形;(2)AE与DF的位置关系是AE⊥DF;(3)连接AF,小昊通过观察、实验,提出猜想:发现点D在运动变化的过程中,∠DAF 的度数始终保持不变,小昊把这个猜想与同学们进行了交流,经过测量,小昊猜想∠DAF=45°,通过讨论,形成了证明该猜想的两种想法:想法1:过点A作AG⊥CF于点G,构造正方形ABCG,然后可证△AFG≌△AFE…想法2:过点B作BG∥AF,交直线FC于点G,构造▱ABGF,然后可证△AFE≌△BGC…请你参考上面的想法,帮助小昊完成证明(一种方法即可).【分析】(1)根据题意正确画图;(2)证明△ABD≌△AED(SSS),可得∠AED=∠B=90°,从而得结论;(3)想法1:如图2,过点A做AG⊥CF于点G,先证明四边形ABCG是正方形,得AG=AB,∠BAG=90°,再证明Rt△AFG≌Rt△AFE(HL),得∠GAF=∠EAF,根据∠BAG=90°及角的和可得结论;想法2:如图3,过点B作BG∥AF,交直线FC于点G,证明四边形ABGF是平行四边形,得AF=BG,∠BGC=∠BAF,再证明Rt△AEF≌Rt△BCG(HL),同理根据∠BCG=90°及等量代换,角的和可得结论.解:(1)补全图形如图1:(2)AE与DF的位置关系是:AE⊥DF,理由是:∵点B关于直线AD的对称点为E,∴AB=AE,BD=DE,∵AD=AD,∴△ABD≌△AED(SSS),∴∠AED=∠B=90°,∴AE⊥DF;故答案为:AE⊥DF;(3)猜想∠DAF=45°;想法1:证明如下:如图2,过点A做AG⊥CF于点G,依题意可知:∠B=∠BCG=∠CGA=90°,∵AB=BC,∴四边形ABCG是正方形,∴AG=AB,∠BAG=90°,∵点B关于直线AD的对称点为E,∴AB=AE,∠B=∠AED=∠AEF=90°,∠BAD=∠EAD,∴AG=AE,∵AF=AF,∴Rt△AFG≌Rt△AFE(HL),∴∠GAF=∠EAF,∵∠BAG=90°,∴∠BAD+∠EAD+∠EAF+∠GAF=90°,∴∠EAD+∠EAF=45°.即∠DAF=45°.想法2:证明如下:如图3,过点B作BG∥AF,交直线FC于点G,依题意可知:∠ABC=∠BCF=90°,∴AB∥FG,∵AF∥BG,∴四边形ABGF是平行四边形,∴AF=BG,∠BGC=∠BAF,∵点B关于直线AD的对称点为E,∴AB=AE,∠ABC=∠AED=90°,∠BAD=∠EAD,∵AB=BC,∴AE=BC,∴Rt△AEF≌Rt△BCG(HL),∴∠EAF=∠CBG,∵∠BCG=90°,∴∠BGC+∠CBG=90°,∴∠BAF+∠EAF=90°,∴∠BAD+∠EAD+∠EAF+∠EAF=90°,∵∠BAD=∠EAD,∴∠EAD+∠EAF=45°,即∠DAF=45°.故答案为:45.28.已知:如图,⊙O的半径为r,在射线OM上任取一点P(不与点O重合),如果射线OM上的点P',满足OP•OP'=r2,则称点P'为点P关于⊙O的反演点.在平面直角坐标系xOy中,已知⊙O的半径为2.(1)已知点A(4,0),求点A关于⊙O的反演点A'的坐标;(2)若点B关于⊙O的反演点B'恰好为直线y=x与直线x=4的交点,求点B的坐标;(3)若点C为直线y=x上一动点,且点C关于⊙O的反演点C'在⊙O的内部,求点C的横坐标m的范围;(4)若点D为直线x=4上一动点,直接写出点D关于⊙O的反演点D'的横坐标t的范围.。

2020届北京市顺义区中考数学二模试卷(有解析)

