【精品】高考一轮文科数学必修53等比数列及其前n项和课时提升作业含答案解析
2021年高考数学一轮总复习 5.3等比数列及其前n项和 课时作业 文(含解析)新人教版

2021年高考数学一轮总复习 5.3等比数列及其前n项和课时作业文(含解析)新人教版一、选择题1.(xx·北京海淀一模)已知等比数列{a n}的前n项和为S n,且S1,S2+a2,S3成等差数列,则数列{a n}的公比为( )A.1 B.2C.12D.3解析:因为S1,S2+a2,S3成等差数列,所以2(S2+a2)=S1+S3,2(a1+a2+a2)=a1+a1+a2+a3,a3=3a2,q=3.选D.答案:D2.(xx·湖北八市3月联考)等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=( )A.12 B.10C.8 D.2+log35解析:由题意可知a5a6=a4a7,又a5a6+a4a7=18得a5a6=a4a7=9,而log3a1+log3a2+…+log3a10=log3(a1.a2 (10)=log3(a5a6)5=log395=log3310=10.答案:B3.(xx·河北唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( )A .4n -1B .4n -1C .2n -1D .2n -1解析:∵⎩⎪⎨⎪⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎪⎨⎪⎧a 1+a 1q 2=52,1a 1q +a 1q 3=54,2由(1)除以(2)可得1+q 2q +q 3=2,解得q =12,代入(1)得a 1=2,∴a n =2×⎝ ⎛⎭⎪⎫12n -1=42n ,∴S n =2×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=4⎝⎛⎭⎪⎫1-12n ,∴S n a n =4⎝ ⎛⎭⎪⎫1-12n 42n =2n -1,选D. 答案:D4.(xx·皖西七校联考)在等比数列{a n }中,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为17,则S 6=( )A.634B .16C .15D.614解析:由等比数列的性质知a 2·a 3=a 1·a 4=2a 1,即a 4=2. ∵a 4+2a 7=2×17=34,∴a 7=12(2×17-a 4)=12(2×17-2)=16.∴q 3=a 7a 4=162=8,即q =2.由a 4=a 1q 3=a 1×8=2,得a 1=14,∴S 6=141-261-2=634. 答案:A5.(xx·河南适应性模拟)已知三角形的三边构成等比数列,它们的公比为q ,则q 的一个可能的值是( )A.52B.12 C .2D.32解析:由题意可设三角形的三边分别为aq,a,aq,因为三角形的两边之和大于第三边,所以有aq +a>aq,即q2-q-1<0(q>0),解得0<q<1+52,但当q=12时不合题意.所以q的一个可能值是32,故选D.答案:D6.(xx·四川七中4月模拟)正项等比数列{a n}满足:a3=a2+2a1,若存在a m,a n ,使得a m a n=16a21,则1m+4n的最小值为( )A.256B.134C.73D.32解析:由a3=a2+2a1得q2=q+2,∴q=2(q=-1舍去),由a m a n=16a21得2m-12n-1=16,因为m+n-2=4,m+n=6,所以1m+4n=m+n6⎝⎛⎭⎪⎫1m+4n=16⎝⎛⎭⎪⎫1+4+nm+4mn≥16⎝⎛⎭⎪⎫5+2nm·4mn=32.答案:D二、填空题7.(xx·北京石景山一模)在等比数列{a n}中,a1=2,a4=16,则数列{a n}的通项公式a n=__________,设b n=log2a n,则数列{b n}的前n项和S n=__________.解析:由题意得公比q3=a4a1=8,q=2,a n=2·2n-1=2n.因此b n=n,S n=n n+12.答案:2n n n+128.(xx·上海嘉定一模)设等比数列{a n}的前n项和为S n,且a5=S5,则S2 014=__________.解析:根据数列前n项和的定义知S5=a1+a2+a3+a4+a5=a5,故a1+a2+a3+a4=0,即a1(1+q+q2+q3)=a1(1+q)(1+q2)=0,从而1+q=0,q=-1,所以这个等比数列的相邻两项的和都是0,所以S2 014=0.答案:09.(xx·山东省实验中学诊断)在各项为正的等比数列{a n}中,a4与a14的等比中项为22,则2a7+a11的最小值是__________.解析:由题意知a4·a14=(22)2=a29,即a9=2 2.设公比为q(q>0),所以2a7+a11=2a9q2+a9q2=42q2+22q2≥242q2×22q2=8,当且仅当42q2=22q2,即q =42时取等号,其最小值为8.答案:8 三、解答题10.(xx·福建卷)在等比数列{a n }中,a 2=3,a 5=81. (1)求a n ;(2)设b n =log 3a n ,求数列{b n }的前n 项和S n . 解析:(1)设{a n }的公比为q ,依题意得⎩⎨⎧a 1q =3,a 1q 4=81,解得⎩⎨⎧a 1=1,q =3.因此,a n =3n -1.(2)因为b n =log 3a n =n -1,所以数列{b n }的前n 项和S n =n b 1+b n2=n 2-n 2.11.(xx·重庆卷)已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0.求{b n }的通项公式及其前n 项和T n .解析:(1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1.故S n =1+3+…+(2n -1)=n a 1+a n2=n 1+2n -12=n 2.(2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 11-q n 1-q =23(4n -1).12.(xx·山东淄博一模)在数列{a n }中,a 1=-12,2a n =a n -1-n -1(n ≥2,n∈N *),设b n =a n +n .(1)证明:数列{b n }是等比数列; (2)求数列{nb n }的前n 项和T n ;(3)若c n =⎝ ⎛⎭⎪⎫12n -a n ,P n 为数列{c 2n +c n +1c 2n +c n }的前n 项和,求不超过P 2 014的最大的整数.解析:(1)证明:由2a n =a n -1-n -1两边加2n 得, 2(a n +n )=a n -1+n -1,所以a n +n a n -1+n -1=12,即b n b n -1=12.故数列{b n }是公比为12的等比数列,其首项为b 1=a 1+1=-12+1=12,所以b n=⎝ ⎛⎭⎪⎫12n . (2)nb n =n ·⎝ ⎛⎭⎪⎫12n =n2n .T n =12+222+323+424+…+n -12n -1+n2n .① 12T n =122+223+324+425+…+n -12n +n2n +1.② ①-②得12T n =12+122+123+124+…+12n -n 2n +1=1-12n -n 2n +1,所以T n =2-n +22n.(3)由(1)得a n =⎝ ⎛⎭⎪⎫12n -n ,所以c n =n .c 2n +c n +1c 2n +c n =n 2+n +1n 2+n =1+1n n +1=1+1n -1n +1. P 2 014=⎝⎛⎭⎪⎫1+11-12+⎝⎛⎭⎪⎫1+12-13+⎝⎛⎭⎪⎫1+13-14+…+⎝⎛⎭⎪⎫1+12 014-12 015=2 015-12 015. 所以不超过P 2 014的最大的整数是2 014.39063 9897 颗\ l Y33343 823F 舿Jt21288 5328 匨Q 33259 81EB 臫28709 7025 瀥。
(人教版)2020届高考数学一轮复习 第五章 数列 第三节 等比数列及其前n项和课时作业

第三节 等比数列及其前n 项和课时作业1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63D .84解析:设数列{a n }的公比为q ,则a 1(1+q 2+q 4)=21,又a 1=3,所以q 4+q 2-6=0,所以q 2=2(q 2=-3舍去),所以a 3=6,a 5=12,a 7=24,所以a 3+a 5+a 7=42.故选B.答案:B2.等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ) A.13 B .-13 C.19D .-19解析:由题知公比q ≠1,则S 3=a 11-q 31-q=a 1q +10a 1,得q 2=9,又a 5=a 1q 4=9,则a 1=19,故选C. 答案:C3.等比数列{a n }的前n 项和为S n ,若S 3=2,S 6=18,则S 10S 5等于( ) A .-3 B .5 C .-31D .33解析:设等比数列{a n }的公比为q ,则由已知得q ≠1. ∵S 3=2,S 6=18, ∴1-q 31-q 6=218,得q 3=8, ∴q =2.∴S 10S 5=1-q 101-q5=1+q 5=33,故选D.答案:D4.在等比数列{a n }中,a 1=2,公比q =2.若a m =a 1a 2a 3a 4(m ∈N *),则m =( ) A .11 B .10 C .9D .8解析:a m =a 1a 2a 3a 4=a 41qq 2q 3=24×26=210=2m,所以m =10,故选B. 答案:B5.已知数列{a n }的前n 项和为S n ,点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,等比数列{b n }满足b n +b n +1=a n (n ∈N *),其前n 项和为T n ,则下列结论正确的是( ) A .S n =2T nB .T n =2b n +1C .T n >a nD .T n <b n +1解析:因为点(n ,S n +3)(n ∈N *)在函数y =3×2x的图象上,所以S n =3·2n-3,所以a n =3·2n-1,所以b n +b n +1=3·2n -1,因为数列{b n }为等比数列,设公比为q ,则b 1+b 1q =3,b 2+b 2q=6,解得b 1=1,q =2,所以b n =2n -1,T n =2n-1,所以T n <b n +1,故选D.答案:D6.(2018·郑州质检)已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是________.解析:设{a n }的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 11-251-2=-62,a 1=-2. 答案:-27.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 解析:因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q=13. 答案:138.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3, ∵a 1=1,∴a n =3n -1+12. 答案:3n -1+129.(2018·昆明市检测)数列{a n }满足a 1=-1,a n +1+2a n =3. (1)证明{a n -1}是等比数列,并求数列{a n }的通项公式; (2)已知符号函数sgn(x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,设b n =a n ·sgn(a n ),求数列{b n }的前100项和.解析:(1)因为a n +1=-2a n +3,a 1=-1, 所以a n +1-1=-2(a n -1),a 1-1=-2,所以数列{a n -1}是首项为-2,公比为-2的等比数列.故a n -1=(-2)n ,即a n =(-2)n+1.(2)b n =a n ·sgn(a n )=⎩⎪⎨⎪⎧2n+1,n 为偶数,2n-1,n 为奇数,设数列{b n }的前n 项和为S n ,则S 100=(2-1)+(22+1)+(23-1)+…+(299-1)+(2100+1)=2+22+23+…+2100=2101-2.10.