第二章:固体催化剂的比表面和孔

合集下载

比表面积及孔径分析简介

比表面积及孔径分析简介

Ⅱ型和Ⅲ型等温线的特点
B
II型等温线一般由非孔或大孔固体产生。B点通常被作为单层吸附容 量结束的标志。 III型等温线以向相对压力轴凸出为特征。这种等温线在非孔或大孔 固体上发生弱的气-固相互作用时出现,而且不常见。
Ⅳ型等温线的特点
IV型等温线由介孔固体产生。典型特征是等温线的吸附曲线与脱附曲
描述吸附现象比较重要的数学方程有:
单分子层吸附理论•Langmuir方程(Ⅰ型等温线) 多分子层吸附理论•BET方程(Ⅱ型和Ⅲ型等温线) 毛细孔凝聚理论•Kelvin方程(Ⅳ和Ⅴ型等温线) 微孔填充理论•DR方程(Ⅰ型等温线) Ⅵ类等温线
单分子层吸附等温方程 ——朗格谬尔(Langmuir)等温方程 Irving Langmuir (1881-1957)
1.5 孔径的分类 (IUPAC Standard)
IUPAC 定义的孔大小分为: 微孔(micropore) < 2nm 中孔(mesopore) 2~50nm 大孔(macropore) > 50nm
微孔
中孔(介孔)
大孔
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
2.1 吸附现象:
比表面积及孔 径分 析 简 介
培训人: 张 曼 培训日期:2017-04-26
比表面积和孔径的定义 吸附理论 比表面积的计算 孔容和孔径分析计算
1.1 比表面积的定义
比表面积S(specific surface area):单位质量的粉体所具有的表面积总 和。分外表面积、内表面积两类。
公式:S=A/W
吸附平衡(adsorption equilibrium):吸附速率与脱附速率相等时,
表面上吸附的气体量维持不变。

【精品文章】固体催化剂宏观性质

【精品文章】固体催化剂宏观性质

固体催化剂宏观性质
固体催化剂的宏观性质主要包括两个方面:宏观结构和宏观性能。

 1、固体催化剂宏观结构
 图1 催化剂的宏观性质
 固体催化剂宏观结构主要包括:催化剂密度,如表观颗粒密度(假密度)、骨架密度(真密度)和表观堆积密度;颗粒形状和尺寸;比表面;孔结构,如孔径、孔径分布、孔容和孔隙率。