2020届北京市顺义区中考数学二模试卷一、选择题(本大题共8小题,共16.0分)1.直四棱柱、长方体和正方体之间的包含关系是()A. B.C. D.2.实数a、b在数轴上对应点的位置如图所示,则化简√a2−|a+b|的结果为()A. bB. −2a+bC. 2a+bD. 2a−b3.2014年5月21日,中国石油天然气集团公司与俄罗斯天然气工业股份公司在上海签署了《中俄东线供气购销合同》,这份有效期为30年的合同规定,从2018年开始供气,每年的天然气供应量为380亿立方米,380亿立方米用科学记数法表示为()A. 3.80×1010m3B. 38×109m3C. 380×108m3D. 3.8×1011m34.如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF//AD,FN//DC,则∠B=()A. 60°B. 70°C. 80°D. 90°5.为响应承办绿色世博的号召,某班组织部分同学义务植树180棵.由于同学们积极参加,实际参加植树的人数比原计划增加了50%,结果每人比原计划少植了2棵树.若设原来有x人参加这次植树活动,则下列方程正确的是()A. 180(1+50%)x =180x−2 B. 180(1−50%)x=180x−2C. 180(1+50%)x =180x+2 D. 180(1−50%)x=180x+26.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率为()A. 310B. 110C. 19D. 187.下列式子中,正确的是()A. a⃗−b⃗ =0B. a⃗−b⃗ =b⃗ −a⃗C. 如果a⃗=b⃗ ,那么|a⃗|=|b⃗ |D. 如果|a⃗|=|b⃗ |,那么a⃗=b⃗ .8.如图,在平面直角坐标系中,二次函数y=ax2+mc(a≠0)的图象经过正方形ABOC的三个顶点,且ac=−2,则m的值为()A. 1B. −1C. 2D. −2二、填空题(本大题共8小题,共16.0分)9.在实数范围内式子1√x−5有意义,则x的范围是______.10.−8的立方根是______,√36的平方根是______.11.若代数式x2+3x+2可以表示为(x−1)2+a(x−1)+b的形式,则a+b的值是______.12.已知命题“全等三角形的面积相等.”写出它的逆命题______,该逆命题是______命题(填“真”或“假”).13.小张将自己家里1到6月份的用电量统计并绘制成了如图所示的折线统计图,则小张家1到6月份这6个月用电量的众数与中位数的和是______度.14.如图,将矩形ABCD绕点B顺时针旋转90°得矩形BEFG,若AB=3,BC=2,则图中阴影部分的面积为______.15.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为_______.16.如图,在▱ABCD中,∠A的平分线交BC于点E.若AB=3,AD=8,则EC=______.三、计算题(本大题共1小题,共5.0分)17.计算:(1)计算:(−3)0−√12+1√273+(√3−√2)(√3+√2).(2)√8×√12四、解答题(本大题共11小题,共63.0分)18.某汽车租赁公司要购买轿车和面包车共10辆,轿车每辆7万元,面包车每辆4万元,其中轿车至少要购买3辆,公司可投入的购车款不超过55万元.符合公司要求的购买方案有几种?请说明理由.19.如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.20.对于关于x的方程x2+(2m−1)x+4−2m=0,求满足下列条件的m的取值范围,(1)两个正根;(2)有两个负根;(3)两个根都小于−1;(4)两个根都大于1;2(5)一个根大于2,一个根小于2;(6)两个根都在(0,2)内;(7)两个根有且仅有一个在(0,2)内;(8)一个根在(−2,0)内,另一个根在(1,3)内;(9)一个正根,一个负根且正根绝对值较大;(10)一个根小于2,一个根大于4.21.已知,等腰△ABC,AB=AC(1)如图1,BM是△ABC的中线,点N在BM上,且∠ANM=∠MBC,求证:BC=AN;(2)如图2,点G为外一点,∠BGC=∠BAC,AH⊥BG于H,若BH=7,HG=1,求线段CG的长;(3)如图3,等腰△ABC和等腰△ADE共顶点A,AD=AE,顶角∠DAE=∠BAC,点F是线段BE和CD的交点,连AF,请写出∠AFC与∠ADE之间的等量关系,并证明你的结论.22.如图,△ABC内接于⊙O,AD是⊙O直径,E是CB延长线上一点,且∠BAE=∠C.(1)求证:直线AE是⊙O的切线;(2)若∠BAE=30°,⊙O的半径为2,求阴影部份的面积;(3)若EB=AB,cosE=4,AE=24,求EB的长及⊙O的半径.523.在面积都相等的所有矩形中,当其中一个矩形的一条边长为1时,它的另一边长为3(1)设另一条矩形的相邻两边分别为x、y①求y与x的函数关系式;②当y≥3时,求x的取值范围;(2)小明说其中有一个矩形的周长是6,小李说有一个矩形的周长为10,你认为小明和小李的说法对吗?为什么?24.小明要统计小区500户居民每月丢弃塑料袋的数量情况,他随机调查了其中40户居民,按每月丢弃的塑料袋的数量分组进行统计,并绘制了如下的频数分布表和频数分布直方图:每月丢塑料袋个频数频率组别数第1组10至1920.05第2组20至2940.10第3组30至39______ 0.15第4组40至49100.25第5组50至59______ ______第6组60以上20.05合计40 1.00根据以上提供的信息,解答下列问题:(1)补全频数分布表和频数分布直方图;(2)请你估算该小区每月丢弃塑料袋的数不少于40个的户数大约有多少户?25.