数学分析中求极限的方法总结

数学分析中求极限的方法总结
数学分析中求极限的方法总结

数学分析中求极限的方法总结

1 利用极限的四则运算法则和简单技巧

极限的四则运算法则叙述如下: 定理1.1

(1

(2(3)若B ≠0

(4(5)[]

0lim ()lim (

)n

n

n x x x x f x f x →→??==A ????

(n 为自然数) i

由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。

例1. 求225

lim 3

x x x →+-的极限

解:由定理中的第三式可以知道

()()222

22

lim 55lim 3lim 3x x x x x x x →→→++=--

22

2

2

2

lim lim5

lim lim3x x x

x x x →→→→+=

+

2259

23+=

=--

例2. 求3

x →

(

)(

()(

)

3312

1

2

12

lim lim 312

x x x x x x x →→+-+++-=-++

()(

)

3

lim

312x x x →=-++

1

4=

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知()11112231n x n n =

+++??-?L L ,求lim n n x →∞

解: 观察

11=1122-? 111

=2323-

? ()()111=n 1n n-1n

--? 因此得到 ()11112231n x n n

=+++??-?L L

1111111

1223311n n n

=-+-+-+---L L

1

1n =-

所以1lim lim 11n n n x n →∞→∞

??

=-= ???

2 利用导数的定义求极限

导数的定义:函数f(x)在0x 附近有定义,χ??,则

()()

00y f x x f x ?=+?-

如果

()()000lim

lim

x x f x x f x y

x x ?→?→+?-?=?? 存在,

则此极限值就称函数f(x)在点0x 的导数记为()0'f x 。

在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0x 的导数。

例4.

()212lim

'22x x f x f x f πππ→

??

- ?

??

==??- ???

12=

3 利用两个重要极限公式求极限

两个极限公式: (1

(2

)1lim 1x

x e x →∞

??

+= ???

但我们经常使用的是它们的变形:

(1,

(2

例5:x

x x x 10

)

1()

21(

lim +-→

解:为了利用极限e x x

x =+→1

)1(lim 故把原式括号内式子拆成两项,使得第一项为1,

第二项和括号外的指数互为倒数进行配平。

x

x x x 1

0)

1()21(lim +-→=x

x x

x 1

0)131(lim +-+→

1x 13x

3x x 1x

03x =lim 11x x +-??-+→-??+ ?+??

=313

310])131[(lim -+--+→=+-+

e x x x

x x

x

例6:20cos 1lim

x x

x -→

解:将分母变形 后再化成“0/0”型 所以

20cos 1lim

x x x -→

=22

02sin 2lim x x

x → =21)2

(2sin 21lim 220=→x x x

例7: 求

x

x x 1

)21(lim +→的极限

解:原式=221

210)21()21(lim e x x x

x x =??

?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 4 利用函数的连续性

因为一切初等函数在其定义区间内都是连续的,所以如果)(x f 是初等函数,且0

x 是)(x f 的定义区间内的点, 则)

