所有自然数之和是负十二分之一

所有自然数之和是负十二分之一
所有自然数之和是负十二分之一

刘大可

最近有一个很有趣的视频,讲述了这样一件数学趣事:全体自然数的和是-1/12。

虽然果壳和知乎上都已经有了问答,但是数学语言过于晦涩,不利于理解,所以我自己写了一份更简洁的日志作为阐述,不过尽量保证了严谨。

首先说视频,他是这么证明的:

这个东西等于多少呢?很显然,这要看你在什么地方停下来了,如果你停在第奇数个1上,结果就是1;如果停在偶数个1上,那结果就是0。既然这样的话,那就平均一下好了,它等于1/2。看到这里,你显然会觉得这实在荒唐愚蠢,但是更“荒唐”的东西还在后面,但新奇的东西也在后面,你最好还是继续看下去。

好,有了S1=1/2,他又令

那么取两个S2错开一位相加,即

则有2S2=S1=1/2,,也就是S2=1/4 !虽然这让人很不服气,但是他接着计算

既然S2=1/4,那么我们大功告成了,S=-1/12——全体自然数的和是-1/12 !

看到这里的时候,我想几乎所有人都和我一样觉得这实在是牵强附会荒唐可笑,但视频中一再声称这种算法的意义,所以我翻墙出去做了个简单的研究,得到了这样的结论:我们确实可以对全体自然数求和得到-1/12 ,但这个和并非我们做加法得到的代数和,而

是发散级数和——这个-1/12 根本就不“加”出来的。于是,下面就是我对这个问题的解释,虽然有一些公式,但是都极其简单,你可以轻松阅读不费脑子。

要弄明白这个问题,我们首先要知道什么是“级数”以及“发散级数”,而这是一个非常简单的问题。

随便找一个数列,比如等差数列a n=n ,也就是1 、2、3 、4 、5、6 ……

把数列中的每个元素都用加号连接起来,就是一个级数,其实就是求总和。对于上面的a n,它的级数就是

其中,级数的前n项的和被称作部分和,记作S n(其实就是“数列的前n项和”,高考复习翻来覆去做过的那个东西)。

那么只要上过高中就能意识到,随着n趋于无穷,级数的部分和S n有可能趋近于某一个值,即有极限,比如级数1+1/2+1/4+1/8……,它的部分和就会不断趋近于2。这样的级数称为收敛级数,这个部分和的极限就是收敛级数的和;

级数的部分和S n也可能不趋近于某一值,即无极限。比如1+2+3+4+……,越加越大趋于无穷;又比如1-1+1-1+……,部分和一会儿是1一会儿是0,永远不会固定。只要级数的部分和不是越来越接近某一个定值,就都是发散级数。

事情到这里,都是高中数学就学过的内容。很明显的,在这样的背景下,一个发散级数的和没有意义,但是在应用数学中,尤其是物理学的数学应用中,常常被迫需要计算发散级数的和。于是,数学家们发明了很多种算法,在保证收敛级数的和不变的前提下,又让发散级数确实能算出一个东西来,这就是发散级数和,也就是视频里计算出来的那个东西。

但是要注意,视频里加来加去的计算只是发现了发散级数的和,但并不能给出良性的定义,也就不是严格意义上的发散级数求和,所以千万不要觉得数学家和物理学家是在胡闹,更不要对科学的严谨产生怀疑。

那么,如何计算发散级数和呢?

事实上,发散级数和有许多种算法,这些方法强度不同,但结果一致,这里先捡一个最简单也最弱的“切萨罗求和”。

恩纳斯托·切萨罗(Ernesto Cesàro,1859-1906)

切萨罗求和(Cesàro summation)是意大利数学家恩纳斯托·切萨罗(Ernesto

Cesàro)发明的发散级数求和法。对于一个发散级数,对它的部分和数列S n求前n项的平均值,即令

如果t n有极限,那么这个极限就是发散级数的和,称为切萨罗和。不难体会到,切萨罗和本质上是在求数学期望,视频里辅助用的级数1-1+1-1+……=1/2那个“平均一下”就是这么来的。

当n无穷增大的时候,分子上的1只有n的一半那么多,所以它显然是1/2。

这个乍看怪异的级数和首先由意大利数学家路易吉·格兰迪(Luigi Guido Grandi)于1703年发现,因此被称为格兰迪级数,当时被当作一个佯谬。后来那个著名流体力学奠基者,荷兰数学家丹尼尔·伯努利(Daniel Bernoulli),以及瑞士的大数学家莱昂哈德·欧拉(Leonhard Euler)都对它做过研究,一直都是争议的焦点。直到19世纪才由切萨罗等人提出了这样的良好定义。

路易吉·格兰迪(Luigi Guido Grandi,1761-1742)

莱昂哈德·欧拉(Leonhard Euler,1718–1781)

丹尼尔·伯努利(Daniel Bernoulli,1700-1782)

而到了量子物理时代,格兰迪级数及其衍生级数意外的变得有用——这或许让你联想起薛定谔的猫,要么是死(0)要么是活(1),那它就是半死不活(1/2)。但它们的关系显然不是这么幼稚简单,它被用来研究量子化的费米子场(费米子包括组成实体万物的基本粒子,比如电子、质子、中子,以及中微子这样极其重要的基本粒子),它们同时具有正的和负的本征值。另外在玻色子(比如光子)的研究中,格兰迪级数也有戏份,比如揭示宇宙中“真空不空”的“卡西米尔效应”

而格兰迪级数最重要的衍生级数,就是视频里的另一个辅助用的级数:

个级数和的时候错开了一位,但实际上错开多少位结果都一样,例如错开两位:

当然,欧拉这样的数学大师是用了更复杂的方法才发现了它,并被当作另一个佯谬提出。这个佯谬直到19世纪80年代初才由刚才的恩那斯托·切萨罗等人研究出了定义良好的计算方法,但是,这个级数不能直接用上面的切萨罗求和计算,因为t n仍然没有极限,需要做一些复杂的扩展,这里就不加说明了,或者采用下面灰字部分的阿贝尔求和也能轻易算出——如果你不想看,不看也可以。

阿贝尔求和(Abel summation)来自挪威数学家尼尔斯·阿贝尔(Niels Henrik Abel)在幂级数研究上的总要结果阿贝尔定理(不要介意这个定理是干什么用的)。

如果|x|<1,且幂级数(也就是级数中的每一项都有一个指数)

收敛,那么

就是级数

的阿贝尔和。

虽然看上去比较玄,但明白了其中的意思就是“比1小但无限接近于1”,就能明白就是一个无限接近1的数,整个算法也就不难明白了。

下面再给出一种更简单,同时也更巧妙的算法:

看明白了吗?把两个格兰迪级数“相乘”(实际上是一种被称为柯西乘积的数列卷积,但是这两个数列的数字实在简单,恰好与直接乘法结果一致),可以用一个棋盘格子表示其结果中的每一项,黑色表示1,红色表示-1,那么斜着数一数黑红格子数,就可以数出1个黑的、2个红的、3个黑的、4个红的……,也就是1-2+3-4+……,所以

有没有觉得很有趣?