如图,在Rt△ABC中,∠C=90°,CA=12√3cm,BC=12cm;动点P从点C开始沿CA以2√3cm/s的速度向点A移动,动点Q从点A开始沿AB以4cm/s的速度向点B移动,动点R从点B开始沿BC以2cm/s的速度向点C移动.如果P、Q、R分别从C、A、B同时移动,移动时间为t(0<t<6)s.(1)∠CAB的度数是______;(2)以CB为直径的⊙O与AB交于点M,当t为何值时,PM与⊙O相切?(3)写出△PQR的面积S随动点移动时间t的函数关系式,并求S的最小值及相应的t值;(4)是否存在△APQ为等腰三角形?若存在,求出相应的t值;若不存在请说明理由.26.已知抛物线y=x2−2x−8.(1)求:该抛物线的对称轴和顶点坐标;(2)若该抛物线与x轴的两个交点为A,B,且它的顶点为P,求△ABP的面积.27.如图1,点C将线段AB分成两部分,如果ACAB =BCAC,那么称点C为线段AB的黄金分割点,某教学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似的给出“黄金分割线”的定义:“一直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S2S 1,那么称这条直线为该图形的黄金分割线. (1)如图2,在△ABC 中,∠A =36°,AB =AC ,∠C 的平分线交AB 于点D ,请问直线CD 是不是△ABC的黄金分割线,并证明你的结论;(2)如图3,在边长为1的正方形ABCD 中,点E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.28. 我们知道:点A 、B 在数轴上分别表示有理数a 、b ,如图A 、B 两点之间的距离表示为AB ,记作AB =|a −b|.回答下列问题:(1)数轴上表示2和5两点之间的距离是______,数轴上表示2和−3的两点之间的距离是______;(2)已知|a −3|=7,则有理数a =______;(3)若数轴上表示数b 的点位于−4与3的两点之间,则|b −3|+|b +4|=______.【答案与解析】1.答案:A解析:本题考查了直四棱柱、长方体、正方体之间的关系,正方体是特殊的长方体,长方体是特殊的直四棱柱,所以它们的包含关系是直四棱柱包含长方体,长方体包含正方体,本题是一道较为简单的题目.2.答案:A解析:此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.直接利用数轴得出a<0,a+b<0,进而化简得出答案.解:原式=−a−[−(a+b)]=−a+a+b=b.故选:A.3.答案:A解析:解:将380亿立方米用科学记数法表示为:3.80×1010m3.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.答案:C解析:解:∵MF//AD,FN//DC,∠A=110°,∠C=90°,∴∠FMB=110°,∠FNB=∠C=90°,∵△BMN沿MN翻折,得△FMN,∴△BMN≌△FMN,∴∠BMN=∠FMN=12∠FMB=12×110°=55°,∠BNM=∠FNM=12∠FNM=45°,∠B=180°−∠BMN−∠BNM=80°,故选:C.根据平行线性质求出∠BMF和∠BNF,根据旋转得出全等,根据全等三角形性质得出∠BMN=∠FMN=12∠FMB=55°,∠BNM=∠FNM=12∠FNM=45°,根据三角形内角和定理求出即可.本题考查了平行线性质,全等三角形性质,翻折变换,三角形内角和定理的应用,关键是求出∠BMN 和∠BNM的度数.5.答案:A解析:解:设原来有x人参加这次植树活动,根据题意可得:180 (1+50%)x =180x−2.故选:A.利用植树的总棵数除以人数得出平均植树的棵树进而得出等式即可.此题主要考查了由实际问题抽象出分式方程,正确得出等量关系是解题关键.6.答案:A解析:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.直接利用概率公式求解即可.解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是310.故选A.7.答案:C解析:解:A、a⃗−b⃗ ≠0,故本选项错误;B、a⃗−b⃗ =−(b⃗ −a⃗ ),故本选项错误;C、如果a⃗=b⃗ ,那么|a⃗|=|b⃗ |,故本选项正确;D、如果|a⃗|=|b⃗ |,那么a⃗不一定等于b⃗ ;故本选项错误.故选:C.根据平面向量模的定义,即可求得答案.此题考查了平面向量的知识.注意掌握向量模的定义.8.答案:A解析:解:令x=0,得A点坐标(0,mc),因为四边形ABOC为正方形,知∠AOC=45°,所以c点坐标为:(mc2,mc2),代入得:mc2=a×m2c24+mc,左右两边都除以14mc得:amc+2=0,又有ac=−2,∴m=1.故选:A.主要考正方形性质,把c点坐标求出来代入二次函数y=ax2+mc中就可以求出m了.本题结合了二次函数方程考查正方形性质,要学会综合运用.9.答案:x>5解析:解:根据题意得:x−5>0,解得,x>5.故答案是:x>5.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式的被开方数是非负数,分式有意义分母不等于0.10.答案:−2±√6解析:解:−8的立方根为−2,∵√36=6,∴6的平方根为:±√6,故答案为:−2,±√6,根据立方根与平方根的定义即可求出答案.本题考查立方根与平方根,解题的关键是正确理解立方根与平方根的定义,本题属于基础题型.11.答案:11解析:利用x2+3x+2=(x−1)2+a(x−1)+b,将原式进行化简,得出a,b的值,进而得出答案.此题主要考查了整式的混合运算与化简,根据已知得出x2+3x+2=x2+(a−2)x+(b−a+1)是解题关键.解:∵x2+3x+2=(x−1)2+a(x−1)+b=x2+(a−2)x+(b−a+1),。