()(lim 00x f x f x x =→。

例8: 61

2arcsin

lim 1+→x x 解 :因为复合函数arcsin 是初等函数,而x 1→是其定义区间内的点,所以极限值就等于该点处的函数值.因此

61

2arcsin

612arcsin

lim 1+=+→x x x

1=arcsin =

26π

例8:求x

x sin ln lim 2

π

解: 复合函数x sin ln 在2

π

=x 处是连续的,所以在这点的极限值就等于该点处

的函数值

即有2sin ln sin ln lim 2

π

π

=→

x x

=1

ln 2

sin

lim =π

=0 5 利用两个准则求极限。

(1) 函数极限的迫敛性:若一正整数 N,当n>N 时,有n n n x y z ≤≤且

lim lim ,n n x x x z a →∞→∞==则有 lim n x y a

→∞=。

利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。

n x =

+

例9 : 求n x 的极限

解:因为n x 单调递减,所以存在最大项和最小项

.......n x ≥

+

=

.......n x ≤

+=

n x ≤

又因为

1

x x ==

lim 1

n x x →∞

=

(2 ) 单调有界准则:单调有界数列必有极限,而且极限唯一。

例12:设)1110,1,2,n x x n n +===L 。试证数列{}n x 的极限存在, 并求此极限。

解: 由110x =及24x =知12x x ≥。

设对某个正整数k 有1k k x x +≥, 则有21166+++=+>+=k k k k x x x x

从而由数学归纳法可知, 对一切自然数n , 都有1+>n n x x , 即数列}{n x 单调下降, 由已知易见...)2,1(0

=>n x n 即有下界,

根据“单调有界的数列必有极限”这一定理可知存在。 令A x n n =∞

→lim 对n n x x +=+61两边取极限,

有A =2

60A -A -=解得A=3,或2A =-。

因为...)2,1(0

=>n x n ,所以0A ≥,舍去2A =-,故lim 3n n x →∞

=

6 利用洛必达法则求未定式的极限

定义6.1:若当x a →(或x →∞)时,函数()f x 和()F x 都趋于零(或无穷大),

则极限)()(lim

)

(x F x f x a

x ∞→→可能存在、也可能不存在,通常称为0

0型和∞

型未定式。 例如:

x

x x tan lim 0→, (00

型);

bx ax x sin ln sin ln lim

→, (∞

型).

定理6.2:设 (1)当x →∞时, 函数()f x 和()F x 都趋于零;

(2)在a 点的某去心邻域内,()'f x 和()'F x 都存在且()'0F x ≠; (3) )()

(lim

)

(x F x f x a

x ∞→→存在(或无穷大),

)()

(lim

)

()(lim

x F x f x F x f a x a

x ''=→→ 定义6.3:这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值

的方法称为洛必达法则.

例10:x x x

x x x 222220sin cos sin lim

-→

在利用洛比达法则求极限时,为使计算更加快捷减少运算中的诸多不便,可

用适当的代换,并注意观察所求极限的类型如下例,

例11:求

lim 0+

→x x

e x

-1

解:

lim 0+

→x x

e

x

-1=11

1lim lim 00-=-=-++→→t

t t t e e t

洛必达法则通常适用于以下类型:

0?∞

型:

例12 求lim (arctan )

2x x x π

→+∞-.

解 原式222

1arctan 112lim lim lim 11111x x x x x x x x

π

→+∞→+∞→+∞-+====+. ∞-∞

型:

例13 求 ()

2lim sec tan x x x π

→-.

1sin 1sin sec tan cos cos cos x x x x x x x --=

-=Q ,

故原式22

1sin cos lim

lim 0

cos sin x x x x x x ππ→→--===-. 0

0型:

例14 求0lim x

x x +→.

解 原式

ln 0lim ln ln 0

lim lim 1

x x

x

x e x x x

x x e e e +

→+

+

→→====.

1∞

型:

例15 求lim 1x

x e x →∞??+ ?

??.

解 原式lim 1x e e

e

x e e x →∞??=+= ?

??

.

∞型:

例16 求tan 01lim ()x

x x +→.

解 原式tan ln tan 01

lim ln()tan ln 0

lim lim x x

x

x e x x

x

x x e e e

-+

→+

+

-→→===,

tan ~00

lim(tan ln )lim(ln )0x x x x x x x x +

+

→→-???→-=,因此:原式=1.

7. 用泰勒展式来求极限

用此法必须熟记基本初等函数的展开式,它将原来函数求极限的问题转化为

求多项式或有理分式的极限问题。对于和或差中的项不能用其等价无穷小代替的情形, 有时可用项的泰勒展开式来代替该项, 使运算十分简便。

例17:4

2

02

cos lim

x e x x x -→-

解:因为

)

(!4!21cos 44

2x o x x x ++-=

所以

例18:)]

1ln([lim 2x x x +-+∞→解:因为当x →+∞

)

()

1(()1(*211ln(22+∞→+-=+x x o x x x

从而

+∞

→+-=+x o x x x )

1(2

1

11ln(2

于是

)]11([lim 2x x x x +

-+∞→11lim[(1)]22x o →+∞=+=

注意:如果该题利用其他方法就不容易做了。 8. 利用定积分求极限

由于定积分是一个有特殊结构和式的极限,这样又可利用定积分的值求出某一和数的极限.若要利用定积分求极限,其关键在于将和数化成某一特殊结构的和式。凡每一项可提1/n,而余下的项可用通式写成n 项之和的形式的表达式,一般可用定积分的定义去求 。

利用定积分可求如下二种形式的极限:

n n n f n f n f x )(...)2(1(lim

+++∞

→型 定理8.1:设()f x 在[0,1]上可积,则有

?