(2018·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n 知a n +1n +1=12·a nn, ∴{a n n }是以12为首项、12为公比的等比数列.(2)由(1)知{a n n }是首项为12,公比为12的等比数列,∴a n n =(12)n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②得:12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组——能力提升练1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:当公比q =1时,a 1=a 2=a 3=9,∴S 3=3×9=27. 当q ≠1时,S 3=a 1-a 3q1-q,∴27=a 1-9q1-q∴a 1=27-18q , ∴a 3=a 1q 2,∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.答案:C2.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( )A .1B .-1 C.12D .2解析:由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝ ⎛⎭⎪⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2.答案:D3.(2018·彬州市模拟)已知等比数列{a n }的前n 项和S n =2n -a ,则a 21+a 22+…+a 2n =( ) A .(2n -1)2B .13(2n-1) C .4n-1D .13(4n-1) 解析:∵S n =2n-a ,∴a 1=2-a ,a 1+a 2=4-a ,a 1+a 2+a 3=8-a , 解得a 1=2-a ,a 2=2,a 3=4,∵数列{a n }是等比数列,∴22=4(2-a ),解得a =1. ∴公比q =2,a n =2n -1,a 2n =22n -2=4n -1.则a 21+a 22+…+a 2n =4n-14-1=13(4n-1).答案:D4.设数列{a n }是公比为q (|q |>1)的等比数列,令b n =a n +1(n ∈N *),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则q =( ) A.32B .-43C .-32D .-52解析:数列{b n }有连续四项在集合{-53,-23,19,37,82}中,且b n =a n +1(n ∈N *),∴a n =b n -1,则{a n }有连续四项在{-54,-24,18,36,81}中, ∵数列{a n }是公比为q (|q |>1)的等比数列, 等比数列中有负数项,则q <0,且负数项为相隔两项∵|q |>1,∴等比数列各项的绝对值递增,按绝对值的顺序排列上述数值18,-24,36,-54,81,相邻两项相除-2418=-43,-3624=-32,-5436=-32,81-54=-32,∵|q |>1,∴-24,36,-54,81是{a n }中连续的四项,此时q =-32.答案:C5.等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =________.解析:由S 3+3S 2=0,得a 1+a 2+a 3+3(a 1+a 2)=0,即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0,即q 2+4q +4=0,所以q =-2. 答案:-26.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n.解析:(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+12n -32n -1=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1. 7.数列{a n }中,a 1=2,a n +1=n +12na n (n ∈N *). (1)证明:数列⎩⎨⎧⎭⎬⎫a n n 是等比数列,并求数列{a n }的通项公式; (2)设b n =a n4n -a n,若数列{b n }的前n 项和是T n ,求证:T n <2. 证明:(1)由题设得a n +1n +1=12·a n n ,又a 11=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,a n =n ·22-n=4n 2n .(2)b n =a n4n -a n=4n 2n 4n -4n 2n=12n-1,因为对任意n ∈N *,2n-1≥2n -1,所以b n ≤12n -1.所以T n ≤1+12+122+123+…+12n -1=2⎝ ⎛⎭⎪⎫1-12n <2.。
2021高中数学一轮复习课时过关检测(三十五) 等比数列及其前n项和

课时过关检测(三十五) 等比数列及其前n 项和A 级——夯基保分练1.(2019·开封市定位考试)等比数列{a n }的前n 项和为S n ,若a 3+4S 2=0,则公比q =( )A .-1B .1C .-2D .2解析:选C 因为a 3+4S 2=0,所以a 1q 2+4a 1+4a 1q =0,因为a 1≠0,所以q 2+4q +4=0,所以q =-2,故选C.2.若等比数列{a n }的各项均为正数,a 1+2a 2=3,a 23=4a 2a 6,则a 4=( ) A.38 B.245 C.316D.916解析:选C 由题意,得⎩⎪⎨⎪⎧a 1+2a 1q =3,(a 1q 2)2=4a 1q ·a 1q 5,解得⎩⎨⎧a 1=32,q =12,所以a 4=a 1q 3=32×⎝⎛⎭⎫123=316.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B.13 C .14D .15解析:选C 因为数列{a n }是各项均为正数的等比数列,所以a 1a 2a 3,a 4a 5a 6,a 7a 8a 9,a 10a 11a 12,…也成等比数列.不妨令b 1=a 1a 2a 3,b 2=a 4a 5a 6,则公比q =b 2b 1=124=3.所以b m =4×3m -1.令b m =324,即4×3m -1=324,解得m =5,所以b 5=324,即a 13a 14a 15=324. 所以n =14.4.已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1 B.12n -1 C.⎝⎛⎭⎫23n -1D.⎝⎛⎭⎫32n -1解析:选D 因为a n +1=S n +1-S n ,所以S n =2a n +1=2(S n +1-S n ),所以S n +1S n =32,所以数列{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝⎛⎭⎫32n -1. 5.(多选)设等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,则( ) A .数列{a n }的公比为2 B.数列{a n }的公比为8 C.S 6S 3=8 D.S 6S 3=9 解析:选AD 因为等比数列{a n }的前n 项和为S n ,且满足a 6=8a 3,所以a 6a 3=q 3=8,解得q =2,所以S 6S 3=1-q61-q 3=1+q 3=9.6.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{}a n a n +1是公比为q 2的等比数列 B .数列{}a n +a n +1是公比为q 的等比数列 C .数列{}a n -a n +1是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列解析:选AD 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列;对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列;对于C ,若q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n =a n a n +1=1q ,所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列,故选A 、D.7.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为________.解析:设等比数列{a n }的公比为q (q >0), 由a 5=a 1q 4=16,a 1=1,得16=q 4,解得q =2,所以S 7=a 1(1-q 7)1-q =1×(1-27)1-2=127.答案:1278.在等比数列{a n }中,a 1+a 3+a 5=21,a 2+a 4+a 6=42,则S 9=________.解析:设等比数列的公比为q ,由等比数列的定义可得a 2+a 4+a 6=a 1q +a 3q +a 5q =q (a 1+a 3+a 5)=q ×21=42,解得q =2.又a 1+a 3+a 5=a 1(1+q 2+q 4)=a 1×21=21,解得a 1=1.所以S 9=a 1(1-q 9)1-q =1×(1-29)1-2=511.答案:5119.(一题两空)已知{a n }是递减的等比数列,且a 2=2,a 1+a 3=5,则{a n }的通项公式为________;a 1a 2+a 2a 3+…+a n a n +1(n ∈N *)=________.解析:由a 2=2,a 1+a 3=5,{a n }是递减的等比数列,得a 1=4,a 3=1,a n =4×⎝⎛⎭⎫12n -1,则a 1a 2+a 2a 3+…+a n a n +1是首项为8、公比为14的等比数列的前n 项和.故a 1a 2+a 2a 3+…+a n a n +1=8+2+12+…+8×⎝⎛⎭⎫14n -1=8×⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n . 答案:a n =4×⎝⎛⎭⎫12n -1 323×⎣⎡⎦⎤1-⎝⎛⎭⎫14n10.已知等比数列{a n }为递减数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设公比为q ,由a 25=a 10,得(a 1q 4)2=a 1·q 9,即a 1=q . 又由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0, 解得q =12()q =2舍去,所以a n =a 1·q n -1=12n .答案:12n11.设数列{a n +1}是一个各项均为正数的等比数列,已知a 3=7,a 7=127. (1)求a 5的值;(2)求数列{a n }的前n 项和.解:(1)由题可知a 3+1=8,a 7+1=128, 则有(a 5+1)2=(a 3+1)(a 7+1)=8×128=1 024,可得a 5+1=32,即a 5=31. (2)设数列{a n +1}的公比为q ,由(1)知⎩⎪⎨⎪⎧ a 3+1=(a 1+1)q 2,a 5+1=(a 1+1)q 4,得⎩⎪⎨⎪⎧a 1+1=2,q =2,所以数列{a n +1}是一个以2为首项,2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n -1,利用分组求和可得,数列{a n }的前n 项和S n =2(1-2n )1-2-n =2n +1-2-n .12.在①数列{a n }的前n 项和S n =12n 2+52n ;②函数f (x )=sin πx -23cos 2π2x +3的正零点从小到大构成数列{x n },a n =x n +83;③a 2n -a n -a 2n -1-a n -1=0(n ≥2,n ∈N *),a n >0,且a 1=b 2这三个条件中任选一个,补充在下面的问题中,若问题中的M 存在,求出M 的最小值;若M 不存在,说明理由.数列{b n }是首项为1的等比数列,b n >0,b 2+b 3=12,且____________,设数列⎩⎨⎧⎭⎬⎫1a n log 3b n +1的前n 项和为T n ,是否存在M ∈N *,使得对任意的n ∈N *,T n <M?