 1.1催化剂密度
 表观堆积密度:包含了颗粒间的空隙及内孔体积。

它是指以催化剂颗粒堆积时的体积为基准的密度,为它的数值随颗粒形状及装填方法而变化。

 测试方法:通常是将一定质量的催化剂放在量筒中,使量筒振动至体积不变后,测出表观体积Vb进而求得表观堆积密度。

 颗粒表观颗粒密度:又称假密度,包含了开口细孔及封闭内孔体积。

它是指以单个颗粒体积为基准的密度。

形状规则的大颗粒可直接测得其体积,小而不规则的颗粒通常采用汞置换法(利用汞在常压下只能进入粒径大于5000纳米孔的原理。

)测出颗粒间隙Vi后求得,但要注意可能存在的毛细管效应,因为小颗粒集聚体能形成汞不能渗入的颗粒间小孔。

 真密度:只含骨架体积,又称骨架密度,真密度是催化剂颗粒的真实平均密度,不含空隙及孔隙体积。

可用流体置换法测定。

通常用氦置换法测定多孔物质的真密度最精确,因为氦的有效原子半径仅为0.02nm,容易渗入非常细小的孔内。

第二章_催化剂的表面吸附和孔内扩散

第二章_催化剂的表面吸附和孔内扩散
11
主要内容
物理吸附与化学吸附
化学吸附类型和化学吸附态 吸附平衡与等温方程 催化剂表面的测定 催化剂的孔结构和孔内扩散
12
1
2 3 4
5
1.5.1 多相催化反应过程的主要步骤
13
2. 催化循环的建立 催化剂始态终态不改变:存在催化循环
活性中间 物进行化 学反应生 成产物
反应物化 学吸附生 成活性中 间物 催化剂得以 复原
33
烯烃与面心立方金属 [100]晶面原子成键类型。
34
2、金属氧化物表面
A、烯烃作为电子给体吸附在正离子上。
B、比在金属上的化学吸附要弱(主要是金属离 子的电子反馈能力比金属弱)。 C、烯烃的各种吸附态在一定条件下可以相互 转化。能发生双键异构化、顺反异构化、氢同 位素交换等反应。
35
五、炔烃的化学吸附态
31
M 孪生型
CO在Pt[100]面上化学吸附时的几何构型 (直线型,上;桥型,下)。
32
四、烯烃的化学吸附态
1、金属表面 既能发生缔合吸附也能发生解离吸附。这 主要取决于温度、氢的分压和金属表面是束吸 附氢等吸附条件。如乙烯在预吸附氢的金属表 面上发生σ型(如在Ni[111]面)和π型(如在 Pt[100]面两缔合吸附)。
3
2.1.1气体吸附常识 (commonsense on gas adsorption)
A. 固体表面的特点
附加原子 平台 平台空位 台阶附加原子
单原子台阶
扭结原子
4
固体表面的特点是: a. 固体表面上的原子或分子与液体一样,受力也是
不均匀的,所以固体表面也有表面张力和表面能
b.固体表面分子(原子)移动困难,只能靠吸附

第二章催化剂制备、性能评价及使用技术

第二章催化剂制备、性能评价及使用技术

第二章催化剂的制备、性能评价及使用技术1.多相催化剂常用哪些方法来制备?为什么制备固体催化剂都需要经过热处理,其目的是什么?多相催化剂常用的制备方法有:(1)天然资源的加工,结构不同,含量不同的硅铝酸盐采用不同的方法和条件加工后能适用于某一特定的催化反应;(2)浸渍法,将载体置于含活性组分的溶液中浸泡,达到平衡后将剩余液体除去,再经干燥、煅烧、活化等步骤即得催化剂。

此法要求浸渍溶液中所含活性组分溶解度大、结构稳定、受热后分解为稳定的化合物;(3)滚涂法和喷涂法,滚涂法是将活性组分先放在一个可摇动的容器中,再将载体布于其上,经过一段时间的滚动,活性组分逐渐粘附其上,为了提高滚涂效果,有时也添加一定的粘合剂。

喷涂法与滚涂法类似,但活性组分不同载体混在一起,而是用喷枪附于载体上;(4)沉淀法,在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。

将生成的沉淀物分离、洗涤、干燥后,即得催化剂;(5)共混合法:将活性组分与载体机械混合后,碾压至一定程度,再经挤条成型,最后缎烧活化;(6)沥滤法(骨架催化剂的制备方法),将活性组分金属和非活性金属在高温下做成合金,经过粉碎,再用苛性钠来溶解非活性金属即得;(7)离子交换法: 是在载体上金属离子交换而负载的方法, 合成沸石分子筛一般也是先做成Na型,需经离子交换后方显活性;(8) 均相络合催化别的固载化: 将均相催化剂的活性组分移植于载体上, 活性组分多为过渡金属配合物,载体包括无机载体和有机高分子载体。

优点是活性组分的分散性好,而且可根据需要改变金属离子的配体。

制备各固体催化剂,无论是浸渍法,沉淀法还是共混合法,有的钝态催化剂经过缎烧就可以转变为活泼态,有的还需要进一步活化。

所以,催化剂在制备好以后,往往还要活化;除了干燥外,还都需要较高温度的热处理-煅烧的目的:1)通过热分解除掉易挥发的组分而保留一定的化学组成,使催化剂具有稳定的催化性能。

第二章催化作用原理

第二章催化作用原理

本科课程讲义
sfsong
工业催化导论
多位理论对双位催化剂提出了模型,并认为最重要的能量因素是反应热(E )和
活化能(E) ,两者都可从键能求得
AB CD AD BC
K
K
K
AD
BC K
( a)
E' A D E' ' A D
BC
K (M)
BC
K (b)
吸附后生成表面活化络合物,放出能量 E( 放热为正)
|
—M——M———M
|
|
CH3 |
M—M—M || |