=

+++∞→1

)()(...)2()1(lim dx

x f n

n n

f n f n f x

例19:求极限n n n n n

x +++∞→...21lim 解:令()f x x =,()f x 在[0,1]上可积。

10

12...1lim 2x n n n n xdx n →∞

+++

==? n x n

n

f n f n f )(...)2()1(lim +++∞→型 定理8.2:若)(x f 在[0,1]上可积,则

10[ln ()]

x epx f x dx =?

例20:求n n n

x !

lim

解:

令()f x x =,则有:

n n n

x !lim

→ 11

0[ln ]x epx xdx e -===?

例21:求

)21

2111(

lim n n n n +++++∞

解:把此极限式化为某个积分和的极限式,并转化为计算计算定积分,为此作如下变形:

n n

i J n

i n 1

11

1

lim ?

+=∑

=∞

→ 不难看出,其中的和式是函数发

x x f +=

11

)(在区间[]

1,0上的一个积分和。(这

里所取的是等分分割,

,1

n x i =

? ????

??-∈=n i n i n i i ,1ε(..2.1n i ??????=), 所以

2

ln )1ln(11

10=+=+=??x x dx J 当然,也可把J 看作

x x f 1

)(=

在[]2,1上的定积分,同样有

2ln 13221

=??????=-==??

x dx x dx

J

9. 利用无穷小的性质求极限i

我们知道在某一过程中为无穷大量的倒数是无穷小量;有界函数与无穷小量的乘积, 仍是无穷小量。利用这两个定理可以求出某些函数的极限。

例22:237

4lim 2

1+--→x x x x 解:当1x →时分母的极限为0,而分子的极限不为0,可先求出所给函数的倒数是无穷大量:

2374lim

21+--→x x x x = 742

31-+- = 0

利用无穷小量的倒数是无穷大量 故 2

37

4lim 21+--→x x x x =∞ 例23:极限x x x x sin 1

sin

lim

20→

解:x x x x sin 1

sin

lim

20→

01

lim sin

sin x x x x

x →=** 因为 1sin lim 0=→x

x

x ;

当0x →时,x 为无穷小量,1

sin x 为有界量,

故01

sin

lim 0

=*→x

x x ; 所以原式=0。

例24

解:因为1

sin

1x

≤所以x 1sin 是有界函数

1lim

3

=+∞

→x

x x

3

1x x +在x →∞时是无穷小量。

利用无穷小量与有界函数的乘积还是无穷小量。 所以

011

sin lim

3

=+∞

→x x x x .

10. 利用等价无穷小的代换求极限 利用等价无穷小代换求函数的极限时,一般只在以乘除形式出现时使用,若以和、差形式出现时,不要轻易代换,因为经此代换后,往往会改变无穷小之比的阶数,故此慎用为好。常见等价无穷小量

(0→x )

x x x e x x x x

~arctan ~arcsin ~1~)1ln(~tan ~sin -+等价无穷小有重要性质:设'

'

~,~ββαα且''lim αβ存在,则αβlim =''

lim α

β,这个性质表明,求

两个无穷小量之比的极限时,分子,分母均可用等价无穷小量之比的极限时,分子,

分母均可用等价无穷小量代替,从而使计算大大简化 。i

例25:极限x x

tg x 5sin 3lim

0→

解:当0→x 时,x

x x x tg 5~5sin ,3~3,

x x x x tg x x 53lim

5sin 3lim 00→→=53

= 例26:求极限302sin sin 2lim

x x

x x -→

解:302sin sin 2lim

x x

x x -→

=

20

)

cos 1(2sin lim

x x x x x -*→

=1

1lim 22

0=*→x x x

错误的解法是:022lim 2sin sin 2lim 3030

=-=-→→x

x x x x x x x (错在对加减中的某一项进行了等价无穷小代换)

11. 利用级数收敛的必要条件求极限i

给出一数列n u ,对应一个级数∑∞

=1n n u 若能判定此级数收敛, 则必有

lim =∞

→n n u 。由于判别级数收敛的方法较多, 因而用这种方法判定一些以零为极

限的数列极限较多方便。

例27:求极限)

1,1(,

!)1)...(1(lim -∈+--∞→x x n n a a a n

n

解: 设级数∑

=+--0!)1)...(1(n n

x

n n a a a

其中 n

n x n n a a a u !