解:设公比为q (q >0),因为数列{b n }是首项为1的等比数列,且b n >0,b 2+b 3=12, 所以q 2+q -12=0,解得q =3(q =-4不合题意,舍去),所以b n =3n -1.若选①,由S n =12n 2+52n ,可得S n -1=12(n -1)2+52(n -1)(n ≥2),两式相减可得a n =n +2(n ≥2),又a 1=S 1=3也符合上式,所以a n =n +2, 所以1a n log 3b n +1=1(n +2)n =12⎝ ⎛⎭⎪⎫1n -1n +2,则T n =12⎝ ⎛⎭⎪⎫1-13+12-14+13-15+…+1n -1n +2=34-12⎝ ⎛⎭⎪⎫1n +1+1n +2,因为1n +1+1n +2>0,所以T n <34,由题意可得M ≥34,又M ∈N *,所以M 的最小值为1.若选②,f (x )=sin πx -23cos 2π2x + 3=sin πx -3cos πx =2sin ⎝⎛⎭⎫πx -π3, 令f (x )=0,可得πx -π3=k π,k ∈Z ,解得x =k +13,k ∈Z ,即x n =n -1+13=n -23,a n=x n +83=n +2,同上①,则M 的最小值为1.若选③,则由a 2n -a n -a 2n -1-a n -1=0得(a n -a n -1-1)(a n +a n -1)=0,又a n >0,所以a n-a n -1-1=0,即a n -a n -1=1,所以数列{a n }是公差为1的等差数列,又a 1=b 2,则a 1=3,所以a n =n +2.同上①,则M 的最小值为1.B 级——提能综合练13.(多选)设等比数列{a n }的公比为q ,其前n 项和为S n .前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( )A .0<q <1B.a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7解析:选AD ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0,∴a 7>1,a 8<1,∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为递减数列,∴S n 无最大值,故C 错误, 又a 7>1,a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.故选A 、D.14.已知S n 是等比数列{a n }的前n 项和,若存在m ∈N *,满足S 2m S m =9,a 2m a m =5m +1m -1,则数列{a n }的公比为________.解析:设公比为q ,若q =1,则S 2m S m =2,与题中条件矛盾,故q ≠1.因为S 2mS m =a 1(1-q 2m )1-q a 1(1-q m )1-q=q m +1=9,所以q m =8.所以a 2m a m =a 1q 2m -1a 1q m -1=q m=8=5m +1m -1,所以m =3,所以q 3=8,所以q =2. 答案:215.已知数列{a n }的首项a 1>0,a n +1=3a n 2a n +1(n ∈N *),且a 1=23.(1)求证:⎩⎨⎧⎭⎬⎫1a n-1是等比数列,并求出{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n .解:(1)记b n =1a n -1,则b n +1b n =1a n +1-11a n -1=2a n +13a n -11a n-1=2a n +1-3a n3-3a n =1-a n 3(1-a n )=13,又b 1=1a 1-1=32-1=12,所以⎩⎨⎧⎭⎬⎫1a n -1是首项为12,公比为13的等比数列.所以1a n -1=12·⎝⎛⎭⎫13n -1,即a n =2·3n -11+2·3n -1.所以数列{a n }的通项公式为a n =2·3n -11+2·3n -1. (2)由(1)知,1a n -1=12·⎝⎛⎭⎫13n -1,即1a n =12·⎝⎛⎭⎫13n -1+1. 所以数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =12⎝⎛⎭⎫1-13n 1-13+n =34⎝⎛⎭⎫1-13n +n . C 级——拔高创新练16.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n-1,n ∈N *.(1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解:(1)∵a n ·a n +1=⎝⎛⎭⎫12n,∴a n +1·a n +2=⎝⎛⎭⎫12n +1, ∴a n +2a n =12,即a n +2=12a n .∵b n =a 2n +a 2n -1, ∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12,∴a 2=12,∴b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×⎝⎛⎭⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
高考数学专题《等比数列及其前n项和》习题含答案解析

专题7.3 等比数列及其前n 项和1.(2021·全国高考真题(文))记n S 为等比数列{}n a 的前n 项和.若24S =,46S =,则6S =( )A .7B .8C .9D .10【答案】A 【解析】根据题目条件可得2S ,42S S -,64S S -成等比数列,从而求出641S S -=,进一步求出答案.【详解】∵n S 为等比数列{}n a 的前n 项和,∴2S ,42S S -,64S S -成等比数列∴24S =,42642S S -=-=∴641S S -=,∴641167S S =+=+=.故选:A.2.(2021·山东济南市·)已知S n 是递增的等比数列{a n }的前n 项和,其中S 3=72,a 32=a 4,则a 5=( )A .116B .18C .8D .16【答案】C 【解析】设等比数列的公比为q ,根据题意列方程,解出1a 和q 即可.【详解】解:设递增的等比数列{a n }的公比为q ,且q >1,∵S 3=72,234a a =,∴1a (1+q +q 2)=72,21a q 4=1a q 3,解得1a =12,q =2;1a =2,q =12(舍去).练基础则5a =4122⨯==8.故选:C .3.(2021·重庆高三其他模拟)设等比数列{}n a 的前n 项和为271,8,4n S a a =-=,则6S =( )A .212-B .152C .212D .632【答案】C 【解析】设等比数列{}n a 公比为q ,由572a a q =结合已知条件求q 、1a ,再利用等比数列前n 项和公式求6S .【详解】设等比数列{}n a 公比为q ,则572a a q =,又2718,4a a =-=,∴12q =-,故116a =,又1(1)1-=-nn a q S q ,即666311616[1()]216421321()22S ⨯⨯--===--.故选:C4.(2021·合肥市第六中学高三其他模拟(理))若等比数列{}n a 满足12451,8a a a a +=+=,则7a =( )A .643B .643-C .323D .323-【答案】A 【解析】设等比数列{}n a 的公比为q ,根据等比数列的通项公式建立方程组,解之可得选项.【详解】设等比数列{}n a 的公比为q ,则345128a a q a a +==+,所以2q =,又()11121+11,3a a a a q =+==,所以6671123643a a q ==⨯⨯=,故选:A.5.(2020·河北省曲阳县第一高级中学高一期末)中国古代数学著作《算法统宗》中记载了这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:有一个人走了378里路,第一天健步行走,从第二天起因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,问此人第二天走了( )A .6里B .24里C .48里D .96里【答案】D 【解析】根据题意,记每天走的路程里数为,可知是公比的等比数列,由,得,解可得,则;即此人第二天走的路程里数为96;故选:D .6.(2021·江苏南通市·高三其他模拟)已知等比数列{}n a 的公比为q ,前n 项和为n S ,则“1q >”是“112n n n S S S -++>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】D 【解析】由112n n n S S S -++>可得出1n n a a +>,取10a <,由101n n q a a +<⇔,进而判断可得出结论.【详解】若112n n n S S S -++>,则11n n n n S S S S +-->-,即1n n a a +>,所以,数列{}n a 为递增数列,若10a <,101n n q a a +<<⇔>,所以,“1q >”是“112n n n S S S -++>”的既不充分也不必要条件.故选:D.7.(2021·黑龙江大庆市·大庆实验中学高三其他模拟(文))在数列{}n a 中,44a =,且22n n a a +=,则{}n a {}n a 12q =6378S =6161[1()]2378112-==-a S 1192a =211192962a a q =⨯=⨯=21nni a==∑___________.【答案】122n +-【解析】由44a =,22n n a a +=,得到22a =且22n na a +=,得出数列{}2n a 构成以2为首项,以2为公比的等比数列,结合等比数列的求和公式,即可求解.【详解】由22n n a a +=,可得22n na a +=,又由44a =,可得4224a a ==,所以22a =,所以数列{}2n a 构成以2为首项,以2为公比的等比数列,所以1212(12)2212n nn n i a +=-==--∑.故答案为:122n +-.8.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则1a =_____,n S =_______.【答案】1 21n -【解析】利用1n n n a S S -=-求通项公式,再求出n S .【详解】对于21n n S a =-,当n =1时,有1121S a =-,解得:1a =1;当2n ≥时,有1121n n S a --=-,所以()112121=n n n n n a S S a a ----=--,所以1=2nn a a -,所以数列{}n a 为等比数列,111=2n n n a a q--=,所以122112nn n S -==--.故答案为:1,21n -.9.(2021·浙江杭州市·杭州高级中学高三其他模拟)已知数列{}n a 满足21n n S a =-,则3a =________,n S =________.【答案】4 21n -【解析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出数列的通项公式,再代入求出n S .【详解】解:因为21n n S a =-当1n =时,1121S a =-,解得11a =;当2n …时,1121n n S a --=-,所以111(21)(21)22n n n n n n n a S S a a a a ---=-=---=-,即12n n a a -=于是{}n a 是首项为1,公比为2的等比数列,所以12n n a -=.所以34a =,11212212n nn n S a -=-⨯-==-故答案为:4;21n -;10.(2018·全国高考真题(文))等比数列{a n }中,a 1=1 , a 5=4a 3.(1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .【答案】(1)a n =(―2)n―1或a n =2n―1 .(2)m =6.【解析】(1)设{a n }的公比为q ,由题设得a n =q n―1.由已知得q 4=4q 2,解得q =0(舍去),q =―2或q =2.故a n =(―2)n―1或a n =2n―1.(2)若a n =(―2)n―1,则S n =1―(―2)n3.由S m =63得(―2)m =―188,此方程没有正整数解.