FIFO页面调度算法处理缺页中断要点
大作业用先进先出(FIFO)页面调度算法处理缺页中断

实验四 用先进先出(FIFO )页面调度算法处理缺页中断1.实验目的深入了解页式存储管理如何实现地址转换;进一步认识页式虚拟存储管理中如何处理缺页中断。
2.实验预备知识页式存储管理中的地址转换的方法;页式虚拟存储的缺页中断处理方法。
3.实验内容编写程序完成页式虚拟存储管理中地址转换过程和模拟缺页中断的处理。
实验具体包括:首先对给定的地址进行地址转换工作,若发生缺页则先进行缺页中断处理,然后再进行地址转换;最后编写主函数对所作工作进程测试。
假定主存64KB ,每个主存块1024字节,作业最大支持到64KB ,系统中每个作业分得主存块4块。
4.提示与讲解页式存储管理中地址转换过程很简单,假定主存块的大小为2n 字节,主存大小为2m'字节和逻辑地址m 位,则进行地址转换时,首先从逻辑地址中的高m-n 位中取得页号,然后根据页号查页表,得到块号,并将块号放入物理地址的高m'-n 位,最后从逻辑地址中取得低n 位放入物理地址的低n 位就得到了物理地址,过程如图1所示。
图1 页式存储管理系统地址转换示意图地址转换是由硬件完成的,实验中使用软件程序模拟地址转换过程,模拟地址转换的流程图如图2所示(实验中假定主存64KB ,每个主存块1024字节,逻辑地址即n=10,m'=16,物理地址中块号6位、块内地址10位;作业最大64KB,即m=16,逻辑地址中页号6位、页内地址10位)。
在页式虚拟存储管理方式中,作业信息作为副本放在磁盘上,作业执行时仅把作业信息的部分页面装入主存储器,作业执行时若访问的页面在主存中,则按上述方式进行地址转换,若访问的页面不在主存中,则产生一个“缺页中断”,由操作系统把当前所需的页面装入主存储器后,再次执行时才可以按上述方法进行地址转换。
页式虚拟存储管理方式中页表除页号和该页对应的主存块号外,至少还要包括存在标志(该页是否在主存),磁盘位置(该页的副本在磁盘上的位置)和修改标志(该页是否修改过)。
【算法】页面置换算法FIFO、LRU和LFU的概述以及实现方式

【算法】页⾯置换算法FIFO、LRU和LFU的概述以及实现⽅式【算法】页⾯置换算法FIFO、LRU和LFU的概述以及实现⽅式页⾯置换算法,我们最常⽤的页⾯置换算法包括FIFO先来先服务,LRU最近最久未被使⽤,LFU最近最少被使⽤以及我们的时钟置换算法。
⼀、FIFO算法——先来先服务1、简述FIFO算法FIFO算法是我们⽐较简单的置换算法,就是先来先服务或者说是先进先出。
也就是说在进⾏页⾯置换的时候,最先来的那个会被最先置换出去。
先进⼊的指令先完成并引退,跟着才执⾏第⼆条指令。
2、FIFO算法的简单实现FIFO算法的简单实现:可以通过维护⼀个链表结构去存储当前调⼊的页⾯;将最先进⼊的页⾯维护在链表的最前,最后进⼊的页⾯维护在链表的最后;这样,当发⽣缺页中断时,需要进⾏置换的时候,淘汰表头的页⾯并将新调⼊的页⾯加到链表的尾部;当然除了链表以外我们还可以采⽤数组或者队列等来进⾏实现。
3、FIFO算法的特点(1)FIFO算法实现简单,易于理解易于编程。
FIFO算法实现简单,⽆须硬件⽀持,只需要⽤循环数组管理物理块即可。
(2)FIFO算法可能会出现Belady现象。
也就是在FIFO算法中,如果未分配够⼀个进程所要求的页⾯,有时就会出现分配的页⾯数增多,却也率反⽽增加Belady现象。
(3)FIFO算法可能会置换调重要的页⾯,其效率不⾼。
(4)在FIFO算法可能中会导致多次的页⾯置换。
当页⾯置换的时间⼤于所要操作的时间的时候,这时候其效率就会很低。
当其不停的进⾏页⾯置换的时候会出现⼤量的系统抖动现象。
⼆、LRU算法——最近最久未被使⽤1、简述LRU算法LRU算法是最近最久未被使⽤的⼀种置换算法。
也就是说LRU是向前查看。
在进⾏页⾯置换的时候,查找到当前最近最久未被使⽤的那个页⾯,将其剔除在内存中,并将新来的页⾯加载进来。
2、LRU算法的实现LRU的实现就相对于FIFO的实现复杂⼀点。
我们可以采⽤哈希映射和链表相结合。
页式虚拟存储管理FIFO、LRU和OPT页面置换算法