)1)...(1(+--=

1

1)!1())(1)..(1(+++-+--=

n n x

n n a n a a a u

x n n a u u n n

n n 1lim lim

1+-=∞→+∞→1

<=x 由达朗贝尔判别法知级数收敛,再由级数收敛的必要条件0lim =∞

→n n u 可知:

)

1,1(,

0!)1)...(1(lim

-∈=+--∞→x x n n a a a n

n

例28:求极限n n n n n !

2lim

*∞→

解:设n n n n n n u !

2lim

*=∞→ 级数∑∞

=1n n u 为n 2项级数。

由比值审敛法:!2)!1()!1(2lim 2lim 11n n n n u u n

n

n n n n n **++*=+∞→+∞→

=n

n n n

)1(

2lim +∞

=n n n

)11(12lim +*

→ =1

2

=*1

!

2n n

n n

n 收敛, 故

n n n n n !2lim *∞→=0

12 . 利用极限定义验证极限

用极限定义验证极限,是极限问题的一个难点。做这类题目的关键是对任意给定的正数ε,如何找出定义中所说的N 或η确实存在。这实际上是利用逆推的方法论证问题,可以培养逆向思维能力。

例27 :1

1lim 355

=+-+∞→n n n n 证:任给0

>ε要找N ,使N n >时,有

ε<-+-11

3

55

n n n

ε<+--1

1

3

53n n n , 显然,当n 较大时,如2≥n ,有

)

211()111(111

253

525

3355

-≤

+--=

-+-n n n n n n n n n

=

2134n ,

因此要使ε<+--11

35

3n n n 成立, 当n>=2时,只要

ε<2

1

34n

ε34

2>

n 或ε34>n 。

这样一来,取)]34

[

,2max(ε

=N ,则当n>N 时, 则有2>n 及ε34

>

n

, 因此上述各式成立。证毕。

13. 涉及单侧极限与双侧极限的问题 例28:求函数1

1)(+++=x x x f 在1-=x 处的左右极限,并说明在1-=x 处是否有

极限。

解:

2)11

1(lim )(lim 1

1

=+++

=++-→-→x x x f x x , 0)1

)

1(1(lim )(lim 1

1

=++-+

=-+-→-→x x x f x x , 因为

)

(lim )(lim 1

1

x f x f x x -+-→-→≠,

所以f(x)在x=-1处的极限不存在。

利用该方法就极限时,只有当左右极限存在且相等是才能说明极限是存在的 注:本例是a x f x f a

x f x x x x x x ===-+

→→→)(lim )(lim )(lim 0

00

的直接应用。

14. 利用微分中值定理和积分中值定理求极限

例29:3sin 022lim

x x

x x -→

解:因为

3sin 3sin sin sin 2222x x

x x x x x x x x -=--=-

由微分中值定理

2ln 2sin 22sin ε=--x

x x

x (ε介于x 与x sin 之间)

原式=30sin 0sin lim *sin 22lim

x x

x x x x x x x ---→→

=2

00

3cos 1lim

)2ln 2(lim x x x -*→→εε=

62

ln 例30:求3

sin 022lim x x

x x -→的极限

解: 3sin 3

sin sin sin 2222x x x x x x x x x x -?--=-

由微分中值定理得,

2

ln 2sin 22sin ζ=--x x x

x (ζ介于x 与x sin 之间)

原式=()

62ln 3cos 12ln 2sin sin 222

0030sin 0

lim lim lim lim =-?=-?--→→→→x x x x x x x x x x x x ζ

ζ 15. 利用柯西准则来求数列极限。

柯西准则:要使}{n x 有极限的充要条件使任给0ε>,存在自然数N ,使得当n>N 时,对于 任意的自然数m 有ε<-+n m n x x i

例31:n x n 1

...31211++++=没有极限。

证明:对任意的n ,取m=n,我们有

n

n n m n x x x x 2-=-+

=

21

21...2121...2111=++≥+++++n n n n n

因此,对于21

0=ε,对任意的N ,当n>N 时,取m=n 就有

n n n m n x x x x 2-=-+21

0=

≥ε

即变量n x 没有极限。 16.换元法求极限

当一个函数的解析式比较复杂或不便于观察时,可采用换元的方法加以变形,使之简化易求。

例32 1

lim (1)x

x x →-∞

+. 解 令

x t =-,则原式=1lim 1t t t -→+∞??- ???1lim t t t t -→+∞-??= ???1

11lim 1111t t t t -→+∞

????=+?+ ? ?--????=e 例33:求11

lim

ln x x x x x →-

解:令 1x

t x =-

l n l n (1)x t =+

()

t 0

t 0

1

lim ln t+1=lim

=1t →→

16. 数列极限转为函数极限求解

例34 求21

lim (1sin )

n n n n →∞

-. 解 令1t n =,则原式2320001sin sin 1cos lim (1)lim lim

3t t t t t t t

t

t t t →→→--=-==, 所以在0t →时,1cos t

-与212t 等价,因此,原式2

0212lim 13

t t

t →=16=.