若a n =2n―1,则S n =2n ―1.由S m =63得2m =64,解得m =6.综上,m =6.1.(辽宁省凌源二中2018届三校联考)已知数列为等比数列,且,则( )A.B.C.D. 【答案】B【解析】由等比数列的性质可得: ,,结合可得: ,结合等比数列的性质可得: ,即:本题选择B 选项.2.(2021·全国高三其他模拟(文))如图,“数塔”的第i 行第j 个数为12j -(其中i ,*j N ∈,且i j ≥).将这些数依次排成一列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,记作数列{}n a ,设{}n a 的前n 项和为n S .若1020n S =,则n =()A .46B .47C .48D .49【答案】C 【解析】{}n a 2234764a a a a =-=-46tan 3a a π⎛⎫⋅= ⎪⎝⎭32343364,4a a a a a ==-∴=-4730a a q =<2764a =78a =-463732a a a a ==463222tan tan tan 10tan 3333a a πππππ⎛⎫⎛⎫⎛⎫⋅==+== ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭练提升根据“数塔”的规律,可知第i 行共有i 个数,利用等比数列求和公式求出第i 行的数字之和,再求出前m 行的和,即可判断1020n S =取到第几行,再根据每行数字个数成等差数列,即可求出n ;【详解】解:“数塔”的第i 行共有i 个数,其和为211212222112i i i --++++==-- ,所以前m 行的和为()()()123121222222212m m m m m m +-++++-=-=-+- 故前9行所有数学之和为102111013-=,因此只需要加上第10行的前3个数字1,2,4,其和为10131241020+++=,易知“数塔”前m 行共有()12m m +个数,所以9103482n ⨯=+=故选:C3.(2021·江苏高三其他模拟)已知数列{}n a 满足11a =,()1lg 1091n an a +=++,其前n 项和为n S ,则下列结论中正确的有( )A .{}n a 是递增数列B .{}10n a +是等比数列C .122n n n a a a ++>+D .(3)2n n n S +<【答案】ACD 【解析】将递推公式两边同时取指数,变形得到1110109n n a a +-=+,构造等比数列可证{}1010n a+为等比数列,求解出{}n a 通项公式则可判断A 选项;根据()()()2132101010a a a ++≠+判断B 选项;根据{}n a 的通项公式以及对数的运算法则计算()122n n n a a a ++-+的正负并判断C 选项;将{}n a 的通项公式放缩得到()lg 2101n n a n <⨯<+,由此进行求和并判断D 选项.【详解】因为()1lg 1091n an a +=++,所以()11lg 109n an a +-=+,从而1110109n n a a +-=+,110101090n n a a +=⨯+,所以()11010101010n n a a ++=⨯+,所以11010101010n na a ++=+,又1101020a +=,{}1010n a +是首项为20,公比为10的等比数列,所以110102010210n a n n -+=⨯=⨯,所以1021010n a n =⨯-,即()lg 21010nn a =⨯-,又因为21010n y =⨯-在[)1,,*n n N ∈+∞∈时单调递增,lg y x =在定义域内单调递增,所以{}n a 是递增数列,故A 正确;因为1231011,10lg19010lg1911,10lg199010lg19911a a a +=+=+=++=+=+,所以()()()()()222213101010lg191111lg19911lg 1922lg1911lg199a a a +-++=+-+=+-,所以()()()2222213361101010lg 1911lg1911lg199lg 1911lg0199a a a +-++=+-=+>,所以()()()2132101010a a a ++≠+,所以{}10n a +不是等比数列,故B 错误.因为()()()()121222lg 21010lg 21010lg 21010n n n n n n a a a ++++-+=⨯--⨯--⨯-()()()()()()2211211210102101 lglg210102101021012101n n n n n n +++-+⨯-⨯-=⨯-⨯-⨯-⨯-=,而()()()211221121012101210141041014102102101n n n nnn n n -++-⨯--⨯-⨯-=⨯-⨯+-⨯+⨯+⨯-20100.21041016.2100nnnn=⨯+⨯-⨯=⨯>,从而()()()211210121012101nn n -+⨯->⨯-⋅⨯-,于是,122n n n a a a ++>+,故C 正确.因为()()lg 21010lg 210lg 21nnn n a n =⨯-<⨯=+<+,所以()()21322nn n n n S +++<=,故D 正确.故选:ACD.4. (2019·浙江高三期末)数列的前n 项和为,且满足,Ⅰ求通项公式;Ⅱ记,求证:.【答案】Ⅰ;Ⅱ见解析【解析】Ⅰ,当时,,{}n a n S 11a =()11.n n a S n N ++=+∈()n a ()12111n n T S S S =++⋯+31222n n T -≤<(1) 2n n a -=()(1)1n n a S +=+Q ①∴2n ≥11n n a S -=+②得,又,,数列是首项为1,公比为2的等比数列,;证明:Ⅱ,,时,,,同理:,故:.5.(2021·河北衡水中学高三三模)已知数列{}n a 的前n 项和为n S ,且满足13a =,()122n n a xa n n -=+-≥,其中x ∈R .(1)若1x =,求出n a ;(2)是否存在实数x ,y 使{}n a yn +为等比数列?若存在,求出n S ,若不存在,说明理由.【答案】(1)2382n n n a -+=;(2)存在,()21242n n n n S ++=--.【解析】(1)将1x =代入,由递推关系求出通项公式,并检验当1n =时是否满足,即可得到结果;(2)先假设存在实数x ,y 满足题意,结合已知条件求出满足数列{}n a yn +是等比数列的实数x ,y 的值,运用分组求∴-①②()122n n a a n +=≥2112a S =+=Q 212a a ∴=∴{}n a 12n n a -∴=(1)2nn a += 21n n S ∴=-2n ≥Q 111122n n n S -≤≤1121111113142112212n n n n T S S S -⎛⎫- ⎪⎝⎭∴=++⋯+≥+=--11111221221212n n n T -⎛⎫- ⎪⎝⎭≤+=-<-31222n n T -≤<和法求出n S 的值.【详解】(1)由题可知:当1x =时有:12n n a a n --=-,当2n ≥时,()()()()()()121321213012232n n n n n a a a a a a a a n ---=+-+-+⋅⋅⋅+-=++++⋅⋅⋅+-=+,又13a =满足上式,故()()22138322nn n n n a ---+=+=.(2)假设存在实数x ,y 满足题意,则当2n ≥时,由题可得:()()111n n n n a yn x a y n a xa xy y n xy --+=+-⇔=+--⎡⎤⎣⎦,和题设12n n a xa n -=+-对比系数可得:1xy y -=,22xy x -=-⇔=,1y =.此时121n n a na n -+=+-,114a +=,故存在2x =,1y =使得{}n a yn +是首项为4,公比为2的等比数列.从而()()1112121224122nn n n n n nn n a n a n S a a a ++-++=⇒=-⇒=++⋅⋅⋅+=--.所以()21242n n n n S ++=--.6.(2021·辽宁本溪市·高二月考)已知数列{}n a ,满足11a =,121n n a a n +=+-,设n n b a n =+,n n c a n λ=+(λ为实数).(1)求证:{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)若{}n c 是递增数列,求实数λ的取值范围.【答案】(1)证明见解析;(2)2nn a n =-;(3)()1,-+∞.【解析】(1)由121n n a a n +=+-,变形为()11222n n n a n a n a n +++=+=+,再利用等比数列的定义证明;(2)由(1)的结论,利用等比数列的通项公式求解;(3)根据{}n c 是递增数列,由10n n c c +->,*n N ∈恒成立求解.【详解】(1)因为121n n a a n +=+-,所以()11222n n n a n a n a n +++=+=+,即12n n b b +=,又因为11120b a =+=≠,所以0n b ≠,所以12n nb b +=,所以{}n b 是等比数列.(2)由1112b a =+=,公比为2,得1222n n n b -=⋅=,所以2nn n a b n n =-=-.(3)因为()21nn n c a n n λλ=+=+-,所以()()11211n n c n λ++=+-+,所以1122121n n n n n c c λλ++-=-+-=+-,因为{}n c 是递增数列,所以*10,n n c c n N +->∈成立,故210n λ+->,*n N ∈成立,即12n λ>-,*n N ∈成立,因为{}12n-是递减数列,所以该数列的最大项是121-=-,所以λ的取值范围是()1,-+∞.7.(2021·河南商丘市·高二月考(理))在如图所示的数阵中,从任意一个数开始依次从左下方选出来的数可组成等差数列,如:2,4,6,8,…;依次选出来的数可组成等比数列,如:2,4,8,16,….122344468858121616记第n 行第m 个数为(),f n m .(Ⅰ)若3n ≥,写出(),1f n ,(),2f n ,(),3f n 的表达式,并归纳出(),f n m 的表达式;(Ⅱ)求第10行所有数的和10S .【答案】(Ⅰ)(),1f n n =,()(),221f n n =-,()(),342f n n =-,()()12,1m m m f n n --+=;(Ⅱ)102036=S .【解析】(I )由数阵写出(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(II )()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,利用错位相减法求得结果.【详解】(Ⅰ)由数阵可知:(),1f n n =,()(),221f n n =-,()(),342f n n =-,由此可归纳出()()12,1m m m f n n --+=.(Ⅱ)()()()()1010,110,210,310,10S f f f f =++++ 291029282 1 =+⨯+⨯++⨯ ,所以231010220292821S =+⨯+⨯++⨯ ,错位相减得291010102222S =-+++++ ()102121012-=-+-2036=.8.(2021·山东烟台市·高三其他模拟)已知数列{}n a 的前n 项和为n S ,且满足11a =,12n n S na +=,*n ∈N .(1)求{}n a 的通项公式;(2)设数列{}n b 满足11b =,12nn n b b +=,*n ∈N ,按照如下规律构造新数列{}n c :123456,,,,,,a b a b a b ,求{}n c 的前2n 项和.【答案】(1)n a n =,*n ∈N ;(2)数列{}n c 的前2n 项和为1222++-n n .【解析】(1)由()12n n n a S S n -=-≥可得1(2)1n na a n n n+=≥+可得答案;(2)由12nn n b b +=得1122n n n b b +++=,两式相除可得数列{}n b 的偶数项构成等比数列,再由(1)可得数列{}n c 的前2n 项的和.【详解】(1)由12n n S na +=,12(1)(2)n n S n a n -=-≥,得12(1)n n n a na n a +=--,所以1(2)1n na a n n n +=≥+.