+H2O
R |
C=O
—M—
本科课程讲义
sfsong
工业催化导论
5 催化循环
催化反应过程中一方面催化剂促使反应物分子活化,另一方面又保证催化剂的再
生,此循环过程称为催化循环,这是催化反应的必要条件。
乙烯在Ni催化剂上加氢:C2H4+H2→C2H6
Rideal-Eley机理(R-E)
Langmuir- Hinshelwood机理(L-H)
C C +2K(催化剂)
C— C ||
+H2(气相)
KK
C— C
||
KK
H
C— CH + |
|
K
K
C— CH + H2 | K
2H—K
C2H6 + HK 2K + H2
C C +2K
H2 + 2K
C— C
||
本科课程讲义
sfsong
工业催化导论
2 催化作用理论的发展
中间化合物理论:反应物与催化剂生成中间化合物,再变为产物 过渡态理论:反应物分子与催化剂表面活性中心吸附形成吸附活化配合物,

催化剂常用制备方法

催化剂常用制备方法

催化剂常用制备方法固体催化剂的构成●载体(Al2O3 )●主催化剂(合成NH3中的Fe)●助催化剂(合成NH3中的K2O)●共催化剂(石油裂解SiO2-Al2O3催化剂制备的要点●多种化学组成的匹配–各组分一起协调作用的多功能催化剂●一定物理结构的控制–粒度、比表面、孔体积基本制备方法:⏹浸渍法(impregnating)⏹沉淀法(depositing)⏹沥滤法(leaching)⏹热熔融法(melting)⏹电解法(electrolyzing)⏹离子交换法(ion exchanging)⏹其它方法固体催化剂的孔结构(1)比表面积Sg比表面积:每克催化剂或吸附剂的总面积。

测定方法:根据多层吸附理论和BET方程进行测定和计算注意:测定的是总表面积,而具有催化活性的表面积(活性中心)只占总表面的很少一部分。

内表面积越大,活性位越多,反应面越大。

(2)催化剂的孔结构参数密度:堆密度、真密度、颗粒密度、视密度比孔容(Vg):1克催化剂中颗粒内部细孔的总体积.孔隙率(θ):颗粒内细孔的体积占颗粒总体积的分数.(一) 浸渍法⏹通常是将载体浸入可溶性而又易热分解的盐溶液(如硝酸盐、醋酸盐或铵盐等)中进行浸渍,然后干燥和焙烧。

⏹由于盐类的分解和还原,沉积在载体上的就是催化剂的活性组分。

浸渍法的原理●活性组份在载体表面上的吸附●毛细管压力使液体渗透到载体空隙内部●提高浸渍量(可抽真空或提高浸渍液温度)●活性组份在载体上的不均匀分布浸渍法的优点⏹第一,可使用现成的有一定外型和尺寸的载体材料,省去成型过程。

(如氧化铝,氧化硅,活性炭,浮石,活性白土等)⏹第二,可选择合适的载体以提供催化剂所需的物理结构待性.如比表面、孔径和强度等。

⏹第三,由于所浸渍的组分全部分布在载体表面,用量可减小,利用率较高,这对贵稀材料尤为重要。

⏹第四,所负载的量可直接由制备条件计算而得。

浸渍的方法⏹过量浸渍法⏹等量浸渍法⏹喷涂浸渍法⏹流动浸渍法1.1、过量浸渍法⏹即将载体泡入过量的浸渍液中,待吸附平衡后,过滤、干燥及焙烧后即成。

第二章--气固相催化反应本征动力学

第二章--气固相催化反应本征动力学

化学吸附速率方程的建立
Adsorption
(1)单位表面上的气体分子碰撞数
Z=
(
2
pA mkT
)
1 2
(2)吸附活化能Ea
(3)表面覆盖度 A
exp( Ea ) RgT
f (A )
The fraction of the surface covered by adsorbed species A.
1.1催化反应
• 催化的研究和发展对化学工业的变革起着决定性 的作用。
• 多种性能不同催化剂的开发促使同一产品在反应 器、生产流程甚至生产方法和原料方面都发生了 根本性的变革,使产品的投资、原料消耗等技术 经济指标不断优化,同时环境污染也不断减少。
• 催化反应可分为:均相催化和多相催化反应。
1.2 固体催化剂
有两类模型描述吸附等温线的规律: 均匀表面吸附和不均匀表面吸附模型。
这样,可写出净的吸附速率的表达式
r
A
pA
f
(A )exp(
Ea RgT
)

k
'
f
'( A )exp(
Ed RgT
)
二、理想吸附层等温方程
理想吸附层模型
Langmuir Adsorption Isotherm
(1)表面均匀(2)吸附分子间无相互作用 (3)动态平衡
载体 • 以多孔物质为主,如硅藻土、三氧化二铝等。 • 根据不同的需要,有不同的孔径和比表面。 • 强度高,是对载体的要求。 助催化剂
• 加入的量小,增加催化活性,增加选择性, 延长催化剂寿命
催化剂常用制备方法
(1) 共混合法 即将催化剂的各个组份作成浆状,经过充分的混合(如 在混炼机中)后成型干燥而得。