在实际学习中很多题是多种方法综合运用求解的。所以求极限时,首先观察数列或函数的形式.选择适当方法,只有方法得当,才能准确、快速、灵活的求解极限。

求极限的方法总结

学号:0 学年论文 求极限的方法总结 Method of Limit 学院理学院专业班级 学生指导教师(职称) 完成时间年月日至年月日

摘要 极限的概念是高等数学中最重要、最基本的概念之一。许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。因此掌握好求极限的方法对学好高等数学是十分重要的。但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。 关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理

Abstract The concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference. Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem

求极限方法总结全

极限求解总结 1、极限运算法则 设lim n →∞ a a =a ,lim n →∞ a a =a ,则 (1) lim n →∞ (a a ±a a )=lim n →∞ a a ±lim n →∞ a a =a ±a ; (2) lim n →∞ a a a a =lim n →∞ a a lim n →∞ a a =aa ; (3) lim n →∞a a a a = lim n →∞a a lim n →∞ a a = a a (a ≠0). 2、函数极限与数列极限的关系 如果极限lim x →a 0 a (a )存在,{a a }为函数a (a )的定义域内任一收敛于a 0的数列,且满 足:a a ≠a 0(a ∈a +),那么相应的函数值数列{a (a )}必收敛,且lim a →∞ a (a a )= lim a →a 0 a (a ) 3、定理 (1) 有限个无穷小的和也是无穷小; (2) 有界函数与无穷小的乘积是无穷小; 4、推论 (1) 常数与无穷小的乘积是无穷小; (2) 有限个无穷小的乘积也是无穷小;

(3)如果lim a(a)存在,而c为常数,则lim[aa(a)]=a lim a(a) (4)如果lim a(a)存在,而n是正整数,则lim[a(a)]a=[lim a(a)]a 5、复合函数的极限运算法则 设函数y=a[a(a)]是由函数u=a(a)与函数y=a(a)复合而成的,y=a[a(a)] 在点a0的某去心领域内有定义,若lim a→a0a(a)=a0,lim a→a0 a(a)=a,且存在a0> 0,当x∈U(a0,a0)时,有a(a)≠a0,则lim a→a0a[a(a)]=lim a→a0 a(a)=a 6、夹逼准则 如果 (1)当x∈U(a0,a)(或|a|>M)时,g(x)≤a(a)≤h(x) (2)lim a→a0(a→∞)a(a)=a,lim a→a0(a→∞) a(a)=a 那么lim a→a0(a→∞) a(a)存在,且等于A 7、两个重要极限 (1)lim a→0sin a a =1 (2)lim x→∞(1+1 x )x=a 8、求解极限的方法(1)提取因式法

《数学分析》中关于极限概念教学的一点探讨

《数学分析》中关于极限概念教学的一点探讨 作者:张彩霞 来源:《科技创新导报》2011年第12期 摘要:在初学数学分析时,共有二十八种极限概念,这些极限概念是数学分析的基础,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。教师在教学过程中要引导学生将各种极限概念的定性描述准确地转化为定量描述,并能深刻理解,逐渐灵活运用。 关键词:数学分析极限概念教学 中图分类号:G6 文献标识码:A 文章编号:1674-098X(2011)04(c)-0147-02 《数学分析》课程是大学数学系一门重要的基础课,对这门课程学习的好坏,直接影响到学生思维能力的形成及对后续课程的接受能力。学生从高中刚入大学,学习内容从原来的具体到抽象、从离散到连续、从有限到无限,使学生感到《数学分析》很难,特别是刚开始接触各种极限概念的定量描述,理解起来很吃力.而数学分析这门课程就其自身而言,有着理论上的严密性和前后的连贯性,极限概念是数学分析的基石,学生对各种极限概念的理解程度直接影响到对这门课程学习的成败。本人在教学过程中,深刻体会到关于极限概念教学的重要性。 在初学数学分析时,就有二十八种极限概念(包括正常极限和非正常极限),教师在教学过程中的任务是引导学生将这二十八种极限概念从定性描述准确地转化为定量描述。并使学生对各种极限概念的定量描述能深刻理解,逐渐灵活运用。 1 正常极限概念 1.1 数列极限概念 数列极限的概念是最开始要学习的极限概念,如果学生对这个概念能准确理解的话,对于理解接下来要学习的函数极限概念就容易多了,所以对数列极限概念的教学至关重要。 首先观察数列:: 特征:当无限增大时,无限接近于 此时称该数列收敛于0,或称0为该数列的极限。 “无限增大”和“无限接近”是对数列变化性态的一种形象描述,是定性的说明,而不是定量的描述,这在数学上无法进行严谨地论证。所以我们要定量地描述该数列的特征。