2020年北京市顺义区高考数学二模试卷(一)(有答案解析)

2020年北京市顺义区高考数学二模试卷(一)一、选择题(本大题共8小题,共40.0分)1.已知全集U={0,1,2},集合A={x|x2-x=0},则∁U A=()A. {2}B. {0,1}C. {0,2}D. {1,2}2.某程序的框图如图所示,执行该程序,若输入的x值为7,则输出的y值为()A. -2B. -1C.D. 23.若实数x,y满足则2x+y的最小值是()A. -2B. -1C. 0D. 44.某几何体的三视图如图所示,则该几何体的表面积是()A. 12B. 2C.D.5.在△ABC中,a=7,c=3,.sin C的值为()A. B. C. D.6.当c>1时,使不等式log a c>log3c成立的正数a(a≠1)的值为()A. B. C. 2 D. 47.“a≥4或a≤0”是“函数f(x)=ax2+ax+1存在零点”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件8.已知集合M={(x,y)|y=f(x)},若对于∀(x1,y1)∈M,∃(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“互垂点集”.给出下列四个集合:;M2={(x,y)|y=ln x};;M4={(x,y)|y=sin x+1}.其中是“互垂点集”集合的为()A. M1B. M2C. M3D. M4二、填空题(本大题共6小题,共30.0分)9.=______.10.已知向量,满足||=1,||=2,且,则与的夹角为______.11.为了解中学生寒假从图书馆借书的情况,一个调研小组在2019年寒假某日随机选取了100名在市级图书馆借书的中学生,如表记录了他们的在馆停留时间,分为(0,15],(15,30],(30,45](45,60]和60以上(单位:分钟)五段统计.现在需要从(15,30],(30,45](45,60](单位:分钟)这三段时间中按分层抽样抽取停留时长(单位:分钟)频数频率(0,15]20.02(15,30]a0.05(30,45]b0.10(45,60]250.2560以上580.58合计100 1.0012.()的两条切线,则两条切线所成的锐角______.13.把函数图象上的所有点向左平移a(a>0)个单位长度后,得到函数y=sin2x的图象,则a的最小值为______.14.已知抛物线y2=2px(p>0)的焦点和双曲线的右焦点F2重合,则抛物线的标准方程为______;P为抛物线和双曲线的一个公共点,P到双曲线左焦点F1的距离为______.三、解答题(本大题共6小题,共80.0分)15.已知{a n}是等差数列,{b n}是等比数列,且b2=2,b5=16,a1=2b1,a3=b4.(Ⅰ)求{b n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}的前n项和.16.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间[]上的最大值和最小值.17.国际上常用恩格尔系数(食品支出总额占个人消费支出总额的比重)反映一个国家或家庭生活质量的高低,恩格尔系数越低,生活质量越高.联合国根据恩格尔系数的大小,对世界各国的生活质量有一个划分标准如下:恩格尔系数(%)生活质量大于等于60 贫穷[50,60)温饱[40,50)小康[30,40)相对富裕[20,30)富裕小于20 极其富裕下表记录了我国在改革开放后某市A,B,C,D,E五个家庭在五个年份的恩格尔系数.年份家庭恩格尔系数(%)A B C D E1978年57.7 52.5 62.3 61.0 58.8 1988年54.2 48.3 51.9 55.4 52.6 1998年44.7 41.6 43.5 49.0 47.4 2008年37.9 36.5 29.2 41.3 42.7 2018年28.6 27.7 19.8 35.7 34.2(Ⅰ)从以上五个年份中随机选取一个年份,在该年份五个家庭的生活质量都相同的概率为__(将结果直接填写在答题卡的相应位置上);(Ⅱ)从以上五个家庭中随机选出两个家庭,求这两个家庭中至少有一个家庭在2008年和2018年均达到“相对富裕”或更高生活质量的概率;(Ⅲ)如果将“贫穷”,“温饱”,“小康”,“相对富裕”,“富裕”,“极其富裕”六种生活质量分别对应数值:0,1,2,3,4,5.请写出A,B,C,D,E 五个家庭在以上五个年份中生活质量方差最大的家庭和方差最小的家庭(结论不要求证明).18.如图,AE⊥平面ABC,CD∥AE,AC=BC=AE=2CD=2,,M为棱BE上一点,平面CDM与棱AB交于点N.(Ⅰ)求证:BC⊥平面ACDE;(Ⅱ)求证:CD∥MN;(Ⅲ)当四边形CDMN为矩形时,求四棱锥B-CDMN的体积.19.设函数.