第2章催化剂的表面吸附

第2章催化剂的表面吸附

吸附位能曲线表示吸附质分子所具有的位能与其距 吸附表面距离之间的关系。下图描述了氢在镍表 面上吸附时的三种状态。
HH Ni Ni 氢分子物理吸附
HH Ni Ni
HH Ni Ni
过渡态
氢分子的化学吸附
精品课件
氢分子在镍表面上吸附的位能曲线及 表面吸附示意图
❖ 从右图C曲线可见,当H2分
子离表面很远时,即在
精品课件
烯烃在金属表面的吸附态
❖ 烯烃在金属表面的吸附态有型 和 型两种; ❖ 乙烯的化学吸附,通过 电子分子轨道的再
杂化进行。吸附前碳原子是sp2杂化态,吸附 后碳原子是sp3杂化态。
精品课件
炔烃在金属表面上可能吸附态
❖ 通常炔烃在金属表面的吸附比烯烃在金 属表面的吸附强;
❖ 乙炔吸附前碳原子是sp杂化态,吸附后 碳原子是sp2杂化态。
吸附现象:当气体与固体表面接触时,固 体表面上气体的浓度高于气相主体浓度的现象 称为吸附现象。
吸附过程:固体表面上气体浓度随时间增 加而增大的过程,称为吸附过程。反之气体浓 度随时间增加而减小的过程,称为脱附过程。
吸附平衡:当吸附过程进行的速率和脱附 过程进行的速率相等时,固体表面上气体浓度 不随时间而改变,这个状态称为吸附平衡。
❖ (1)物理吸附为分子间力,被吸附的分子与 气相分子之间仍有此种力,故可发生多层吸 附,但第一层吸附与以后多层吸附不同,多 层吸附与气体的凝聚相似。
❖ (2)吸附达到平衡时,每个吸附层上的蒸发 速度等于凝聚速度,故能对每层写出相应的 吸附平衡式。
❖ 经过一定的数学运算得精品到课件BET方程
BET方程
2.3.1吸附等温线 ❖ 当吸附与脱附速度相等时,固体表面上吸附的气体
量维持不变,这种状态即为吸附平衡。 ❖ 吸附平衡与压力、温度、吸附剂的性质等因素有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H2在铁粉上的吸附等压线
3.化学吸附态及催化活化 (1)解离吸附与不解离吸附
M H 2 (g) 2 2H
M CH 2 CH 2 ( g ) 2 CH 2 CH 2
(2)均裂解离吸附和非均裂解离吸附
M H 2(g) 2 2H
因为吸附等温线是vp/p0关系, t =Fc(p/p0),可以
从公共曲线上得到,将横轴的p/p0转换为t
在固体表面无障碍地形成多分子层的物理吸附,则吸附液膜体 积vL应该等于吸附层厚度t和表面积S的乘积: vL = S t (vL = v x 0.001547, 0.001547为STP下1ml氮气凝聚后 的液态氮毫升数) S = vL/ t = tg
H2 M
n
O
2
H M
M