高等数学极限求法总结

高等数学极限求法总结 函数极限的求法 函数极限可以分成而运用ε-δ定义更多的见诸于已知的极极限值的证明 题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存 在正数,使得当x 满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函 数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法 则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条 件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求 lim( x 2 3x + 5). x→ 2 解: lim( x 2 3x + 5) = lim x 2 lim 3x + lim 5 = (lim x) 2 3 lim x + lim 5 = 2 2 3 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限 来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零 比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件:

数学分析中求极限的方法总结

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1: (1 (2(3)若B ≠ ((5)[] 0lim ()lim () n n n x x x x f x f x →→??==A ???? (n 为自然数) i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商. 例1。 求225 lim 3 x x x →+-的极限 解:由定理中的第三式可以知道 ()()22222 lim 55lim 3lim 3x x x x x x x →→→++=-- 22 2 2 2 lim lim5 lim lim3x x x x x x →→→→+= + 2259 23+ ==-- 例2. 求3 x →

33 22 x x →→ = 3 x→ = 1 4 = 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3。已知() 111 1223 1 n x n n =+++ ??-?, 解:观察 11 =1 122 - ? 111 = 2323 - ? 因此得到() 111 12231 n x n n =+++ ??-? 1111111 1 22 11 n n n =-+-+-+- -- 所以 1 lim lim11 n n n x n →∞→∞ ?? =-= ? ?? 2 利用导数的定义求极限 导数的定义:函数f(x) 如果 ()( ) 00 lim lim x x f x x f x y x x ?→?→ +?- ? = ?? 存在, 则此极限值就称函数f(x) () 'f x。 即

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

高等数学中极限问题的解法详析

数学分析中极限的求法 摘要:本文主要归纳了数学分析中求极限的十四种方法, 1:利用两个准则 求极限, 2:利用极限的四则运算性质求极限, 3:利用两个重要极限公式求极限, 4:利用单侧极限求极限,5:利用函数的连续性求极限, 6:利用无穷小量的性质求极限, 7:利用等价无穷小量代换求极限, 8:利用导数的定义求极限, 9:利用中值定理求极限, 10:利用洛必达法则求极限, 11:利用定积分求和式的极限,12:利用级数收敛的必要条件求极限, 13:利用泰勒展开式求极限, 14:利用换元法求极限。 关键词: 夹逼准则, 单调有界准则, 无穷小量的性质, 洛必达法则, 中 值定理, 定积分, 泰勒展开式, 级数收敛的必要条件. 极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y =f(x)在0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。 1:利用两个准则求极限。 (1)夹逼准则:若一正整数 N,当n>N 时,有n x ≤n y ≤n z 且lim lim ,n n x x x z a →∞→∞==则 有 lim n x y a →∞ = . 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{ } n y 和 { } n z ,使得n n n y x z ≤≤。 例[1] 222111 ....... 1 2 n x n n n n = + ++++ 求n x 的极限 解:因为n x 单调递减,所以存在最大项和最小项

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .0 x g x f x g x f x x x x x →→→±=± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?=? 又若0)(lim 0 ≠→x g x x ,则 ) () (x g x f 在0x x →时也存在,且有 )()()() (lim lim lim 0 x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、00 等情况,都不能直接用四则运算法则,必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 " 例1:求24 22 lim ---→x x x 解:原式=()()()022 22lim lim 22 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim 0 =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有