因为122S a =,所以22a =,所以212n a an ==,(2)n a n n =≥.又当1n =时,11a =,适合上式.所以n a n =,*n ∈N .(2)因为12nn n b b +=,1122n n n b b +++=,所以*22()n nb n b +=∈N ,又122b b =,所以22b =.所以数列{}n b 的偶数项构成以22b =为首项、2为公比的等比数列.故数列{}n c 的前2n 项的和()()21321242n n n T a a a b b b -=+++++++ ,()122212(121)22212nn n n n T n +-+-=+=+--所以数列{}n c 的前2n 项和为1222++-n n .9.(2019·浙江高考模拟)已知数列中,, (1)令,求证:数列是等比数列;{}n a ()110,2*n n a a a n n N +==+∈+11n n n b a a =-+{}n b(2)令 ,当取得最大值时,求的值.【答案】(I )见解析(2)最大,即【解析】(1)两式相减,得 ∴即:∴ 数列是以2为首项,2为公比的等比数列(2)由(1)可知, 即也满足上式令,则 ,3nn n a c =n c n 3,n n c =3k =121221n n n n a a n a a n +++=+=++Q ,211221n n n n a a a a +++-=-+()211121n n n n a a a a +++-+=-+12n nb b +=21120a b ==≠Q 又,{}n b 2nn b =121nn n a a +-=-2121a a -=-23221a a -=-⋅⋅⋅⋅⋅⋅()11212n n n a a n ---=-≥()211222121n n n a a n n -∴-=++⋅⋅⋅+--=--2,21n n n a n ∴≥=--11,0n a ∴==21n n a n ∴=--111212233n n n n n n n n c c +++----=∴=11112221212333n n nn n n n n n n n c c ++++----+-∴-=-=()212nf n n =+-()11232n f n n ++=+-()()122n f n f n ∴+-=-∴ 最大,即10.(2021·浙江高三其他模拟)已知数列{}n a 满足112a =,123n n a a ++=,数列{}n b 满足11b =,()211n n nb n b n n +-+=+.(1)数列{}n a ,{}n b 的通项公式;(2)若()1n n n n c b b a +=-,求使[][][][]1222021n c c c c +++⋅⋅⋅+≤成立([]n c 表示不超过n c 的最大整数)的最大整数n 的值.【答案】(1)112nn a ⎛⎫=+- ⎪⎝⎭,2n b n =;(2)最大值为44.【解析】(1)由题得数列{}1n a -是等比数列,即求出数列{}n a 的通项;由题得{}n b n 是一个以111b=为首项,以1为公差的等差数列,即得数列{}n b 的通项公式;(2)先求出[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,再求出[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩即得解.【详解】解:(1)由123n n a a ++=得()11112n n a a +-=--,所以数列{}1n a -是等比数列,公比为12-,()()()()()()12,234f f f f f f n ∴=>>>⋅⋅⋅>()()()()1210,310,3,0f f f n f n ==>=-<∴≥<Q 123345...c c c c c c ∴>,3,n n c =3k =解得112nn a ⎛⎫=+- ⎪⎝⎭.由()211n n nb n b n n +-+=+,得111n nb b n n+-=+,所以{}n b n 是一个以111b=为首项,以1为公差的等差数列,所以1(1)1n bn n n=+-⨯=,解得2n b n =.(2)由()1n n n n c b b a +=-得()12121121(1)22n nn n n c n n ⎛⎫+⎛⎫=++-=++- ⎪ ⎪ ⎪⎝⎭⎝⎭,记212n n n d +=,1112321120222n n n n n n n nd d +++-++-=-=<,所以{}n d 为单调递减且132d =,254d =,3718d =<,所以[]()*1,16,2,2,21,21,22n n n c k N n n k n n k =⎧⎪=⎪=∈⎨=+⎪⎪+=+⎩,因此[][][][]()2*12221,1,3,2,231,2122n n c c c c n n n k k N n n n k ⎧⎪=⎪⎪++++=+=∈⎨⎪⎪+-=+⎪⎩,当2n k =时,2320212n n +≤的n 的最大值为44;当2+1n k =时,231202122n n +-≤的n 的最大值为43;故[][][][]1222021n c c c c +++⋅⋅⋅+≤的n 的最大值为44.1.(2021·全国高考真题(理))等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则()A .甲是乙的充分条件但不是必要条件练真题B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列为2,4,8,--- 时,满足0q >,但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .2.(2020·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则nnS a =( )A .2n –1B .2–21–n C .2–2n –1D .21–n –1【答案】B 【解析】设等比数列的公比为q ,由536412,24a a a a -=-=可得:421153111122124a q a q q a a q a q ⎧-==⎧⎪⇒⎨⎨=-=⎪⎩⎩,所以1111(1)122,21112n nn n n n n a q a a qS q ----=====---,因此1121222n n n n n S a ---==-.故选:B.3.(2019·全国高考真题(文))已知各项均为正数的等比数列的前4项和为15,且,则( ){}n a 53134a a a =+3a =A .16B .8C .4D .2【答案】C 【解析】设正数的等比数列{a n }的公比为,则,解得,,故选C .4.(2019·全国高考真题(文))记S n 为等比数列{a n }的前n 项和.若,则S 4=___________.【答案】.【解析】设等比数列的公比为,由已知,即解得,所以.5.(2020·海南省高考真题)已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)求112231(1)n n n a a a a a a -+-+⋯+-.【答案】(1)2nn a =;(2)2382(1)55n n +--【解析】(1) 设等比数列{}n a 的公比为q (q >1),则32411231208a a a q a q a a q ⎧+=+=⎨==⎩,整理可得:22520q q -+=,11,2,2q q a >== ,q 2311114211115,34a a q a q a q a q a q a ⎧+++=⎨=+⎩11,2a q =⎧⎨=⎩2314a a q ∴==13314a S ==,58q 223111314S a a q a q q q =++=++=2104q q ++=12q =-441411()(1)521181()2a q S q ---===---数列的通项公式为:1222n n n a -=⋅=.(2)由于:()()()1121111122112n n n n n n n n a a --++-+=-⨯⨯=--,故:112231(1)n n n a a a a a a -+-+⋯+-35791212222(1)2n n -+=-+-+⋯+-⋅()()3223221282(1)5512n n n +⎡⎤--⎢⎥⎣⎦==----.6.(2021·浙江高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33(4nn a =-⋅;(2)31λ-≤≤.【解析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解.【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-,当2n ≥时,由1439n n S S +=-①,得1439n n S S -=-②,①-②得143n na a +=122730,0,164n n n a a a a +=-≠∴≠∴=,又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933(3(444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)(34n n n n b a n -=-=-,所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭ ,2413333333321(5)(4)444444n n n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n n T n +=-⋅,由n n T b λ≤得1334((4)(44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤;4n >时,312344n n n λ≥-=----,得3λ≥-;所以31λ-≤≤.。
【红对勾】高考新课标数学(文)大一轮复习课时练:5-3等比数列及其前n项和(含答案解析)

课时作业30 等比数列及其前n 项和一、选择题1.(2016·河北唐山统考)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73C.310D .1或2解析:设S 2=k ,S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k3k =73,故选B. 答案:B2.若公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6D .7解析:由题意可知a 3a 11=a 27=16,因为{a n }为正项等比数列,所以a 7=4,所以log 2a 10=log 2(a 7·23)=log 225=5.答案:B3.(2016·山西四校联考)等比数列{a n }的前n 项和为S n ,若公比q>1,a 3+a 5=20,a 2a 6=64,则S 5=( )A .31B .36C .42D .48解析:由等比数列的性质,得a 3a 5=a 2a 6=64,于是由⎩⎪⎨⎪⎧a 3+a 5=20,a 3a 5=64,且公比q>1,得a 3=4,a 5=16.所以⎩⎪⎨⎪⎧a 1q 2=4,a 1q 4=16,解得⎩⎪⎨⎪⎧a 1=1,q ==-2舍,所以S 5=-251-2=31,故选A.答案:A4.在公比为正数的等比数列中,a 1+a 2=2,a 3+a 4=8,则S 8等于( ) A .21 B .42 C .135D .170解析:方法1:S 8=(a 1+a 2)+(a 3+a 4)+(a 5+a 6)+(a 7+a 8)=2+8+32+128=170. 方法2:q 2=a 3+a 4a 1+a 2=4,又q>0,∴q =2.∴a 1(1+q)=a 1(1+2)=2,∴a 1=23.∴S 8=238-2-1=170.答案:D5.(2016·东北八校联考)已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( )A .16(1-4-n )B .16(1-2-n )C.323(1-4-n ) D.323(1-2-n ) 解析:设{a n }的公比为q ,易知数列{a n a n +1}是以a 1a 2为首项,q 2为公比的等比数列, ∵q 3=a 5a 2=18,∴q =12,∴a 1=a 2q=4,∴a 1a 2=8,∴数列{a n a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C.