(Ⅰ)若点(1,1)在曲线y=f(x)上,求在该点处曲线的切线方程;(Ⅱ)若f(x)≥2恒成立,求a的取值范围.20.已知椭圆C:的右焦点为,过F的直线l与C交于A,B两点.当l与x轴垂直时,线段AB长度为1.O为坐标原点.(Ⅰ)求椭圆C的方程(Ⅱ)若对任意的直线l,点M(m,0)总满足∠OMA=∠OMB,求实数m的值.(Ⅲ)在(Ⅱ)的条件下,求△MAB面积的最大值.-------- 答案与解析 --------1.答案:A解析:解:全集U={0,1,2},集合A={x|x2-x=0}={0,1}.则∁U A={2}故选:A.由题意求出集合A,然后直接写出它的补集即可.本题考查集合的基本运算,补集的求法,考查计算能力.2.答案:C解析:解:若输入的x值为7,则x≤0否,x=7-2=5,x≤0否,x=5-2=3,x≤0否,x=3-2=1,x≤0否,x=1-2=-1x≤0是,y=2-1=,故选:C.根据程序框图进行模拟运算即可.本题主要考查程序框图的识别和应用,利用模拟运算法是解决本题的关键.比较基础.3.答案:B解析:解:画出,可行域,得在直线x-y+2=0与直线x+y=0的交点A(-1,1)处,目标函数z=2x+y的最小值为-1.故选:B.本题主要考查线性规划问题,由线性约束条件画出可行域,然后求出目标函数的最小值.本题考查不等式组所表示的平面区域和简单的线性规划问题.在线性规划问题中目标函数取得最值的点一定是区域的顶点和边界,在边界上的值也等于在这个边界上的顶点的值,故在解答选择题或者填空题时,只要能把区域的顶点求出,直接把顶点坐标代入进行检验即可.4.答案:D解析:解:由几何体的三视图得该几何体是直三棱柱,其中底面是等腰直角三角形,两条直角边长都为1,高为1,∴该几何体的表面积:S=2×(×1×1)+2×(1×1)+1×=3+.故选:D.由几何体的三视图得该几何体是直三棱柱,其中底面是等腰直角三角形,两条直角边长都为1,高为1,由此能求出该几何体的表面积.本题考查由几何体的三视图求几何体的表面积,是基础题.解题时要认真审题,仔细解答,注意空间想象能力的培养.5.答案:B解析:解:根据题意,△ABC中,a=7,c=3,,有=,则sin C===;故选:B.根据题意,由正弦定理可得=,变形可得sin C=,代入数据计算可得答案.本题考查正弦定理的应用,关键是掌握正弦定理的形式,属于基础题.6.答案:C解析:解:∵c>1时,使不等式log a c>log3c成立,∴>,∴>,∴b>a>1时,不等式成立,故a可以取2,故选:C.由对数不等式的解法得:由log a c>log b c,可得>,即b>a>1时,不等式成立,问题得以解决本题考查了对数不等式的解法,属简单题.7.答案:B解析:【分析】函数零点的判定方法得当a=0时,无根,当a≠0时,=a2-4a≥0,解得a<0或a≥4,运用充分必要条件的定义判断即可.本题考查了函数零点的判定方法,充分必要条件的定义,属于容易题,运算量小.【解答】解:∵函数f(x)=ax2+ax+1存在零点,即f(x)=ax2+ax+1=0有实数根,当a=0时,无根,当a≠0时,=a2-4a≥0,解得a<0或a≥4,∴根据充分必要条件的定义可判断:“a≥4或a≤0”是“函数f(x)=ax2+ax+1存在零点”的必要不充分条件故选:B.函数零点的判定方法得当a=0时,无根,当a≠0时,=a2-4a≥0,解得a<0或a≥4,运用充分必要条件的定义判断即可本题考查了函数零点的判定方法,充分必要条件的定义,属于容易题,运算量小.8.答案:D解析:解:设A(x1,y1),B(x1,y1)∵x1x2+y1y2=0,∴即OA⊥OB.由题可知,在一个点集中,若对于∀A(x1,y1)∈M,∃B(x2,y2)∈M,使得OA⊥OB 成立,则这个集合就是“互垂点集”.对于集合M1,取A(0,1),要使OA⊥OB,则点B必须在x轴上,而集合M1中没有点会在x轴上,所以M1不是“互垂点集”,同理可判定M2,M3也不是“互垂点集”,即排除A,B,C.故选:D.根据x1x2+y1y2=0确定A(x1,y1)与B(x2,y2)两点的位置关系:OA⊥OB.下面只要判断四个集合所表示的点集是否满足:对于∀A(x1,y1)∈M,∃B(x2,y2)∈M,使得OA⊥OB成立即可.此题考查了平面向量数量积的运用,利用了排除法,理解:若对于∀A(x1,y1)∈M,∃B(x2,y2)∈M,使得OA⊥OB成立,则这个集合就是“互垂点集”是解本题的关键.9.答案:1+i解析:解:=1+i故答案为:1+i.将复数的分子、分母同时乘以1+i,然后利用平方差公式将分母展开即得到结果.本题考查进行复数的除法运算就是将复数的分子、分母同时乘以分母的共轭复数,然后利用多项式的乘法法则展开即可,属于基础题.10.答案:60°解析:解:由||=1,||=2,•()=0,∴-•=0,即12-1×2×cosθ=0,解得cosθ=;又θ∈[0°,180°],∴与的夹角θ是60°.故答案为:60°.