n
HO

化学吸附态:分子或原子在固体表面进行吸附时的 化学状态、电子结构及几何构型。(共价键、配位键 和离子键)
(1) (2) (3)
H2可均裂,也可非均裂 乙烯,非解离,形成2个σ键 CO在金属上
O
o c
M
O
Ni、Pd
O C M
Rh, Ru
c
Cu、Pt
C
M
M
线式
桥式
孪式
过渡金属:强吸附(d电子、空轨道) 非过渡金属:弱吸附(s、p电子)
金属对气体分子的吸附顺序为:
O C H C H CO H CO 2 2 2 2 4 2
2
N2
4.化学吸附强度与催化活性
为了定量比较气体在各种金属表面上化学吸附的强 度,可以从实验中测量吸附热。
2.2 孔隙率
一个催化剂颗粒内的孔体积和整个颗粒体积 的比。
孔体积 颗粒体积
V粒= V孔 + V骨
2.3 孔的简化模型
• 催化剂颗粒中孔的形状非常复杂,但可以 假设为n个理想的、平均圆柱形孔来代表这 些实际的孔 • IUPAC定义: • 孔径(直径)<2nm 微孔(micropore) 2~50nm 中孔 (mesopore) >50nm 大孔 (macropore)
修正后,计算的孔径略高于原先用BJH法计算的孔径
BJH法及修正BJH法适用范围: (1)适于测中孔的物质,即具有第IV类型吸 附等温线样品的孔分布测定 (2)计算时使用等温线的脱附支。 (3)测孔的范围:d=0.6~60nm 特别适于 中孔。
微孔孔分布: • HK法(HORVATH, KAWAZOE, J. Chem. Eng. Japan, Vol. 16, 470 (1983) • 假设:(1)依照吸附压力大于或小于对应的孔尺寸 的一定值,微孔完全充满或完全倒空;(2)吸附相 表现为二维理想气体,即服从Henry定律 • 狭缝孔模型的H-K原方程:
2. 固体催化剂的孔
• • • • • • • • • 2.1孔体积(孔容) V堆 = V隙 + V粒 = V隙 + V孔 + V骨 V隙:常压下,汞能填充颗粒之间的间隙但不能进入孔内 V隙+V孔:装满催化剂颗粒的容器,抽真空后,放入氢气, V氢=V隙+V孔 V孔= V隙+V孔-V隙 V孔也可以通过四氯化碳的吸附直接测定 根据V堆、V骨、V粒可以得到催化剂的堆密度、真密度、 假密度。 • 比孔容:1g催化剂具有的孔体积
第二章 固体催化剂的比表面积和孔
活性、选择性取决于催化剂的化学结构和性 质,也受物理结构的影响。 表征催化剂物理结构的参量有比表面积、孔 隙率、孔分布等
1. 比表面积
• 催化剂的表面积 = 外表面积 + 内表面积 • 比表面积:1g 催化剂具有的表面积. • 从几到上千m2/g。~1000 m2/g ~篮球 场大!
P 1 C 1 P V ( P0 P) C Vm C Vm P0
P:吸附质(N2)的压力 P0:吸附质(N2)的饱和蒸汽压 V:压力p时的吸附量(STP,cm3/g) Vm:单分子层饱和吸附量(STP,cm3/g) C:常数
P 1 C 1 P V ( P0 P) C Vm C Vm P0
Байду номын сангаас
P 2v ln P0 rk K T
随着p/p0升高,微孔首先被吸附质填充, p/p0再 升高( p/p0 1 ),中孔也被吸附质填充。
对于尚未发生毛细凝聚的孔。它们并不是“空”的, 而是壁上有着厚度为t的液膜。根据Kelvin方程,圆 筒形孔的孔半径rp与孔核半径rh之间有如下关系:
例1 过渡金属催化剂上甲酸的分解 反应 甲酸盐的生成热相当于甲酸在金 属上的吸附热;吸附热与吸附强 度相关 图中结果说明中等强度的吸附有 利于化学反应
• 例2 CO氧化活性与吸附热的关系 • 图中结果说明中等强度的吸附有利于化学 反应
一个化学反应的进行必须有至少一种反应物 经过化学吸附 一个好的催化剂应该能形成中等强度的化学 吸附键,它强到足以使被吸附的反应物分 子中的键断裂;但是它又不应该太强,以 使表面中间物仅有一个短暂的滞留时间, 并被产物分子迅速脱附,以使反应能以较 大的速率继续进行下去
随着p/p0升高,在孔壁首先形成单吸附层,然后形成多层吸附。 当吸附层厚到一定程度时,吸附层上的分子直接与气体分子 发生作用,使孔被吸附质分子填充。微孔首先被吸附质填充。 在液氮温度(196K)、p=p0下,中孔也能被液氮所填充。但 大孔不能。脱附与吸附是可逆的
I型吸附等温线:
微孔物质