答案:C6.设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5D .159.5解析:因为1+2a n =(1+2a 1)·2n -1,则 a n =5·2n -1-12,a n =5·2n -2-12.a 6=5×24-12=5×16-12=80-12=79.5.答案:C7.(2016·江西南昌调研)已知等比数列{a n }的前n 项和为S n ,则下列说法中一定成立的是( )A .若a 3>0,则a 2 015<0B .若a 4>0,则a 2 014<0C .若a 3>0,则S 2 015>0D .若a 4>0,则S 2 014>0解析:等比数列{a n }的公比q≠0,对于A ,若a 3>0,则a 1q 2>0,所以a 1>0,所以a 2 015=a 1q 2 014>0,所以A 不正确;对于B ,若a 4>0,则a 1q 3>0,所以a 1q>0,所以a 2 014=a 1q 2 013>0,所以B 不正确;对于C ,若a 3>0,则a 1=a 3q2>0,所以当q =1时,S 2 015>0,当q≠1时,S 2 015=a 1-q 2 0151-q >0(1-q 与1-q 2 015同号),所以C 正确,同理可知D 错误,故选C.答案:C8.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:设数列{a n }的公比为q ,由⎩⎪⎨⎪⎧a 4+a 7=2,a 5·a 6=a 4·a 7=-8,得⎩⎪⎨⎪⎧a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4所以⎩⎪⎨⎪⎧a 1=-8,q 3=-12或⎩⎪⎨⎪⎧ a 1=1,q 3=-2,所以⎩⎪⎨⎪⎧a 1=-8,a 10=1或⎩⎪⎨⎪⎧a 1=1,a 10=-8,所以a 1+a 10=-7. 答案:D9.(2016·山东枣庄一模)已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是( )A .(-∞,-1]B .(-∞,0)∪(1,+∞)C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q , 当q>0时,S 3=1+q +1q≥1+2q·1q=3; 当q<0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2-q·⎝⎛⎭⎫-1q =-1. ∴S 3∈(-∞,-1]∪[3,+∞),故选D. 答案:D10.(2016·河北唐山一模)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n=( ) A .4n -1B .4n -1C .2n -1D .2n -1解析:∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52,①a 1q +a 1q 3=54.②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2.∴a n =2×(12)n -1=42n .∴S n =2×[1-12n]1-12=4(1-12n ).∴S n a n =-12n 42n=2n -1,选D.答案:D二、填空题11.等比数列{a n }的前n 项和为S n ,若S 3+2S 2=0,则公比q =________. 解析:由S 3+3S 2=0,即a 1+a 2+a 3+3(a 1+a 2)=0, 即4a 1+4a 2+a 3=0,即4a 1+4a 1q +a 1q 2=0, 即q 2+4q +4=0,所以q =-2. 答案:-212.(2016·甘肃兰州月考)已知等比数列{a n }的前n 项和为S n ,且S n =m·2n -1-3,则m=________.解析:a 1=S 1=m -3,当n≥2时,a n =S n -S n -1=m·2n -2.∴a 2=m ,a 3=2m ,又a 22=a 1a 3, ∴m 2=(m -3)·2m ,整理得m 2-6m =0. 则m =6或m =0(舍去). 答案:613.(2016·广州综合测试)已知数列{c n },其中c n =2n +3n ,且数列{c n +1-pc n }为等比数列,则常数p =________.解析:由数列{c n +1-pc n }为等比数列,得(c 3-pc 2)2=(c 2-pc 1)(c 4-pc 3),即(35-13p)2=(13-5p)(97-35p).解得p =2或p =3.答案:2或314.(2016·甘肃兰州诊断)数列{a n }的首项为a 1=1,数列{b n }为等比数列且b n =a n +1a n,若b 10b 11=2 015,则a 21=________.解析:由b n =a n +1a n ,且a 1=1,得b 1=a 2a 1=a 2;b 2=a 3a 2,a 3=a 2b 2=b 1b 2;b 3=a 4a 3,a 4=a 3b 3=b 1b 2b 3;…;b n -1=a na n -1,a n =b 1b 2…b n -1,∴a 21=b 1b 2…b 20,∵数列{b n }为等比数列,∴a 21=(b 1b 20)(b 2b 19)…(b 10b 11)=(b 10b 11)10=(2 015)10=2 015.答案:2 015 三、解答题15.设数列{a n }的前n 项和为S n ,a 1=1,且数列{S n }是以2为公比的等比数列. (1)求数列{a n }的通项公式; (2)求a 1+a 3+…+a 2n +1.解:(1)∵S 1=a 1=1,且数列{S n }是以2为公比的等比数列,∴S n =2n -1,又当n≥2时,a n =S n -S n -1=2n -2(2-1)=2n -2,∴a n =⎩⎪⎨⎪⎧1,n =1,2n -2,n≥2.(2)a 3,a 5,…,a 2n +1是以2为首项,以4为公比的等比数列,∴a 3+a 5+…+a 2n +1=-4n1-4=n-3.∴a 1+a 3+…+a 2n +1=1+n-3=22n +1+13.16.已知数列{a n }的前n 项和为S n ,且对任意的n ∈N *有a n +S n =n. (1)设b n =a n -1,求证:数列{b n }是等比数列; (2)设c 1=a 1且c n =a n -a n -1(n≥2),求{c n }的通项公式. 解:(1)证明:由a 1+S 1=1及a 1=S 1,得a 1=12.又由a n +S n =n 及a n +1+S n +1=n +1,得 a n +1-a n +a n +1=1,∴2a n +1=a n +1. ∴2(a n +1-1)=a n -1,即2b n +1=b n .∴数列{b n }是以b 1=a 1-1=-12为首项,12为公比的等比数列.(2)方法1:由(1)知2a n +1=a n +1, ∴2a n =a n -1+1(n≥2).∴2a n +1-2a n =a n -a n -1,∴2c n +1=c n (n≥2). 又c 1=a 1=12,a 2+a 1+a 2=2,∴a 2=34.∴c 2=34-12=14,c 2=12c 1.∴数列{c n }是首项为12,公比为12的等比数列.∴c n =12·(12)n -1=(12)n.方法2:由(1)b n =-12·(12)n -1=-(12)n .∴a n =-(12)n +1.∴c n =-(12)n +1-[-(12)n -1+1]=(12)n -1-(12)n =(12)n -1(1-12) =(12)n (n≥2). 又c 1=a 1=12也适合上式,∴c n =(12)n .。
(新课标)高考数学一轮总复习 第五章 数列 5-3 等比数列及其前n项和课时规范练 文(含解析)新人

5-3 等比数列及其前n 项和课时规X 练A 组 基础对点练1.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( B ) A .21 B.42 C .63D.842.(2018·某某质检)在等比数列{a n }中,a 2=2,a 5=16,则a 6=( C ) A .14 B.28 C .32D.643.(2017·某某摸底考试)已知数列{a n }为等比数列,a 5=1,a 9=81,则a 7=( B ) A .9或-9 B.9 C .27或-27D.27解析:∵数列{a n }为等比数列,且a 5=1,a 9=81, ∴a 27=a 5a 9=1×81=81, ∴a 7=±9.当a 7=-9时,a 26=1×(-9)=-9不成立,舍去. ∴a 7=9.故选B.4.(2018·某某调研测试)已知等差数列{a n }的公差为2,且a 4是a 2与a 8的等比中项,则{a n }的通项公式a n =( B ) A .-2n B.2n C .2n -1D.2n +1解析:由题意,得a 2a 8=a 24,又a n =a 1+2(n -1),所以(a 1+2)(a 1+14)=(a 1+6)2,解得a 1=2,所以a n =2n .故选B.5.在等比数列{a n }中,S n 表示前n 项和,若a 3=2S 2+1,a 4=2S 3+1,则公比q 等于( D ) A .-3 B.-1 C .1D.3解析:在等比数列{a n }中, ∵a 3=2S 2+1,a 4=2S 3+1,∴a 4-a 3=2S 3+1-(2S 2+1)=2(S 3-S 2)=2a 3, ∴a 4=3a 3, ∴q =a 4a 3=3.故选D.6.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?( C ) A .5 B.4 C .3D.27.若等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( D ) A .5 B.9 C .log 345D.10解析:由等比数列性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,∴a 5a 6=9, 则原式=log 3a 1a 2…a 10=log 3(a 5a 6)5=10.8.已知等比数列{a n }的前n 项和为S n ,若a 25=2a 3a 6,S 5=-62,则a 1的值是__-2__. 9.(2018·某某调研)在各项均为正数的等比数列{a n }中,若a 5=5,则log 5a 1+log 5a 2+…+log 5a 9= __9__.解析:因为数列{a n }是各项均为正数的等比数列,所以由等比数列的性质,可得a 1·a 9=a 2·a 8=a 3·a 7=a 4·a 6=a 25=52,则log 5a 1+log 5a 2+…+log 5a 9=log 5(a 1·a 2·…·a 9) =log 5[(a 1·a 9)·(a 2·a 8)·(a 3·a 7)·(a 4·a 6)·a 5]=log 5a 95=log 559=9.10.(2018·某某统考)已知各项均不为零的数列{a n }的前n 项和为S n ,且满足a 1=4,a n +1=3S n +4(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89.解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n. (2)证明:因为a n b n =log 2a n ,所以b n =2n4n ,所以T n =241+442+643+ (2)4n ,14T n =242+443+644+ (2)4n +1,两式相减得,34T n =24+242+243+244+…+24n -2n4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1=2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n4n +1=23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·某某质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *.(1)求证:数列{a nn}为等比数列; (2)求数列{a n }的前n 项和S n . 