根据平面向量的数量积运算,求出cosθ的值,即可求出夹角θ的大小.本题考查了平面向量数量积的运算问题,是基础题.11.答案:4解析:解:由图表可知学生在馆停留时间落在(15,30],(30,45](45,60]的频率之比为:0.05:0.10:0.25=1:2:5,从(15,30],(30,45](45,60](单位:分钟)这三段时间中按分层抽样抽取16人做调查,则从(30,45]这段时长中抽取的人数是:=4,故答案为:4由落在(15,30],(30,45](45,60]的频率之比为:0.05:0.10:0.25=1:2:5,再结合频率之比运算可得解本题考查了分层抽样方法,属简单题12.答案:600解析:解:如图:OA,OB为圆的两条切线,在Rt△OAC中,CA=3,CO=6,∴∠COA=30°,同理∠COB=30°,故∠AOB=60°.故答案为:60°.结合图象可得.本题考查了圆的切线方程,属基础题.13.答案:解析:解:把函数图象上的所有点向左平移a(a>0)个单位长度后,可得y=sin(2x+2a-)的图象;再根据得到函数y=sin2x的图象,则有2a-=0,解得a=,即a的最小值为,故答案为:.由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.14.答案:y2=8x7解析:解:抛物线y2=2px(p>0)的焦点和双曲线的右焦点F2重合,可得,就是p=4,所以抛物线方程为:y2=8x;由,解得x=3,所以P(3,2),P到双曲线左焦点F1的距离为:=7.故答案为:y2=8x;7.求出双曲线的焦点坐标,得到抛物线的焦点坐标,即可求出抛物线方程;求出两条曲线的焦点坐标,利用双曲线定义求解P到双曲线左焦点F1的距离.本题考查双曲线的简单性质以及抛物线的简单性质的应用,是基本知识的考查.15.答案:解:(Ⅰ)设{b n}的公比为q.因为b2=2,b5=16,所以,所以q=2.,------------------------------------------(2分)所以.------------------------------------------(4分)(Ⅱ)由(Ⅰ)知,所以b1=1,b4=8.设等差数列{a n}的公差为d.因为a1=2b1,a3=b4所以a1=2,a3=a1+2d=8所以d=3.------------------------------------------(6分)所以a n=3n-1.------------------------------------------(8分)因此.--------------------------------------(9分)从而数列{c n}的前n项和=------------------------------------------(12分)=.------------------------------------------(13分)解析:(Ⅰ)设{b n}的公比为q.利用已知条件求出公比,然后求解通项公式.(Ⅱ)设等差数列{a n}的公差为d.转化求解数列的通项公式a n=3n-1,然后利用拆项法求解数列的和即可.本题考查等差数列以及等比数列的应用,数列的通项公式以及数列求和的方法的应用,考查计算能力.16.答案:解:(Ⅰ)====,所以f(x)的最小正周期为.(Ⅱ)因为,所以.于是,当,即时,f(x)取得最大值;当,即时,f(x)取得最小值-2.解析:(Ⅰ)利用三角恒等变换,化简f(x)的解析式,再利用正弦函数的周期性,求出它的最小正周期.(Ⅱ)利用正弦函数的定义域和值域,求出f(x)在区间[]上的最大值和最小值.本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于基础题.17.答案:解析:解:(Ⅰ)从以上五个年份中随机选取一个年份,基本事件总数n=5,在该年份五个家庭的生活质量都相同包含的基本整个数m=1,∴在该年份五个家庭的生活质量都相同的概率p=.故答案为:.(4分)(Ⅱ)在2008年和2018年均达到“相对富裕”或更高生活质量的有A,B,C三个家庭,从五个家庭中随机选出两个家庭的所有选法为:AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10种,其中至少有一个家庭达到“相对富裕”或更高生活质量的有9种.记至少有一个家庭在2008年和2018年均达到“相对富裕”或更高生活质量为事件M,则这两个家庭中至少有一个家庭在2008年和2018年均达到“相对富裕”或更高生活质量的概率.(11分)(Ⅲ)如果将“贫穷”,“温饱”,“小康”,“相对富裕”,“富裕”,“极其富裕”六种生活质量分别对应数值:0,1,2,3,4,5.家庭1978年1988年1998年2008年2018年A11234B12234C01245D01223E11223(Ⅰ)从以上五个年份中随机选取一个年份,基本事件总数n=5,在该年份五个家庭的生活质量都相同包含的基本整个数m=1,由此能求出在该年份五个家庭的生活质量都相同的概率.