现在回到最初的问题上来,“全体自然数的和是-1/12?”

是一个发散得非常厉害的级数,不论切萨罗求和还是阿贝尔求和都强度不够,对它无能为力。真正给出这个发散级数的良性定义的计算方法的,是印度数学家斯里尼瓦瑟·拉马努詹(Srinivasa Ramanujan)给出的拉马努詹求和。但这个求和非常复杂:

若函数f(x)在x=1处不发散,那么令

C(0)就是级数的拉马努詹和了……好吧,恐怕没有足够数学基础的人是无法看懂了,所以我并不打算在这里讲述——能看懂的人不需要我这样的水平来讲;看不懂的人我这样的水平也讲不了。不过可以简单介绍一下拉马努詹这个人,因为他是一个传奇的数学神才——天才只是一个更加优秀的常人,但神才是一个超出常人理解的存在,一个开了外挂的存在。他从没有接受过高等数学教育,却仅凭直觉就能直接发现惊人的数学公式,证明他正确工作就甩给天才们了——于是留下了一连串的拉马努詹猜想,而绝大多数都被证明正确。

斯里尼瓦瑟·拉马努詹(Srinivasa

Ramanujan,1887-1920)

他总能用直觉和洞察力给出不可思议的数学公式,比如他发现:

又如他重病时,他在剑桥大学的导师哈代前去探望,哈代说:“我乘计程车来,车牌号码是1729,这数真没趣,希望不是不祥之兆。”拉马努詹答道:“不,那是个有趣得很的数。可以用两个立方之和来表达而且有两种表达方式的数之中,1729是最小的。”(即1729是1和12的立方和,也是9和10的立方和,后来这类数称为的士数。)说完不久,拉马努詹就病死了……

后来哈代这样评价他:

“他的知识的缺陷和他的深刻一样令人吃惊。这是一个能够发现模方程和定理的人……直到前所未闻的地步,他对连分数的掌握……超出了世界上任何一个数学家,他自己发现了ζ函数的泛函方程和解析数论中的很多著名问题的主导项;但他却没有听说过双周期函数或者柯西定理,对复变函数只有最模糊的概念……”

拉马努金的传奇故事还有很多,这里点到为止,有兴趣的同学可以自行查阅。

除了拉马努詹求和,全体自然数组成的发散级数还可以用黎曼ζ函数计算,这里给出维基百科的页面,如果上过大学数学,应该能获得感性认识。

另外,这里额外补充一个发散级数:

也就是无穷多个1相加,在通常的认识里,它也就是无穷大的化身——但是作为一个发散级数,同样可以用拉马努詹求和或者采用黎曼ζ函数计算,结果是-1/2。这实在让人难以置信,但同样在物理学上有切实的意义——所以在21世纪初一次巴塞罗那的报告会上,两位杰出的物理学家A. Slavnov和F. Yndurain 不约而同地说道:“各位都知道,1 + 1 + 1 + 1 + … = ?1?2——含义是:如果您不知道这个,那么继续听下去是没有意义的。”(Elizalde, Emilio (2004). "Cosmology: Techniques and Applications".)

好,这就是日志的结尾了,重申开头部分提过的那句话:全体自然数之和等于-1/12并不是加法游戏搞出来的代数和,而是将其作为发散级数,经过严谨的定义计算获得的发散级数和,只有声明它是切萨罗和、阿贝尔和、拉马努詹和或者任何级数和才有意义。而这个级数和同样在物理学中有重要应用,特别是在当代物理的量子论和弦论当中。

另外,还需谨记:数学和科学永远严谨,一丝不苟,如果你发现其中有看似荒唐或者怪异的结论——请先跳出自己常识认知的藩篱,了解其中的深意再做评价。举个最常见的例子,陈景润证明哥德巴赫猜想时得出了“任何充分大的偶数都是两个自然数的和,一个质因数不超过1个(即质数),另一个的质因数不超2个”,简称“1+2”,如果一听到这个简称就跑出去说“陈景润证明了1+2=3”,并且藉此说“到现在数学都没证明1+1=2”,那就真是太可笑了——我初三的数学老师就是这么一个家伙,我很讨厌他,因为他欺负我。

另外,本人非数学专业,欢迎指正。

连续自然数的和

题目描述 对一个给定的自然数M,求出所有的连续的自然数段,这些连续的自然数段中的全部数之和为M。例子:1998+1999+2000+2001+2002 = 10000,所以从1998到2002的一个自然数段为 M=10000的一个解。 输入格式 包含一个整数的单独一行给出M的值(10 <= M <= 2,000,000)。 输出格式 每行两个自然数,给出一个满足条件的连续自然数段中的第一个数和最后一个数,两数之间用一个空 格隔开,所有输出行的第一个按从小到大的升序排列,对于给定的输入数据,保证至少有一个解。样例输入 样例输出 试验程序: multimap> Continuation(int n) { multimap> mm; vector temp,nn; int i,j,k; for(i=1;i<=n/2;i++) { k=i; temp.clear(); temp.push_back(i); for(j=i+1;j<=(n/2+1);j++) { k+=j; temp.push_back(j);

if(k==n) { nn.push_back(*temp.begin()); nn.push_back(*(--temp.end())); mm.insert(pair>(temp.size(),nn)); nn.clear(); break; } else if(k>n) break; } } return mm; } 主函数调用为: #include"stdafx.h" #include"example24_apply_offer2.h" void main() { multimap> cc; multimap>::iterator pos; vector kk; vector::iterator kkpos; cc=Continuation(10000); for(pos=cc.begin();pos!=cc.end();++pos) { for(kkpos=(pos->second).begin();kkpos != (pos->second).end();++kkpos) cout<<*kkpos<<" "; cout<