解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn, ∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n2n , ∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,② ①-②,得12S n =12+122+123+…+12n -n 2n +1=1-n +22n +1,∴S n =2-n +22n.B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C )A .2B.1C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·某某质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507B .a ,b ,c 依次成公比为2的等比数列,且c =507C .a ,b ,c 依次成公比为12的等比数列,且a =507A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·某某适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A )A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 11-q 2 0181-q =22 017-12.故选A.5.(2016·高考某某卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件 D.既不充分也不必要条件解析:由题意,得a n =a 1qn -1(a 1>0),a 2n -1+a 2n =a 1q2n -2+a 1q2n -1=a 1q2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D )A.32B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D )A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2,∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D.8.(2018·某某质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6C.⎝ ⎛⎭⎪⎫12 2 018-72D.⎝ ⎛⎭⎪⎫13 2 018-103解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n,所以a n =(-2)n-1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·某某质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值X 围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值X 围是(-∞,-1]∪[3,+∞).11.(2018·某某质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16. (1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1.又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1,2S n =0×21+1×22+2×23+…+(n -1)·2n, 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n=2-2n1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n(n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n .由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。
最新高考一轮文科数学必修53等比数列及其前n项和课时提升作业含答案解析精编版

最新⾼考⼀轮⽂科数学必修53等⽐数列及其前n项和课时提升作业含答案解析精编版2020年⾼考⼀轮⽂科数学必修53等⽐数列及其前n项和课时提升作业含答案解析精编版温馨提⽰:此套题为Word版,请按住Ctrl,滑动⿏标滚轴,调节合适的观看⽐例,答案解析附后。
关闭Word⽂档返回原板块课时提升作业(三⼗)等⽐数列及其前n项和(45分钟100分)⼀、选择题(每⼩题5分,共40分)1.(2014·黄冈模拟)公⽐为2的等⽐数列{a n}的各项都是正数,且a4a10=16,则a6=()A.1B.2C.4D.82.(2014·襄阳模拟)记等⽐数列{a n}的前n项和为S n,若a1=,S2=2,则S4=()A.2B.6C.16D.203.(2014·天门模拟)在各项均为正数的等⽐数列{a n}中,a3=-1,a5=+1,则+2a2a6+a3a7=()A.4B.6C.8D.8-44.(2013·新课标全国卷Ⅰ)设⾸项为1,公⽐为的等⽐数列{a n}的前n项和为S n,则()A.S n=2a n-1B.S n=3a n-2C.S n=4-3a nD.S n=3-2a n5.已知等⽐数列{a n}的公⽐为q,前n项和为S n,且S3,S9,S6成等差数列,则q3等于()A.-1或B.1或-C.1D.-6.设{a n}是⾸项⼤于零的等⽐数列,则“a1A.充分⽽不必要条件B.必要⽽不充分条件C.充分必要条件D.既不充分也不必要条件7.已知等⽐数列{a n}中的各项都是正数,且5a1,a3,4a2成等差数列,则=()A.-1B.1C.52nD.52n-18.已知f(x)=bx+1是关于x的⼀次函数,b为不等于1的常数,且g(n)=设a n=g(n)-g(n-1)(n∈N*),则数列{a n}为()A.等差数列B.等⽐数列C.递增数列D.递减数列⼆、填空题(每⼩题5分,共20分)9.(2013·⼴东⾼考)设数列{a n}是⾸项为1,公⽐为-2的等⽐数列,则a1+|a2|+a3+|a4|=.10.(2013·辽宁⾼考)已知等⽐数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是⽅程x2-5x+4=0的两个根,则S6=.11.等⽐数列{a n}的⾸项a1=-1,前n项和为S n,若=,则公⽐q=.12.(能⼒挑战题)(2014·孝感模拟)已知等⽐数列{a n}的各项都为正数,且当n≥3时,a4a2n-4=102n,则数列lga1,2lga2,22lga3,23lga4,…,2n-1lga n,…的前n项和S n等于________.三、解答题(13题12分,14~15题各14分)13.在数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公⽐不为1的等⽐数列.(1)求c的值.(2)求{a n}的通项公式.14.已知数列{a n}的前n项和为S n,且S n=4a n-3(n∈N*).(1)证明:数列{a n}是等⽐数列.(2)若数列{b n}满⾜b n+1=a n+b n(n∈N*),且b1=2,求数列{b n}的通项公式.15.(能⼒挑战题)(2013·湖北⾼考)已知S n是等⽐数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.(1)求数列{a n}的通项公式.(2)是否存在正整数n,使得S n≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由.答案解析1.【解析】选B.由题意可得=a4a10=16,⼜数列的各项都是正数,故a7=4,故a6===2.2.【解析】选D.根据题意,由于等⽐数列{a n}的前n项和为S n,若a1=,S2==2?1+q=4?q=3,S4==·(1+q2)=2×10=20.【加固训练】设等⽐数列{a n}的公⽐q=2,前n项和为S n,则=( )A.2B.4C.D.【解析】选C.=·==.3.【解析】选C.a3+a5=-1++1=2,故+2a2a6+a3a7=+2a3a5+=(a3+a5)2=8.【加固训练】在等⽐数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8=( ) A.10 B.11 C.12 D.14【解析】选C.由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等⽐数列,所以a5+a6=2×2=4,a7+a8=4×2=8.所以a5+a6+a7+a8=4+8=12.4.【思路点拨】利⽤等⽐数列的通项公式以及前n项和公式S n=或S n=求解.【解析】选D.⽅法⼀:因为等⽐数列的⾸项为1,公⽐为,S n==,所以S n=3-2a n.⽅法⼆:S n==3-3×=3-2,a n=,观察四个选项可知选D.5.【解析】选D.当q=1时,易验证知不符合S3,S9,S6成等差数列,当q≠1时,由2S9=S3+S6,得2·=+.化简整理得:2q9-q6-q3=0,即(q3-1)(2q3+1)=0?q3=-.【误区警⽰】等⽐数列求和公式分两种情况q=1和q≠1,解题时应注意条件是否暗⽰了q的范围,如果没有暗⽰,应该讨论,⽽不能直接⽤公式S n=.6.【解析】选C.若已知a101,⼜a1>0,所以数列{a n}是递增数列;反之,若数列{a n}是递增数列且a1>0,则公⽐q>1,所以a17.【解析】选C.设等⽐数列{a n}的公⽐为q(q>0),则依题意有a3=5a1+4a2,即a1q2=5a1+4a1q,q2-4q-5=0,解得q=-1或q=5.⼜q>0,因此q=5,所以==q2n=52n,选C.【⽅法技巧】等差数列与等⽐数列的联系与区别等差数列等⽐数列不同点(1)强调每⼀项与前⼀项的差(2)a1和d可以为0(3)任意两实数的等差中项唯⼀(4)当m+n=p+q(m,n,p,q∈N*)时a m+a n=a p+a q(1)强调每⼀项与前⼀项的⽐(2)a1与q均不为0(3)两同号实数(不为0)的等⽐中项有两个值(4)当m+n=p+q(m,n,p,q∈N*)时a m a n=a p a q相同点(1)都强调每⼀项与其前⼀项的关系(2)结果都必须是常数(3)数列都可以由a1,d或a1,q确定联系(1)若{a n}为正项等⽐数列,则{log m a n}为等差数列,其中m>0,且m ≠1(2){a n}为等差数列,则{?Skip Record If...?}为等⽐数列(3)⾮零常数列既是等差数列⼜是等⽐数列8.【解析】选B.a1=g(1)-g(0)=f(g(0))-g(0)=b+1-1=b,当n≥2时,a n=g(n)-g(n-1) =f(g(n-1))-f(g(n-2))=b[g(n-1)-g(n-2)]=ba n-1,所以{a n}是等⽐数列.9.【解析】由题意知a1=1,q=-2,得a n=a1·q n-1=1·(-2)n-1=(-2)n-1,a1+|a2|+a3+|a4|=1+|-2|+(-2)2+|(-2)3|=15.答案:15来源:/doc/2c8518017.html][来源学科⽹ZXXK]。
2019届高三一轮文科数学课件:5.3-等比数列及其前n项和(含答案)

「基础小题练一练」 1.下列说法正确的是( )
①等比数列中没有一项为 0; ②等差数列不可能是等比数列; ③常数列是等比数列; ④公比 q>1 的等比数列是递增数列; ⑤公比 q<0 的等比数列是摆动数列. A.① C.④⑤ B.①③ D.①⑤
解析: ①正确; 等差数列 2,2,2,2, …也是等比数列, 故②错误; 常数列 0,0,0,0, … 不是等比数列,故③错误;等比数列-1,-2,-4,…,-2n 的公比是 2>1,但此 数列是递减数列,故④错误,⑤正确.故选 D.
时,{an}为常数列.
(4)当 q<0 时,{an}为摆动数列.
2.辨明三个易误点 (1)由于等比数列的每一项都可能作分母, 故每一项均不为 0, 因此 q 也不能为 0, 但 q 可为正数,也可为负数. (2)由 an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证 a1≠0. (3)在运用等比数列的前 n 项和公式时,必须注意对 q=1 与 q≠1 分类讨论,防 止因忽略 q=1 这一特殊情形而导致解题失误.
考点频率 5年21考
命题趋势 等比数列在高考 中主要考查等比 数列的定义、通 项公式、前n项和
2.等比数列的 性质及应用
5年14考
公式及其性质, 常与等差数列结
4.了解等比数列与指数函数的关系.
合考查.