(Ⅱ)在2008年和2018年均达到“相对富裕”或更高生活质量的有A,B,C三个家庭,从五个家庭中随机选出两个家庭,利用列举法能求出这两个家庭中至少有一个家庭在2008年和2018年均达到“相对富裕”或更高生活质量的概率.(Ⅲ)生活质量方差最大的家庭是C,方差最小的家庭是E.本题考查概率、方差的求法,考查列举法、古典概型等基础知识,考查运算求解能力,是基础题.18.答案:(Ⅰ)证明:∵AC=BC=2,,∴AC2+BC2=AB2,∴BC⊥AC,∵AE⊥平面ABC,BC⊂平面ABC,∴AE⊥BC,∵AE∩AC=A,∴BC⊥平面ACDE;(Ⅱ)证明:∵CD∥AE,AE⊂平面ABE,CD⊄平面ABE,∴CD∥平面ABE,∵CD⊂平面CDM,平面CDM∩平面ABE=MN,∴CD∥MN;(Ⅲ)解:∵CD∥MN,CD∥AE,∴MN∥AE,当四边形CDMN为矩形时,,∴MN为△ABE的中位线,∵AE⊥平面ABC,∴AE⊥CN,AE⊥AB,∴MN⊥CN,MN⊥AB,此时四边形CDMN为矩形,又BN⊥CN,MN∩CN=N,∴BN⊥平面CDMN.∴.解析:(Ⅰ)由已知结合勾股定理证明BC⊥AC,再由AE⊥平面ABC得AE⊥BC,利用线面垂直的判定可得BC⊥平面ACDE;(Ⅱ)由CD∥AE,利用线面平行的判定可得CD∥平面ABE,再由平面与平面平行的性质得CD∥MN;(Ⅲ))由CD∥MN,CD∥AE,得MN∥AE,然后证明BN⊥平面CDMN,结合已知由棱锥体积公式求四棱锥B-CDMN的体积.本题考查直线与平面平行、直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.19.答案:解:(I)因为点(1,1)在曲线y=f(x)上,所以a=1,.---------------------------------------(1分)又,---------------------------------------(3分)所以.---------------------------------------(4分)在该点处曲线的切线方程为即x+2y-3=0---------------------------------------(5分)(II)定义域为(0,+∞),-------------------------------(6分)讨论:(1)当a≤0时,f'(x)<0此时f(x)在(0,+∞)上单调递减,又f(1)=a≤0,不满足f(x)≥2-------------(8分)(2)当a>0时,令f'(x)=0可得列表可得xf'(x)-0+f(x)单调递减单调递增所以f(x)在上单调递减,在上单调递增----------------------(10分)所以=,所以令解得a≥2所以a的取值范围为a≥2.---------------------------------------(13分)或法二:定义域为(0,+∞),f(x)≥2恒成立即恒成立,又所以恒成立.令,x∈(0,+∞)则,由g'(x)>0⇒0<x<1,所以g(x)在(0,1)单调递增,在(1,+∞)上单调递减,g(x)max=g(1)=2所以a≥2解析:(Ⅰ)利用导数的几何意义计算出切线的斜率,然后根据点斜式求出切线方程;(Ⅱ)有两种思路:一是利用分类讨论的方法计算出f(x)的最小值,建立不等式求解;二是利用分离参数法得到恒成立,再借助最值求解.本题考查导数的几何意义及其应用、函数的最值处理不等式恒成立问题,属于中档题目.20.答案:解:(I)椭圆C:的右焦点为所以a2-b2=3,当l与x轴垂直时,线段AB长度为1,所以,,代入椭圆方程可得,联立方程组可得解得a2=4,b2=1.所以椭圆C的方程为,或法二:设左焦点为F1,则依题意可知:△F1AF2为直角三角形所以,.2a=|F1A|+|F2A|=4即a=2,又所以a2=4,b2=1,所以椭圆C的方程为(II)当l与x轴垂直时,∠OMA=∠OMB,此时m∈R.当l与x轴不垂直时,因为∠OMA=∠OMB所以k AM+k BM=0,设A(x1,y1)B(x2,y2),直线l的斜率为k(k≠0),则直线l的方程为又,所以又,所以可得即,联立方程组消去y得所以,,代入上式可得.(III)最大值为,此时l斜率为.=可设此时直线方程为,联立方程组消去x可得,所以,所以==,当且仅当时取等号,此时,即直线斜率为解析:本题考查椭圆的方程和性质的运用,考查直线方程和椭圆方程联立,运用韦达定理,三角形的面积,基本不等式,考查运算能力,属于较难题.(Ⅰ)根据题意可得c=,再根据,,可得a2=4,b2=1,即可求出椭圆方程(Ⅱ)当l与x轴垂直时,∠OMA=∠OMB,此时m∈R,当l与x轴不垂直时,根据OMA=∠OMB可得k AM+k BM=0,根据韦达定理和斜率公式即可求出(Ⅲ)根据三角形的面积公式和弦长公式和基本不等式即可求出。