求一个自然数的约数的个数,和所有约数的和

求一个自然数的约数的个数,和所有约数的和6=2·3=(2^1)·(3^1), 所以6的约数的个数:1,2,3,6共4个, 也可如此算:(1+1)(1+1)=4 所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1) 因为(2^0+2^1)(3^0+3^1)=(1+2)(1+3)=1×1+1×3+2×1+2×3=1+3+2+6 12=2×2×3=(2^2) ×(3^1), 所以12的约数的个数:1,2,3,4,6,12共6个,也可如此算:(1+2)(1+1)=6 所有约数的和1+3+2+6+4+12 ,也可如此算:(2^0+2^1+2^2)(3^0+3^1) 因为(2^0+2^1+2^2)(3^0+3^1)= (1+2+4)(1+3)=1×1+1×3+2×1+2×3+4×1+4×3=1+3+2+6+4+12………… 72=2×2×2×3×3=(2^3)·(3^2) 所以72约数的个数:(1+3)(1+2)=12 所有约数的和: (2^0+2^1+2^2+2^3)(3^0+3^1+3^2)=(1+2+4+8)(1+3+9)=195 240=2·2·2·2·3·5=(2^4 )·3·5

所以240约数的个数:(1+4)(1+1)(1+1)=20 所有约数的和: (2^0+2^1+2^2+2^3+2^4)(3^0+3^1)(5^0+5^1)=(1+2+4+8+16)(1+3)(1+ 5)=744 【这里解释一下:240的质因数有2,3和5 ,即240的约数由质因数2,3,5构成,其中因数2可能出现0个,1个,2个,3个,4个,共5 种情况;因数3可能出现0个,1个,共2种情况;因数5可能出现0个,1个,共2种情况。所以,240的约数个数为5×2×2=20个】 练习 1、1998的所有约数的和是多少? 解:1998=2×3×3×3×37 =2^1×3^3×37 约数有:(1+1)×(3+1)×(1+1)=16个 约数和:(2^0+2^1)(3^0+3^1+3^2+3^3)(37^0+37^1)=4560 2、720的所有约数的倒数之和是多少? 解:因为720=2×2×2×2×3×3×5=2^4×3^2×5^1 所以720的约数之和为(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)×(5^0+5^1)=31×13×6 所以720的所有约数的倒数之和是31×13×6/720=403/120

自然数的有关性质

自然数的有关性质 一、知识要点 1、最大公约数 定义1 如果a1,a2,…,an 和d 都是正整数,且d ∣a1, d ∣a2,…, d ∣an ,那么d 叫做a1,a2,…,an 的公约数。公约数中最大的叫做a1,a2,…,an 的最大公约数,记作(a1,a2,…,an). 如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4. 2、最小公倍数 定义2 如果a1,a2,…,an 和m 都是正整数,且a1∣m, a2∣m,…, an ∣m ,那么m 叫做a1,a2,…,an 的公倍数。公倍数中最小的数叫做a1,a2,…,an 的最小公倍数,记作[a1,a2,…,an]. 如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24. 3、最大公约数和最小公倍数的性质 性质1 若a ∣b,则(a,b)=a. 性质2 若(a,b)=d,且n 为正整数,则(na,nb)=nd. 性质3 若n ∣a, n ∣b,则. 性质4 若a=bq+r (0≤r

性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。 性质5若 b ∣a,则[a,b]=a. 性质6若[a,b]=m,且n 为正整数,则[na,nb]=nm. 性质7若n ∣a, n ∣b, 则. 4、数的整除性 定义3 对于整数a 和不为零的整数b ,如果存在整数q ,使得a=bq 成立,则就称b 整除a 或a 被b 整除,记作b ∣a ,若b ∣a ,我们也称a 是b 倍数;若b 不能整除a ,记作ba 5、数的整除性的性质 性质1 若a ∣b ,b ∣c ,则a ∣c 性质2 若c∣a,c∣b,则c∣(a±b) 性质3 若b ∣a, n 为整数,则b ∣na 6、同余 定义4 设m 是大于1的整数,如果整数a ,b 的差被m 整除,我们就说a ,b 关于模m 同余,记作 a ≡b(mod m) 7、同余的性质 性质1 如果a ≡b(mod m),c ≡d(mod m), 那么a ±c ≡b ±d(mod m),ac ≡bd(mod m) 性质2 如果a ≡b(mod m),那么对任意整数k 有ka ≡kb(mod m) []n b a n b n a ,,=??????

自然数平方和

这里的自然数指的是不包含0的传统自然数。 1^2+2^2+3^2+4^2+.......n^2=? (n^2表示n×n=n2为了好打字) 一、推导 1、直接推导: 1+2+3+4+……+n=(1+n)*n/2 + + 2+3+4+……+n=(2+n)*(n-1)/2 + + 3+4+……+n=(3+n)*(n-2)/2 + + . . . . (i+1)+……+n=(n+i+1)*(n-i)/2 (i=0,……,n-1) || || S = (2*n^3+3*n^2+n-2S)/4 两边求一下得所求S 此法较为直观正规 2、用其他的公式推导: 容易证明1x2 + 2x3 + 3x4 + 4x5 +...+ nx(n+1)=1/3xn(n+1)(n+2)(数学归纳法易证,而左式可写成 1x2 + 2x3 + 3x4 + 4x5 + nx(n+1)=(1x1 + 2x2 + ... + nxn)+(1+2+...+n) 于是 1x1 + 2x2 + ... + nxn=1/3xn(n+1)(n+2)-1/2xn(n+1)=1/6xn(n+1)(2n+1) 3、二项式推导: 2^3=1^3+3*1^2+3*1+1 3^3=2^3+3*2^2+3*2+1 4^3=3^3+3*3^2+3*3+1 ....... (n+1)^3=n^3+3*n^2+3^n+1 sum up both sides substract common terms: (n+1)^3=3*b+3*(n+1)*n/2+n+1==> solve for b b=1^2+2^2+...+n^2 此法需要较强的基本功,属奥妙之作 4、立方差公式推导(此法高中生都能看懂吧)