II(Ⅲ)型吸附等温线:
4.2 V~t法(t-plot,t图法):
• 在固体表面无障碍地形成多分子层的物理吸附,由 BET方程给出吸附层数:
• t为吸附层厚度,tm为单层的厚度。因为C对t的影响 很小,在一些性质类似的物质上, t =Fc(p/p0),即t 只是p/p0的函数,已经被测出,称为公共曲线:B. C. Lippens and J. H. de Boer, Journal of Catalysis, 4, 319-323 (1965)
Nav为阿伏加德罗常数; Na和NA分别是单位吸附质面积和单位吸附剂面积的分子数; Aa和AA分别是吸附质和吸附剂的Lennard-Jones势常数; 为气体原子与零互作用能处表面的核间距; L是狭缝孔两平面层的核间距; d0为吸附质和吸附剂原子直径算术平均值
微孔孔分布计算的几个问题:
1.因为H-K方程关联孔尺寸随压力p/p0的变化,等温 线提供吸附量V(p)的关系,即可得到吸附量与孔尺 寸间的对应关系。进行适当的孔型假设,可以计算 dV/dL(或dV/dr)对L(或r)的孔分布。 2.吸附等温线从非常低的压力下开始测定 3.根据文献进行参数的假定
实验测得,液膜的厚度t与p/p0有如下关系
• 这样,根据吸附等温线和Kelvin方程,可以得到吸附量v随 孔半径r变化的曲线;将V~r图的V对r微分,得 dV/dr ~r 图,即孔分布曲线:孔体积对孔半径的平均变化率与孔半 径的关系
吸附等温线
V~r图
dV/dr~r,即孔分布曲线
修正BJH法 (KJS法或BJH-KJS法) • Kruk, Jaroniec, Sayari, Langmuir 1997, 13, 6267-6273)上述两方程变成下述两方程:
(3)、(4)、(5)属于表面控制过程
2.物理吸附与化学吸附
物理吸附
化学吸附
作用力 范德华力,类似为凝聚,弱 化学键力(静电 共价键力),强 吸附热 ≈8.4~41.8kJ.mol-1 ≥42kJ.mol-1 吸附速率 不需活化,快 需活化,慢 脱附活化能 ≈凝聚热 ≥化学吸附热 发生温度 接近液化点 高(高于液化点) 选择性 无 有,与吸附质﹑吸附剂的本性有关 吸附层 多层 单层
大孔孔径分布的测定(压汞法):
• 试验测量外压力作用下进入脱气处理后固体孔空间的进汞 量,再换算为不同孔尺寸的孔体积。测孔径范围:7.5~ 15000nm。
第三章 化学吸附作用
1.多相催化反应进行的几个步骤
(1) (2) (3) (4) (5) (6) (7) 反应物分子由气体主体向催化剂的外表面扩散(外扩散) 反应物分子由外表面向内表面扩散(内扩散) 反应物吸附在表面上 反应物在表面上进行化学反应,生成产物 产物从表面上解吸 产物从内表面向外表面扩散(内扩散) 产物从外表面向气体主体扩散(外扩散)
大孔物质
IV型吸附等温线
(对应含中孔的物质 )
~ P 2v ln P0 rk K T
滞后环类型及对应的中孔结构:
4. N2吸附法测比表面积
• 原理:表面积 = 单分子层分子数ⅹ分子截面积 4.1 BET方法: Brunauer 、Emmett和Teller提出了著名的 BET方程
从斜率和截距可以得出Vm,再根据下式求得比表面积,即BET比表面积
S BET
Vm 1 18 N . m 10 22414 W
N: Avogadro常数 m:吸附质截面积。N2 = 0.162nm2 W: 样品重量(g)
BET法测比表面积时需要注意的问题:
(1)适用范围p/p0=0.05~0.35 (2)主要适用于Ⅱ和Ⅳ型吸附等温线。实际上绝大 多数催化剂上的N2吸附等温线也都是Ⅱ或Ⅳ型。 (3)是公认的>1 m2/g样品的标准方法。许多国家 将其定为标准。 (4)误差: (5)对于Ⅰ型等温线,比表面积的测定还有争议。 BET法也能给出一个计算结果。一般用p/p0=0.95 时的吸附体积来表示。 (6)对于比表面积<1 m2/g的样品,用氪气吸附测 量。P0小,p/p0范围大,能测准
2.4 孔分布
• 孔体积对孔半径的平均变化率与孔半径的 关系 (见后面)
dV/dr~r,孔分布曲线
3.吸附等温线
吸附等温线类型的解释:
• 毛细凝聚:在细孔内,气体压力等于饱和蒸汽 压力时可以凝聚为液滴。数学表达式为Kelvin ~ 方程: P 2v ln P0 rk K T
相关文档
最新文档