()()1sin lim 0=→x g x g x x 或()()1sin lim =∞ →x g x g x 例2:x x x -→ππ sin lim 解:令t=x -π.则sinx=sin(-π t)=sint, 且当π→x 时0→t 故 1sin sin lim lim 0 ==-→→t t x x t x ππ ~ 例3:求() 11 sin 21 lim --→x x x 解:原式=()()()()()()()211sin 1111sin 1221 21lim lim =--?+=-+-+→→x x x x x x x x x ②利用e x x =+∞→)1 1(lim 来求极限 e x x =+∞ →)1 1(lim 的另一种形式为e =+→α α α1 )1(lim .事实上,令 .1 x =α∞→x .0→?α所以=+=∞ →x x x e )11(lim e =+→ααα1 0)1(lim 例4: 求x x x 1 )21(lim +→的极限 解:原式=221 210)21()21(lim e x x x x x =?? ?+????+→ 利用这两个重要极限来求函数的极限时要仔细观察所给的函数形式只有形式符合或经过变化符合这两个重要极限的形式时才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。 ⒊利用等价无穷小量代换来求极限 所谓等价无穷小量即.1) () (lim =→x g x f x x 称)(x f 与)(x g 是0x x →时的等价无穷小量,记作)(x f )(~x g .)(0x x →.

数学分析中求极限的方法总结

数学分析中求极限的方 法总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

数学分析中求极限的方法总 结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5) [] 0lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 2 lim 3x x →-的极限 式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11 =112 2- ? 111=2323-?

因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点0 x 的导数。 例4. 3 利用两个重要极限公式求极限 两个极限公式: (1 (2)1lim 1x x e x →∞ ?? += ??? 但我们经常使用的是它们的变形: (1,

高数求极限的16种方法(超经典)高彦辉总结

L .+'''+.+'''+. + 天天快乐+ '+. .+' "+.+" 爱 爱爱 爱祝爱 爱愿爱 爱你爱 爱永爱 爱远爱 爱被爱 爱爱爱 爱包爱 爱围爱 爱爱 爱爱 爱爱 爱 漂亮吧!送给你,希望你会幸福一生,梦想成真! 高数中求极限的16种方法 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。

为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面。首先,对极限的总结如下: 极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。 1 .极限分为一般极限,数列极限(区别在于数列极限时发散的,是一般极限的一种) 2.解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是X趋近而不是N 趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!)必须是0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0LHopital 法则分为3中情况 1 0比0 无穷比无穷时候直接用2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)E的x展开sina 展开cos 展开ln1+x展开对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单!!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。7等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)8各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限)例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。这两个很重要!!!!!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(地2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法,非常方便的方法 就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方快于x!快于指数函数快于幂数函数 快于对数函数(画图也能看出速率的快慢)!!!!!!当x趋近无穷的时候他们的比值的极限一眼就能看出来了12 换元法是一种技巧,不会对模一道题目而言就只需要换元,但是换

数学分析3.4两个重要的极限

第三章函数极限(下载后可解决看不到公式的问题) 4 两个重要的极限 一、证明:=1. 证:∵sinx

∴=e. 注:e的另一种形式:=e. 证:令a=,则当a→0时,→∞,∴==e. 例3:求. 解:==e2. 例4:求. 解:==. 例5:求. 解:<→e(n→∞),又当n>1时有 =≥→e(n→∞,即→0). 由迫敛性定理得:=e.

习题 1、求下列极限: (1);(2);(3);(4);(5);(6);(7);(8);(9);(10). 解:(1)==2; (2)==··=0; (3)== -1; (4)=·=1; (5)=== ====; (6)令arctan x=y,则x=tany,且x→0时,y→0, ∴===1; (7)==1; (8)==·2sin a =··2sin a= sin2a; (9)==8=8; (10)=== 2、求下列极限:

高等数学求极限的16种方法

高等数学求极限的16种方法 首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限,还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在)e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记 (x趋近无穷的时候还原成无穷小) 2落笔他法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是 X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!)必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!) 必须是 0比0 无穷大比无穷大!!!!!!!!! 当然还要注意分母不能为0 落笔他法则分为3中情况 1 0比0 无穷比无穷时候直接用 2 0乘以无穷无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3 0的0次方1的无穷次方无穷的0次方 对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!!)