自然数平方和公式的推导与证明

※自然数之和公式的推导 法计算1,2,3,…,n,…的前n项的和: 由 1 + 2 + … + n-1 + n n + n-1 + … + 2 + 1 (n+1)+(n+1)+ … +(n+1)+(n+1) 可知 上面这种加法叫“倒序相加法” ※等差数列求和公式的推导 一般地,称为数列的前n项的和,用表示,即 1、思考:受高斯的启示,我们这里可以用什么方法去求和呢? 思考后知道,也可以用“倒序相加法”进行求和。 我们用两种方法表示: ① ② 由①+②,得

由此得到等差数列的前n项和的公式 对于这个公式,我们知道:只要知道等差数列首项、尾项和项数就可以求等差数列前n项和了。 2、除此之外,等差数列还有其他方法(读基础教好学生要介绍) 当然,对于等差数列求和公式的推导,也可以有其他的推导途径。例如: = = = = 这两个公式是可以相互转化的。把代入中,就可以得到 引导学生思考这两个公式的结构特征得到:第一个公式反映了等差数列的任意的第k项与倒数第k项的和等于首项与末项的和这个内在性质。第二个公式反映了等差数列的前n项和与它的首项、公差之间的关系,而且是关于n的“二次 函数”,可以与二次函数进行比较。这两个公式的共同点都是知道和n,不同 点是第一个公式还需知道,而第二个公式是要知道d,解题时还需要根据已知条件决定选用哪个公式。

自然数平方和公式的推导与证明(一) 12+22+32+…+n2=n(n+1)(2n+1)/6,在高中数学中是用数学归纳法证明的一个命题,没有给出其直接的推导过程。其实,该求和公式的直接推导并不复杂,也没有超出初中数学内容。 一、设:S=12+22+32+…+n2 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2,此步设题是解题另设:S 1 的关键,一般人不会这么去设想。有了此步设题, 第一:S =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2中的12+22+32+…+n2=S,1 (n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以展开为(n2+2n+12)+( n2+2×2n+22) +( n2+2×3n+32)+…+( n2+2×nn+n2)=n3+2n(1+2+3+…+n)+ 12+22+32+…+n2,即 =2S+n3+2n(1+2+3+...+n).. (1) S 1 =12+22+32+…+n2+(n+1)2+(n+2)2+(n+3)2+…+(n+n)2可以写为: 第二:S 1 =12+32+52…+ (2n-1)2+22+42+62…+(2n)2,其中: S 1 22+42+62...+(2n)2=22(12+22+32+...+n2)=4S.. (2) 12+32+52…+(2n-1)2=(2×1-1)2+(2×2-1)2+(2×3-1) 2+…+ (2n-1) 2 = (22×12-2×2×1+1) +(22×22-2×2×2+1)2+(22×32-2×2×3+1)2+…+ (22×n2-2×2×n+1)2 =22×12+22×22+22×32+…+22×n2-2×2×1-2×2×2-2×2×3-…-2×2×n+n =22×(12+22+32+…+n2)-2×2 (1+2+3+…+n)+n =4S-4(1+2+3+…+n)+n……………………………………………………………..(3 ) 由(2)+ (3)得: =8S-4(1+2+3+...+n)+n.. (4) S 1 由(1)与(4)得:2S+ n3+2n(1+2+3+…+n) =8S-4(1+2+3+…+n)+n 即:6S= n3+2n(1+2+3+…+n)+ 4(1+2+3+…+n)-n = n[n2+n(1+n)+2(1+n)-1] = n(2n2+3n+1)

我对人工数和自然数的认识

我对自然数和人工数的认识 我对自然数和人工数的认识,主要是基于对伽莫夫所著的《从一到无穷大》中自然数和人工数这一章的些许感想。这一部分主要是对数论的简单介绍,其自然数指的是本身就有的数,例如质数,奇数等等;而人工数是指原来没有的数,数学家们为了解释或解决一些问题而创造出来的新数,例如虚数等。本篇论文就是基于伽莫夫的著作并融入自己的感想,向大家介绍质数,整数和虚数的发展既有趣的故事,因为在某种程度上,他们就是自然数和人工数的代表。 迄今为止,数学还有一个大分支没有找到与其他学科相关联的用处,这就是所谓的“数论”,它是最古老的一门数学分支,也是纯粹数学思维的最错综复杂的产物。 首先,我们来探讨质数的问题。所谓质数,就是不能用两个或两个以上较小整数的乘积来表示的数,如1,2,3,5,7,11,13,17,等等。而12可以写成2×2×3,所以就不是质数。 那质数的数目是无穷无尽、没有终极的呢,还是存在一个最大的质数,即凡是比这个最大质数还大的数都可以表为几个质数的乘积呢?这个问题是欧几里得(Euclid)最先想到的,他自己还作了一个简单而优美的证明,证明没有“最大的质数”,质数数目的延伸是不受任何限制的。他是根据反证法:假设已知质数的个数是有限的,最大的一个用N表示。现在让我们把所有已知的质数都乘起来,再加上1。这写成数学式是:(1×2×3×5×7×11×13×……×N)+1。这个数当然比我们所假设的“最大质数”N大得多。但是,十分明显,这个数是不能被到 N 为止(包括N在内)的任何一个质数除尽的,因为从这个数的产生方式就可以看出,拿任何质数来除它,都会剩下1。因此,这个数要么本身也是个质数,要么是能被比N还大的质数整除。而这两种可能性都和原先关于N为最大质数的假设相矛盾。既然知道质数的数目是无限的,那是否有求质数的公式呢?这个问题至今没有解决。我想正是因为这是数论问题,过于纯粹,所以证明起来需要极为严格,所以也就很难证明。 数论中一个极其富于挑战性的猜想是1742年提出的所谓“哥德巴赫(Goldbach)猜想”。这是一个迄今既没有被证明也没有被推翻的定理,内容是:任何一个偶数都能表示为两个质数之和。尽管有很多人去证明,但最多也只是将