2
基础自主梳理
「基础知识填一填」 1.等比数列的有关概念 (1)定义 如果一个数列从第 2 项起,每一项与它的前一项的比等于 同一常数 (不为 零),那么这个数列就叫做等比数列. 这个常数叫做等比数列的 公比 ,通常用字母 q an+1 =q(q≠0,n∈N*) an 表示,定义的表达式为__________________________. (2)等比中项 如果 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项.即 G 是 a 与 b 的等 比中项⇔a,G,b 成等比数列⇔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块课时提升作业(三十)等比数列及其前n项和(45分钟100分)一、选择题(每小题5分,共40分)1.(2014·黄冈模拟)公比为2的等比数列{an }的各项都是正数,且a4a10=16,则a6=( )A.1B.2 C。
4 D。
82.(2014·襄阳模拟)记等比数列{an }的前n项和为Sn,若a1=,S2=2,则S4=( )A.2B.6C.16D.203.(2014·天门模拟)在各项均为正数的等比数列{an }中,a3=—1,a5=+1,则+2a2a6+a3a7=( )A。
4 B.6 C。
8 D。
8-44.(2013·新课标全国卷Ⅰ)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A。
S n=2a n—1 B.S n=3a n—2C.S n=4—3a nD.S n=3-2a n5。
已知等比数列{a n}的公比为q,前n项和为S n,且S3,S9,S6成等差数列,则q3等于( )A。
—1或B。
1或-C.1D.-6.设{a n}是首项大于零的等比数列,则“a1<a2”是“数列{a n}是递增数列"的()A。
充分而不必要条件 B.必要而不充分条件C.充分必要条件D。
既不充分也不必要条件7。
已知等比数列{a n}中的各项都是正数,且5a1,a3,4a2成等差数列,则=()A.—1 B。
1 C。
52n D。
52n—18.已知f(x)=bx+1是关于x的一次函数,b为不等于1的常数,且g(n)=设a n=g(n)—g(n—1)(n∈N*),则数列{a n}为()A。
等差数列B。
等比数列C.递增数列D.递减数列二、填空题(每小题5分,共20分)9.(2013·广东高考)设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|= .10。
(2013·辽宁高考)已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6= .11。
等比数列{a n}的首项a1=-1,前n项和为S n,若=,则公比q= 。
12.(能力挑战题)(2014·孝感模拟)已知等比数列{a n}的各项都为正数,且当n ≥3时,a4a2n-4=102n,则数列lga1,2lga2,22lga3,23lga4,…,2n-1lga n,…的前n项和S n等于________.三、解答题(13题12分,14~15题各14分)13.在数列{a n}中,a1=2,a n+1=a n+cn(c是常数,n=1,2,3,…),且a1,a2,a3成公比不为1的等比数列。
(1)求c的值。
(2)求{a n}的通项公式。
14.已知数列{a n}的前n项和为S n,且S n=4a n-3(n∈N*)。
(1)证明:数列{a n}是等比数列。
(2)若数列{b n}满足b n+1=a n+b n(n∈N*),且b1=2,求数列{b n}的通项公式。
15.(能力挑战题)(2013·湖北高考)已知S n是等比数列{a n}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18。
(1)求数列{a n}的通项公式.(2)是否存在正整数n,使得S n≥2013?若存在,求出符合条件的所有n的集合;若不存在,说明理由。
答案解析1。
【解析】选B。
由题意可得=a4a10=16,又数列的各项都是正数,故a7=4,故a6===2.2.【解析】选D.根据题意,由于等比数列{a n}的前n项和为S n,若a1=,S2==2⇒1+q=4⇒q=3,S4==·(1+q2)=2×10=20。
【加固训练】设等比数列{a n}的公比q=2,前n项和为S n,则=( )A。
2 B.4 C。
D.【解析】选C.=·==。
3.【解析】选C。
a3+a5=—1++1=2,故+2a2a6+a3a7=+2a3a5+=(a3+a5)2=8.【加固训练】在等比数列{a n}中,a1+a2=1,a3+a4=2,则a5+a6+a7+a8=( ) A.10 B.11 C.12 D。
14【解析】选C.由题意知,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,所以a5+a6=2×2=4,a7+a8=4×2=8.所以a5+a6+a7+a8=4+8=12.4。
【思路点拨】利用等比数列的通项公式以及前n项和公式S n=或S n=求解。
【解析】选D。
方法一:因为等比数列的首项为1,公比为,S n==,所以S n=3-2a n.方法二:S n==3—3×=3-2,a n=,观察四个选项可知选D.5。
【解析】选D。
当q=1时,易验证知不符合S3,S9,S6成等差数列,当q≠1时,由2S9=S3+S6,得2·=+。
化简整理得:2q9-q6-q3=0,即(q3-1)(2q3+1)=0⇒q3=—.【误区警示】等比数列求和公式分两种情况q=1和q≠1,解题时应注意条件是否暗示了q的范围,如果没有暗示,应该讨论,而不能直接用公式S n=。
6。
【解析】选C.若已知a1〈a2,则设数列{a n}的公比为q,因为0〈a1〈a2,所以有0<a1〈a1q,解得q〉1,又a1>0,所以数列{a n}是递增数列;反之,若数列{a n}是递增数列且a1〉0,则公比q〉1,所以a1〈a1q,即a1<a2,所以a1〈a2是数列{a n}是递增数列的充分必要条件。
7。
【解析】选C.设等比数列{a n}的公比为q(q〉0),则依题意有a3=5a1+4a2,即a1q2=5a1+4a1q,q2—4q-5=0,解得q=-1或q=5.又q〉0,因此q=5,所以==q2n=52n,选C.【方法技巧】等差数列与等比数列的联系与区别等差数列等比数列不同点(1)强调每一项与前一项的差(2)a1和d可以为0(3)任意两实数的等差中项唯一(1)强调每一项与前一项的比(2)a1与q均不为0(4)当m+n=p+q(m,n,p,q∈N *)时a m+a n=a p+a q (3)两同号实数(不为0)的等比中项有两个值(4)当m+n=p+q(m,n,p,q∈N*)时a m a n=a p a q相同点(1)都强调每一项与其前一项的关系(2)结果都必须是常数(3)数列都可以由a1,d或a1,q确定联系(1)若{a n}为正项等比数列,则{log m a n}为等差数列,其中m〉0,且m≠1(2){a n}为等差数列,则{n a b}为等比数列(3)非零常数列既是等差数列又是等比数列8。
【解析】选B。
a1=g(1)—g(0)=f(g(0))-g(0)=b+1-1=b,当n≥2时,a n=g(n)-g(n—1)=f(g(n-1))-f(g(n-2))=b[g(n-1)—g(n—2)]=ba n-1,所以{a n}是等比数列.9.【解析】由题意知a1=1,q=—2,得a n=a1·q n-1=1·(—2)n-1=(-2)n-1,a1+|a2|+a3+|a4|=1+|—2|+(—2)2+|(—2)3|=15。
答案:1510.【思路点拨】利用方程求得a1,a3的值,结合等比数列,求出基本量(首项和公比),进而解决求和问题。
【解析】因为方程x2—5x+4=0的根为1,4,而等比数列{a n}是递增数列,所以a1=1,a3=4。
由等比数列的通项公式得,a3=a1q2=q2=4⇒q=±2.又因为等比数列{a n}是递增数列,故q=2.从而S6===63.答案:6311.【思路点拨】利用等比数列的前n项和的性质求解.【解析】由=,a1=-1知公比q≠1,=-.由等比数列前n项和的性质知S5,S10-S5,S15—S10成等比数列,且公比为q5,故q5=-,解得q=—.答案:-【加固训练】设{a n}是公比为q的等比数列,|q|>1,令b n=a n+1(n=1,2,…),若数列{b n}有连续四项在集合{—53,-23,19,37,82}中,则6q= 。
【解析】由题意知,数列{b n}有连续四项在集合{—53,—23,19,37,82}中,说明{a n}有连续四项在集合{—54,—24,18,36,81}中,由于{a n}中连续四项至少有一项为负,所以q〈0,又因为|q|〉1,所以{a n}的连续四项为—24,36,—54,81,所以q==-,所以6q=—9。
答案:—912。
【解析】因为等比数列{a n}的各项都为正数,且当n≥3时,a4a2n-4=102n,所以= 102n,即a n=10n,所以2n—1lga n=2n-1lg10n=n·2n—1,所以S n=1+2·2+3·22+…+n·2n-1①2S n=1·2+2·22+3·23+…+n·2n②所以①—②得:-S n=1+2+22+…+2n—1-n·2n=2n-1-n·2n=(1—n)2n—1,所以S n=(n—1)2n+1.答案:(n—1)2n+113。
【解析】(1)a1=2,a2=2+c,a3=a2+2c=2+3c, 因为a1,a2,a3成等比数列,所以(2+c)2=2(2+3c), 解得c=0或c=2。
当c=0时,a1=a2=a3,不符合题意舍去,故c=2。
(2)由(1)知a n+1—a n=2n(n=1,2,3,…)a2-a1=2,a3—a2=4,…当n≥2时,a n—a n-1=2(n-1),以上各式累加得a n-a1=2[1+2+…+(n-1)]=2×=n(n-1).又a1=2,故a n=2+n(n-1)=n2—n+2(n=2,3,…)。
当n=1时,上式也成立,所以a n=n2—n+2(n=1,2,…).14.【解析】(1)依题意S n=4a n-3(n∈N*),n=1时,a1=4a1—3,解得a1=1。
因为S n=4a n—3,则S n—1=4a n-1-3(n≥2),所以当n≥2时,a n=S n-S n-1=4a n-4a n-1,整理得a n=a n—1.又a1=1≠0,所以{a n}是首项为1,公比为的等比数列。
(2)因为a n=,由b n+1=a n+b n(n∈N*),得b n+1—b n=。
可得b n=b1+(b2—b1)+(b3—b2)+…+(b n—b n-1)=2+=3·—1(n≥2),当n=1时也满足,所以数列{b n}的通项公式为b n=3·—1.15.【思路点拨】(1)由条件S4,S2,S3成等差数列和a2+a3+a4=—18列出方程组,解出首项和公比,运用等比数列通项公式得出{a n}的通项公式.(2)假设存在正整数n,使得S n≥2013,解不等式,求n的解集。