2020年北京顺义区高三二模数学试卷

11
数学期望: .
(3)

解析:
( 1 )根据甲班统计数据,高三年级每天学习时间达到 小时及以上的学生人数为
人.
( 2 )由甲、乙两班的频率分布直方图,可得每天学习不足 小时的人数,
甲班:
人.
乙班:
人.
∴ 可以取 , , .


. ∴


( 3 )由甲、乙两班的频率分布直方图可知,
,因为乙班的直方图比甲班的更集中.
C.
D.
4. 抛物线 A. B. C. D.
上的点与其焦点的距离的最小值为( ).
5. 若角 的终边经过点 A. B. C. D.
,则 的值为( ).
6. 某三棱锥的三视图如图所示,则该三棱锥的体积是( ).
1
正 ( 主 ) 视图 侧 ( 左 ) 视图
俯视图 A. B. C. D.
7. 若 为任意角,则满足 A. B. C. D.
的直线 与椭圆 相交于 , 两点. ( 1 ) 求椭圆 的方程. ( 2 ) 设点 是椭圆 的左顶点,直线 , 求证:以 为直径的圆恒过点 .
分别与直线
相交于点 , .
21. 给定数列 , , , .对
,, ,
,该数列前 项 , , , 的最小值
记为 ,后 项 , , , 的最大值记为 ,令

( 1 ) 设数列 为 , , , ,写出 , , 的值.

所以

又因为


所以

所以

又因为
14

所以

所以 所以以
, 为直径的圆恒过点 .
21.( 1 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档