求一个自然数的约数的个数和所有约数的和

求一个自然数的约数的个数和所有约数的和 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

求一个自然数的约数的个数,和所有约数的和6=2·3=(2^1)·(3^1), 所以6的约数的个数:1,2,3,6共4个, 也可如此算:(1+1)(1+1)=4 所有约数的和1+3+2+6 ,也可如此算:(2^0+2^1)(3^0+3^1) 因为(2^0+2^1)(3^0+3^1)=(1+2)(1+3)=1×1+1×3+2×1+2×3=1+3+2+6 12=2×2×3=(2^2) ×(3^1), 所以12的约数的个数:1,2,3,4,6,12共6个,也可如此算: (1+2)(1+1)=6 所有约数的和1+3+2+6+4+12 ,也可如此算:(2^0+2^1+2^2)(3^0+3^1) 因为(2^0+2^1+2^2)(3^0+3^1)= (1+2+4)(1+3)=1×1+1×3+2×1+2×3+4×1+4×3=1+3+2+6+4+12………… 72=2×2×2×3×3=(2^3)·(3^2) 所以72约数的个数:(1+3)(1+2)=12 所有约数的和: (2^0+2^1+2^2+2^3)(3^0+3^1+3^2)=(1+2+4+8)(1+3+9)=195

240=2·2·2·2·3·5=(2^4 )·3·5 所以240约数的个数:(1+4)(1+1)(1+1)=20 所有约数的和: (2^0+2^1+2^2+2^3+2^4)(3^0+3^1)(5^0+5^1)=(1+2+4+8+16)(1+3)(1+5) =744 【这里解释一下:240的质因数有2,3和5 ,即240的约数由质因数2,3,5构成,其中因数2可能出现0个,1个,2个,3个,4个,共5种情况;因数3可能出现0个,1个,共2种情况;因数5可能出现0个,1个,共2种情况。所以,240的约数个数为5×2×2=20个】 练习 1、1998的所有约数的和是多少? 解:1998=2×3×3×3×37 =2^1×3^3×37 约数有:(1+1)×(3+1)×(1+1)=16个 约数和:(2^0+2^1)(3^0+3^1+3^2+3^3)(37^0+37^1)=4560 2、720的所有约数的倒数之和是多少? 解:因为720=2×2×2×2×3×3×5=2^4×3^2×5^1 所以720的约数之和为(2^0+2^1+2^2+2^3+2^4)×(3^0+3^1+3^2)×(5^0+5^1)=31×13×6

七年级数学竞赛讲座01 自然数的有关性质

七年级数学竞赛讲座01 自然数的有关性质 自然数的有关性质 一、一、知识要点 1、1、最大公约数 定义1如果a1,a2,…,a n和d都是正整数,且d∣a1,d∣a2,…, d∣a n,那么d叫做a1,a2,…,a n的公约数。公约数中最大的叫做a1,a2,…,a n的最大公约数,记作(a1,a2,…,a n). 如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4. 2、2、最小公倍数 定义2如果a1,a2,…,a n和m都是正整数,且a1∣m, a2∣m,…, a n∣m,那么m叫做a1,a2,…,a n 的公倍数。公倍数中最小的数叫做a1,a2,…,a n的最小公倍数,记作[a1,a2,…,a n]. 如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24. 3、3、最大公约数和最小公倍数的性质 性质1 若a∣b,则(a,b)=a. 性质2 若(a,b)=d,且n为正整数,则(na,nb)=nd. 性质3 若n∣a, n∣b,则 () n b a n b n a, ,= ? ? ? ? ? . 性质4 若a=bq+r (0≤r

求连续自然数平方和的公式

求连续自然数平方和的公式 前面,在“求连续自然数立方和的公式”一中,介绍了用列表法推导公式的过程。这种方法浅显易懂,有它突出的优越性。在“有趣的图形数”一文中,也曾经用图形法推出过求连续自然数平方和的公式: 12+22+32…+n 2=6 ) 12)(1(++n n n 这里用列表法再来推导一下这个公式,进一步体会列表法的优点。 首先,算出从1开始的一些连续自然数的和与平方和,列出下表: n 1 2 3 4 5 6 …… 1+2+3+…+n 1 3 6 10 15 21 …… 12+22+32+…+n 2 1 5 14 30 55 91 …… 然后,以连续自然数的平方和为分子,连续自然数的和为分母,构成分数 A n =n n ++++++++ 3213212 222, 再根据表中的数据,算出分数A n 的值,列出下表: n 1 2 3 4 5 6 …… A n 1 35 37 3 311 313 …… 观察发现,A n 的通项公式是3 1 2+n 。 既然A n =n n ++++++++ 3213212222,而它的通项公式是3 1 2+n ,于是大胆猜想 n n ++++++++ 3213212222=3 1 2+n 。 因为分母1+2+3+…+n =2 ) 1(+n n , 所以 2)1(3212222+++++n n n =31 2+n 。 由此得到 12+22+32…+n 2= 2)1(+n n ×312+n =6 ) 12)(1(++n n n 。 即 12+22+32…+n 2= 6 ) 12)(1(++n n n 。

用数学归纳法很容易证明等式的正确性,这样就轻而易举地推出了求连续自然数平方和的公式。 这个妙不可言的推导过程是数学家波利亚的杰作,关键之处是他运用了“猜想—证明”的思路。联想到当年著名文学家胡适也曾经有过“大胆假设,小心求证”的名言。看来,无论数学也好,文学也好,追求真理的道路是相通的。 这件事对我们教师有什么启示吗?有,那就是:切莫轻视了对学生观察、类比和猜想能力的培养,这往往是培育创新思维的有效途径。

自然数和整数的联系与区别是什么[1]

1、自然数和整数的联系与区别是什么? 自然数:0、1、2、3……;整数:-3、-2、-1、0、1、2、3……; 自然数是整数的一部分,最小的自然数是0,没有最大的自然数; 没有最小的整数,也没有最大的整数。 2、如何根据一个算式说出倍数与因数的关系?要注意什么? 2×8=16,可以说()是()的倍数,()是()的因数。 我们只在()数(0 除外)范围内研究倍数和因数。 3、如何找一个数的倍数? 100以内所有的8的倍数: 4、如何找一个数的因数? ①33的因数: ②54的因数: ③21的因数: ④一个数既是9的倍数,又是54的因数,这个数可能是 5、2、3、5的倍数各有什么特征? 5的倍数的特征:个位是()或()的数。比如25,()、()、() 2的倍数的特征:个位是()或()、()、()、()的数;比如18,() 3的倍数的特征:每个数位上的数字()是3的倍数的数。比如111,() 既是2的倍数,也是5的倍数:个位上是()。 6、什么是奇数?什么是偶数?怎么判断更快? 奇数:个位是()或()、()、()、()的数;比如19,27,() 偶数:个位是()或()、()、()、()的数; 判断一个数是奇数还是偶数看这个数的()位就可以了。1879578是()数 7、什么是质数?什么是合数?如何判断更快? 质数:只有()和()两个因数的数;最小的质数是()。20以内的所有质数是 合数:除了有1和它本身两个因数,还有别的因数;最小的合数是()。 合数最少有()个因数。()既不是质数,也不是合数。 把1,2,15,23,36,57,102,213这些数中,奇数有(),偶数有(),质数有(),合数有()。 8、猜一猜。 1、我是比3大,比7小的奇数。我是() 2、我和另一个数都是质数,我们的和是15。这两个数是我是()和() 3、我是一个偶数,是一个两位数,十位数字与个位数字的积是18。我是() 9、奇数+奇数=();偶数+偶数=();奇数+偶数=() 863+2079=()数, 985987-15=()数 10、把杯子口朝上,放在桌上,翻动1次后杯子口朝下,翻动2次后杯口朝上。翻动10次后,杯