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

高等数学极限总结

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。 【关键词】高等数学极限技巧 《高等数学》极限运算技巧 《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。 一,极限的概念 从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限! 从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。 二,极限的运算技巧 我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助! 我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

1,连续函数的极限 这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。 2,不定型 我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。 第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个: 需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。 此外等价无穷小代换的使用,可以变通一些其他形式,比如: 等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。 当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。 在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

数学分析-数列极限

第二章 数列极限 §1 数列极限概念 教学目的与要求: 使同学们理解数列极限存在的定义,数列发散的定义,某一实数不是数列极限的定义;掌握用数列极限定义证明数列收敛发散的方法。 教学重点,难点: 数列极限存在和数列发散定义的理解;切实掌握数列收敛发散的定义,利用数列收敛或发散的定义证明数列的收敛或发散性。 教学内容: 一、课题引入 1°预备知识:数列的定义、记法、通项、项数等有关概念。 2°实例:战国时代哲学家庄周著《庄子·天下篇》引用一句话“一尺之棰, 日取其半,万古不竭。”将其“数学化”即得,每天截后剩余部分长度为(单位尺) 21,221,321,……,n 21 ,…… 或简记作数列:? ?????n 21 分析:1°、? ?? ???n 21随n 增大而减小,且无限接近于常数0; 2 二、数列极限定义 1°将上述实例一般化可得:

对数列{}n a ,若存在某常数a ,当n 无限增大时,a n 能无限接近常数a ,则称 该数为收敛数列,a 为它的极限。 例如:? ?? ???n 1, a=0; ??? ? ??-+n n )1(3, a=3; {}2 n , a 不存在,数列不收敛; {}n )1(-, a 不存在,数列不收敛; 2°将“n 无限增大时”,数学“符号化”为:“存在N ,当n >N 时” 将“a n 无限接近a ”例如对? ?? ? ??-+n n )1(()3以3为极限,对ε= 10 1 3)1(3--+ =-n a a n n =10 11π n 只需取N=10,即可 3°“抽象化”得“数列极限”的定义 定义:设{}n a 是一个数列,a 是一个确定的常数,若对任给的正数ε,总存在 某一自然数N ,使得当n >N 时,都有 a a n -<ε 则称数列{}n a 收敛于a ,a 为它的极限。记作 a a n n =∞ →lim {(或a n →a,(n →∞)) 说明 (1)若数列{}n a 没有极限,则称该数列为发散数列。 (2)数列极限定义的“符号化”记法:a a n n =∞ →lim ? ε ?>0,?N ,当n (3)上述定义中ε的双重性:ε>0是任意..

数学分析中求极限的方法总结

精心整理 数学分析中求极限的方法总结 1利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理1.1 (1 (2 (3 (4(5 例1.例2.例3.已知()11 1 1223 1n x n n = +++ ??-?解:观察 11=1122-?1 1=232-?因此得到()11 11223 1n x n n = +++ ??-?

所以1lim lim 11 n n n x n →∞→∞?? =-= ??? 2利用导数的定义求极限 导数的定义:函数f(x) 如果 存在, 即 的导数。 例 3(2 例5:x x x x 10 ) 1() 21( lim +-→ 解:为了利用极限e x x x =+→10 )1(lim 故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外

的指数互为倒数进行配平。 x x x x 1 0) 1() 21(lim +-→=x x x x 1 0131(lim +-+→ =313 310]131[(lim -+--+→=+-+ e x x x x x x 例6:20cos 1lim x x x -→ 解:将分母变形后再化成“0/0”型所以 例7:求 4例8:x 解:因为复合函数arcsin 是初等函数,而x 1→是其定义区间内的点,所以极限值就等于该点处的函数值.因此 例8:求x x sin ln lim 2 π → 解:复合函数x sin ln 在2 π = x 处是连续的,所以在这点的极限值就等于该点处的函数值 即有2sin ln sin ln lim 2 π π =→ x x

=1 ln 2 sin lim =π =0 5利用两个准则求极限。 (1)函数极限的迫敛性:若一正整数N,当n>N 时,有n n n x y z ≤≤且lim lim ,n n x x x z a →∞→∞==则有lim n x y a →∞=。 利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和{}n z ,使得n n n y x z ≤≤。 例9(2)例12)2,n 。试证数列解:由1x 即数列{令A x n n =∞ →lim 对n n x x +=+61两边取极限, 有A 2 60A -A -=解得A=3,或2A =-。 因为...)2,1(0 =>n x n ,所以0A ≥,舍去2A =-,故lim 3n n x →∞ = 6利用洛必达法则求未定式的极限 定义6.1:若当x a →(或x →∞)时,函数()f x 和()F x 都趋于零(或无穷大),则极限

相关文档
最新文档