自然数和整数(有答案)

一.选择题(共14小题) 1.两个质数的积一定是() A.质数B.合数C.奇数D.偶数 2.a,b是两个自然数,且a=2×3×5×b,则b一定是a的() A.质因数B.质数C.约数D.互质数 3.在自然数中,凡是5的倍数() A.一定是质数B.一定是合数 C.可能是质数,也可能是合数 4.一个合数的因数有() A.无数个B.2个 C.三个或三个以上 5.正方形的边长是质数,它的周长和面积一定是() A.奇数B.合数C.质数 6.一个两位数个位数字既是偶数又是质数,十位数字既不是质数又不是合数,则这个两位数是() A.32 B.16 C.12 7.有5个不同质因数的最小自然数是() A.32 B.72 C.180 D.2310 8.在任何质数上加1,它们的和是() A.合数B.偶数C.奇数D.不能确定 9.下面四句话中,正确的有()句. (1)最小合数是最小质数的倍数; (2)三角形的面积一定,它的底和高成反比例; (3)某厂去年一至十二月份的生产数量统计后,制成条形统计图,它更能反映月与月之间的变化情况; (4)据统计,大多数的汽车事故发生在中等速度的行驶中,极少数事故发生的

速度大于150km/h的行驶过程中,这说明高速行驶比较安全. A.1句 B.2句 C.3句 D.4句 10.两个质数的积一定是() A.质数B.奇数C.合数D.偶数 11.把60分解质因数是60=() A.1×2×2×3×5 B.2×2×3×5 C.3×4×5 12.要使三位数43□是2和3的公倍数,在□中有()种填法. A.0 B.1 C.2 D.3 13.下面四个数都是自然数,其中S表示0,N表示任意的非零数字,那么这四个数中()一定既是2的倍数,又是3的倍数. A.NNNSNN B.NSSNSS C.NSNSNS D.NSNSSS 14.下列算式中是整除的是() A.14÷0.7=20 B.11÷5=2.2 C.143÷13=11 D.15÷2=7.5 二.填空题(共16小题) 15.30以内的质数中,有个质数加上2以后,结果仍然是质数.16.如果a是质数,那么它有个因数,最大的因数是;如果b=a ×3,那么a和b的最小公倍数是. 17.1到9的九个数字中,相邻的两个数都是质数的是和,相邻的两个数都是合数的是和. 18.连续三个非零的自然数中,必有一个是合数..(判断对错)19.公因数的两个数,叫做互质数.相邻的两个非0整数是互质数;1和其他任意一个自然数一定组成互素数. 20.的两个自然数叫做互素数.分子、分母是的分数叫做简分数.21.在2,5,9,15,23,57这些自然数中,是素数,是合数;是奇数,是偶数;即是偶数又是素数,即是奇数又是合数.

关于自然数数列前n项和公式证明

自然数平方与立方数列前n 项和公式证明 huangjianwxyx 以下公式,尤其是二、三公式的推导体现了递推消项数学思想。 一、证明:Sn=∑=n k k 1=1+2+3+…+n =(1+n)n/2 证:(略) 二、证明:Sn=∑=n k k 12=12+22+32+…+n2= [n(n +1)(2n +1)]/6 证: (n +1)3-n3=(n3+3n2+3n +1)-n3=3n2+3n +1,则: 23-13=3×12+3×1+1(n 从1开始) 33-23=3×22+3×2+1 43-33=3×32+3×3+1 53-43=3×42+3×4+1 63-53=3×52+3×5+1 … (n +1)3-n3=3×n2+3×n +1(至n 结束) 上面左右所有的式子分别相加,得: (n +1)3-13=3×[12+22+32+…+n2]+3×[1+2+3+…+n]+n ∴ (n +1)3-1=3Sn +3×[n(n +1)/2]+n ∴Sn=12+22+32+…+n2= [n(n +1)(2n +1)]/6 三、证明:Sn=∑=n k k 13=13+23+.....+n 3=n 2(n+1)2/4=[n(n+1)/2] 2 证: (n+1) 4-n 4=[(n+1)2+n 2][(n+1)2-n 2]=(2n 2+2n+1)(2n+1)=4n 3+6n 2+4n+1则: 24-14=4*13+6*12+4*1+1 (n 从1开始) 34-24=4*23+6*22+4*2+1 44-34=4*33+6*32+4*3+1 ... (n+1) 4-n 4=4*n 3+6*n 2+4*n+1(至n 结束) 上面左右所有的式子分别相加,得: (n+1) 4-1=4*(13+23+.....+n 3)+6*(12+22+32+…+n2)+4*(1+2+3+...+n)+n ∴4*(13+23+.....+n 3)= (n+1) 4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n =[n(n+1)]2 ∴Sn=13+23+.....+n 3=[n(n+1)/2] 2

自然数的和,平方和,立方和

For personal use only in study and research; not for commercial use 求:①自然数(一次方)的和,即:n ++++ 321 ②自然数平方(二次方)的和,即:2222321n ++++ ③自然数立方(三次方)的和,即:3333321n ++++ 求①式可用2)1(+n 来计算;求②式可用3)1(+n 来计算;求③式可用4)1(+n 来计算 ① ∵12)1(22++=+n n n ∴ 1121222+?+= …… 将以上等式两边相加得: ∴ n ++++ 3212 )1(+= n n ② ∵3)1(+n = 13323+++n n n ∴ 1131312233+?+?+= …… 3)1(+n = 13323+++n n n 将以上等式两边相加得: )321(32222n ++++? = 3)1(+n —?? ????++?+n n n 2)1(313 ∴ 2222321n ++++ = 6 )12)(1(++n n n ③ 用同样的方法,可得: 3333321n ++++ = 4)1(22+n n = 22)1(?? ? ??+n n 自然数的立方和等于自然数和的平方。 利用上面三个结论,我们就可以计算下面数列的和了。 ④ )321()321()21(1n +++++++++++ ∵n ++++ 3212)1(+=n n = n n 2 1212+

∴ 12 112112?+?= …… n ++++ 321 = n n 2 1212+ 将上面各式左右两边分别相加,得: )321()321()21(1n +++++++++++ = )321(2 12222n ++++ = ?? ? ??++++2)1(6)12)(1(21n n n n n = 6 )2)(1(++n n n ⑤ )1(433221+++?+?+?n n = 3 )2)(1(++n n n ⑥ )2)(1(543432321++++??+??+??n n n = 4)3)(2)(1(+++n n n n

找一个数因数的方法

找一个数因数的方法 最近,在数学教学中,发现学生对于找一个数的因数时所用的方法有些复杂。在讲解一道数学题时,无意中却发现了一个规律,这个规律可以提高学生 的计算速度。在这里和大家共同来分享一下。比如:请找出64和90的所有因数。 这时候你会用什么方法去做呢?用你的方法试试看。 现在,我用发现的这个方法来示范一下,就拿上面的例子来看! 方法一:我们先来找64的因数,直接用64去除 1、2、3、4、5……,一直除到除数和商是同一个数时,就不再去除了。另外可以少走些弯路,64不是3的倍数,也不是5的倍数,那么就可以不用去除3和5。现在看,64÷1=64、64÷2=32、64÷4=16,64不能被6和7整除,接着, 64÷8=8;现在就不用往下除了,在这些算式中就可以找出64的所有因数,64 的因数有1,64,2,32,4,16,8。(也就是等号左右两边的数) 在来找90的因数,同上面, 90÷1=90、90÷2=45、90÷3=30、90÷5=18、90÷6=15、90÷9=10、90÷10=9 。当我们除到除数和商交换位置(90÷9=10、90÷10=9,先是除以9,等于 10,又是除以10,等于9)就不用除了。90的因数有 1,90,2,45,3,30,5,18,6,15,9,10。 我总结了一下,找一个数的因数,就用这个数从1开始去除,一直除到除 数和商交换位置或除数和商相同,然后找出等号左右两边的数,这些数就是要 找的这个数的因数,重复的因数,只写一个。 方法二:我们先来找90的因数,找90的质因数, 90=10×9=2×5×3×3 所以64的因数:2、 3 、5、2×5=10、2×3=6、 5×3=15、3×3=9、2×5×3=30、5×3×3=45、2×3×3=182×5×3×3=90 所以 90的因数有:1、2、3、5、6、9、10、15、18、30、45、90. 以上不对和不恰当的地方,请各位指正。

充满奥秘的自然数

充满奥秘的自然数 ——完全数、亲和数 自然数是我们最熟悉的数了。几乎从记事起,人们就与自然数打交道,但认真想起来,我们对自然数的认识却是很肤浅的。 计数意识起源于人类对于一一对应关系的直觉.,当一个原始人发现有两只狼同时逼近时,他在惊呼的同时可能会不自觉地伸出两个手指将这一坏消息传达给他的同伴。这样,利用一只手的手指,就可表达从1到5这5个数,因此两只手就可表达10个数。为了知道一群牛有多少头、一堆鸡蛋有多少只,用手指头数个数。首先,伸出大拇指对准一头牛,再伸出食指对准另一头牛,继而用中指对准下一头牛,如此继续,便知道这群牛的头数。亚里士多德就曾经指出:“十进制的广泛使用,是由绝大多数人生有10个手指和10个脚趾这一生理特征决定的。”为了将重要的数目保存下来,人类摸索出多种记数方法,有的运用小石子或小树枝记数,有的在树干或骨管上刻痕记数,有的则用打绳结的办法记数。我国古书《易系辞》说:“上古结绳而治,后世圣人易之以书契。”就是说我国祖先早在使用文字之前,曾经用过结绳记数的办法。 古希腊数学家和哲学家认为,自然数1、2、3、4、5……是上帝创造的,它主宰宇宙万物,这也许是因为自然数本来存在于自然界,并非人造的事物;或许是因为自然数是生产其它一切数的原料;或许是因为自然数是现实世界最基本的数量,是全部数学的发源地……这个文明古国的数学家和哲学家们,对自然数顶礼膜拜,并不遗余力地探索它的规律。所有文明古国的数学家,都投入到征服自然数的行列。 自然数好像无所不在,无所不能,人类须臾不能离开;它又那么美妙,那么和谐;它好像很简单,可又神秘莫测。人类受到进取精神的激发,在征服自然界的进程中,首先要向自然数的奥秘发起攻击。如同探索生命与宇宙的奥秘一样,至今人们已经揭示出自然数中的许多规律,树立了一座座丰碑。但是,时至今日,在原始的、朴素的自然数面前,人们仍然显得软弱无力。寻求自然数内部的本质规律,是对宇宙中智慧生物的严峻挑战。 早在几千年前,人们就知道每一个自然数都可分解为素数的乘积。而且知道,如果不计因数的顺序,分解形式是唯一的。这个定理后人称之为“算术基本定理”,是欧几里得最早证明的。但是这个定理没有告诉我们如何分解,而且至今都没有找到一种简捷的方

斯特林数和自然数前m项n次方的求和公式

斯特林数和自然数前m 项n 次方的求和公式 将 n 个元素,分成 k 个非空子集,不同的分配方法种数,称为斯特林数(Stirling Number ),记为),(k n S ,n k ≤≤1。 例如,将4个物体d c b a ,,,分成3个非空子集,有下列6种方法: )}(),(),,{(d c b a ,)}(),(),,{(d b c a ,)}(),(),,{(c b d a , )}(),(),,{(d a c b ,)}(),(),,{(c a d b ,)}(),(),,{(b a d c 。 所以,6)3,4(=S 。 斯特林数),(k n S 的值列表如下: 容易看出,有 1),()1,(==n n S n S ,12)2,(1 -=-n n S ,2 )1,(2 = =-C n n S n 。定理1 当 n k ≤≤2 时,有 ),()1,(),1(k n kS k n S k n S +-=+ 。 证 把1+n 个元素分成k 个非空子集,有),1(k n S +种不同分法。 把1+n 个元素分成k 个非空子集,也可以这样考虑:或者将第1+n 个元素单独作为1个子集,其余n 个元素分成1-k 个非空子集,这种情况下有)1,(-k n S 种不同做法;或者先将前n 个元素分成k 个非空子集,有),(k n S 种分法,再将第1+n 个元素插入这k 个子集,有k 种选择,这种情况下有k ),(k n S 种不同做法。所以共有),()1,(k n kS k n S +-种分法。 两种考虑,结果应该是一样的,因此有 ),()1,(),1(k n kS k n S k n S +-=+ 。 如果规定当1时,0),(=k n S ,则公式 ),()1,(),1(k n kS k n S k n S +-=+对 任何正整数n 和任何整数k 都成立。

一个数的因数的个数是

一个数的因数的个数是()的,其中最小的因数是(),最大的因数是()。一个数的倍数的个数是()的,其中最小的倍数是()。 18的因数有()。 写出30以内3的倍数() 5、一个数的最小倍数减去它的最大因数,差是()。 6、一个自然数比20小,它既是2的倍数,又有因数7,这个自然数是()。 7、我是54的因数,又是9的倍数,同时我的因数有2和3。() 8、我是50以内7的倍数,我的其中一个因数是4。() 9、我是30的因数,又是2和5的倍数。() 10、我是36的因数,也是2和3的倍数,而且比15小。() 11、根据算式25×4=100,()是()的因数,()也是()的因数;()是()的倍数,()也是()的倍数。 12、在18、29、45、30、17、72、58、43、75、100中,2的倍数有();3的倍数有();5的倍数有( ),既是2的倍数又是5的倍数有(),既是3 的倍数又是5的倍数有()。 13、48的最小倍数是(),最大因数是()。最小因数是()。 14、用5、6、7这三个数字,组成是5的倍数的三位数是();组成一个是3的倍数的最小三位数是()。 15、一个自然数的最大因数是24,这个数是()。 16、从0、3、5、7、这4个数中,选出三个组成三位数。 (1)组成的数是2的倍数有:() (2)组成的数是5的倍数有:()。 (3)组成的数是3的倍数有:() 它是42的因数又是7的倍数,它可能是()。 它的最大因数和最小倍数都是18,它是()。 它的最小倍数是1,它是()。 二、判断题 1、任何自然数,它的最大因数和最小倍数都是它本身。( ) 2、一个数的倍数一定大于这个数的因数。( ) 3、个位上是0的数都是2和5的倍数。( ) 4、一个数的因数的个数是有限的,一个数的倍数的个数是无限的。( ) 5、5是因数,10是倍数。( ) 6、36的全部因数是2、3、4、6、9、12和18,共有7个。( ) 7、因为18÷9=2,所以18是倍数,9是因数。( ) 9、任何一个自然数最少有两个因数。( ) 10、一个数如果是24的倍数,则这个数一定是4和8的倍数。( ) 11、15的倍数有15、30、45。( ) 12、一个自然数越大,它的因数个数就越多。( ) 13、15的因数有3和5。( ) 14、8的因数只有2,4。( ) 三、选择题 1、15的最大因数是(),最小倍数是()。 ①1 ②3 ③5 ④15 2、在14=2×7中,2和7都是14的()。

自然数平方和公式推导

我们把S(n)拆成数字排成的直角三角形: 1 2 2 3 3 3 4 4 4 4 …… n n …… n 这个三角形第一行数字的和为12,第二行数字和为22,……第n行数字和为n2,因此S(n)可以看作这个三角形里所有数字的和 接下来我们注意到三角形列上的数字,左起第一列是1,2,3,……,n,第二列是2,3,4,……n 这些列的数字和可以用等差数列的前n项和来算出,但是它们共性不明显,无法加以利用 如果求的数字和是1,2,3,……,n,1,2,3,……,n-1这样的,便可以像求 1+(1+2)+(1+2+3)+(1+2+3+……n)一样算出结果,那么该怎样构造出这样的列数字呢 注意上面那个直角三角三角形空缺的部分,将它补全成一个正方形的话,是这样的: 1 1 1 (1) 2 2 2 (2) 3 3 3 (3) 4 4 4 (4) …… n n n …… n 这个正方形所有的数字和为n*(1+n)*n/2=n3/2+n2/2 而我们补上的数字是哪些呢? 1 1 1 …… 1 (n-1)个的1 2 2 …… 2 (n-2)个的2 3 …… 3 (n-3)个的3 ……… n-1 又一个直角三角形,我们只需算出这个三角形的数字和T(n),再用刚才算的正方形数字和减去它,便能得到要求的S(n),即S(n)=n3/2+n2/2-T(n)。而这个三角形的每一列数字和很好算,第一列是1,第二列是1+2,第三列是1+2+3,……,

最后一列(第n-1列)是1+2+3+……+n-1,根据等差数列前n项和公式,这个三角形第n列的数字和是(1+n)*n/2=n2/2+n/2,所以T(n)相当于 (12/2+1/2)+(22/2+2/2)+(32/2+3/2)……+[(n-1)2/2+(n-1)/2] 将各个扩号内的第一项和第二项分别相加,得 T(n)=[12+22+32+……+(n-1)2]/2+(1+2+3+……+n-1)/2 =S(n-1)/2+(n-1)*n/4 =S(n-1)/2+n2/4-n/4 也就是说,S(n)=n3/2+n2/2-T(n) =n3/2+n2/2-S(n-1)-n2/4+n/4 =n3/2+n2/4+n/4-S(n-1)/2 ……① 因为S(n)=12+22+32+……+n2,S(n-1)=12+22+32+……+(n-1)2 可以看出,S(n)=S(n-1)+n2,即S(n-1)=S(n)-n2,代入①式,得到 S(n)=n3/2+n2/4+n/4-S(n)/2+n2/2 3S(n)/2=n3/2+3n2/4+n/4 3S(n)=n3+3n2/2+n/2 S(n)=n3/3+3n2/6+n/6 上面这个式子就是我们熟悉的S(n)=n(n+1)(2n+1)/6 另外一种经典的方法

相关文档
最新文档