目录1 需求分析 (2)1.1 目的和要求 (2)1.2 研究内容 (2)2 概要设计 (2)2.1 FIFO算法 (3)2.2 LRU算法 (3)2.3 OPT算法 (3)2.4 输入新的页面引用串 (3)3 详细设计 (4)3.1 FIFO(先进先出)页面置换算法: (4)3.2 LRU(最近最久未使用)置换算法: (4)3.3 OPT(最优页)置换算法 (4)4 测试 (5)5 运行结果 (5)6 课程设计总结 (9)7 参考文献 (10)8 附录:源程序清单 (10)1 需求分析1.1 目的和要求在熟练掌握计算机虚拟存储技术的原理的基础上,利用一种程序设计语言模拟实现几种置换算法,一方面加深对原理的理解,另一方面提高学生通过编程根据已有原理解决实际问题的能力,为学生将来进行系统软件开发和针对实际问题提出高效的软件解决方案打下基础。
1.2 研究内容模拟实现页式虚拟存储管理的三种页面置换算法(FIFO(先进先出)、LRU (最近最久未使用)和OPT(最长时间不使用)),并通过比较性能得出结论。
前提:(1)页面分配采用固定分配局部置换。
(2)作业的页面走向和分得的物理块数预先指定。
可以从键盘输入也可以从文件读入。
(3)置换算法的置换过程输出可以在显示器上也可以存放在文件中,但必须清晰可读,便于检验。
2 概要设计本程序主要划分为4个功能模块,分别是应用FIFO算法、应用LRU算法、应用OPT算法和页面引用串的插入。
1.1各模块之间的结构图2.1 FIFO 算法该模块的主要功能是对相应页面引用串进行处理,输出经过FIFO 算法处理之后的结果。
2.2 LRU 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过LRU 算法处理之后的结果。
2.3 OPT 算法该模块的主要功功能是对相应的页面引用串进行处理,输出经过OPT 算法处理之后的结果。
2.4 输入新的页面引用串该模块的主要功能是用户自己输入新的页面引用串,系统默认的字符串是0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,用户可以自定义全新的20个数字页面引用串。
缺页中断的处理流程

缺页中断的处理流程
一、缺页中断的检测阶段
1.检测缺页中断
(1)CPU访问内存发现缺页
(2)操作系统接收到缺页异常信号
2.确认缺页类型
(1)缺页是否为无效页
(2)缺页是否为合法但不在内存中的页
二、缺页中断的处理阶段
1.选择缺页置换算法
(1)FIFO算法
(2)最近最久未使用算法(LRU)
2.确定置换页
(1)选择待替换的页
(2)检查待替换页的修改位
3.选择加载页
(1)确定需加载的页
(2)从磁盘读取页到内存
三、缺页中断的恢复阶段
1.更新页表
(1)将新加载的页添加到页表
(2)更新页表中的相关信息
2.恢复进程执行
(1)恢复进程执行的指令
(2)将控制权返回给用户程序
四、缺页中断的优化阶段
1.页面预调度
(1)提前将可能被访问的页面加载到内存(2)减少缺页中断的发生频率
2.页面置换算法优化
(1)评估不同置换算法的性能
(2)根据系统负载动态调整置换算法。
页式虚拟FIFO存储管理缺页中断的模拟算法

页式虚拟FIFO存储管理缺页中断的模拟算法FIFO一课程设计目的与功能1目的通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,熟悉和掌握请求分页式存储管理的实现过程,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法,熟悉常见替换算法的原理和实现过程,并利用替换算法的评价指标——缺页次数和缺页率,来对各种替换算法进行评价比较。
设计并实现出的结果程序要能够很好地显示页面调入和替换详细信息。
2初始条件(1)预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。
(2)实践准备:掌握一种计算机高级语言的使用3 开发环境(1)使用系统:Windows XP(2)使用语言:C++(3)开发工具:Visual C++ 6.04功能设计的结果程序能实现OPT、FIFO、随机淘汰算法模拟页式存储管理缺页中断,主要能够处理以下的情形:(1) 用户能够输入给作业分配的内存块数;(2) 用户能够输入给定的页面,并计算发生缺页的次数以及缺页率;(3) 程序可随机生成页面序列,替代用户输入;(4) 缺页时,如果发生页面置换,输出淘汰的页号。
二需求分析,整体功能及设计数据结构或模块说明1 需求分析在纯页式存储管理提高了内存的利用效率,但并不为用户提供虚存,换句话说,当一个用户程序的页数大于当前总空闲内存块数时,系统就不能将该程序装入运行。
即用户程序将受到物理内存大小的限制。
为了解决这个问题,人们提出了能提供虚存的存储管理技术——请求分页存储管理技术和请求分段技术。
本设计实现请求分页管理技术。
请求分页系统是在分页系统的基础上,增加了请求调页功能和页面置换功能所形成的页式虚拟存储系统。
它允许只装入部分页面的程序和数据,便启动运行。
以后,再通过调页功能和页面置换功能,陆续把即将要运行的页面调入内存,同时把暂时不运行的页面换出到外存上。
置换时以页面为单位,为了能实现请求调页和置换功能,系统必须提供必要的硬件支持和相应的软件。
017FIFO、LRU、OPT这三种置换算法的缺页次数

考虑下述页面走向:
1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6
当内存块数量分别为3时,试问FIFO、LRU、OPT这三种置换算法的缺页次数各是多少?
答:缺页定义为所有内存块最初都是空的,所以第一次用到的页面都产生一次缺页。
当内存块数量为3时:
发生缺页中断的次数为16。
在FIFO算法中,先进入内存的页面被先换出。
当页6要调入时,内存的状态为4、1、5,考查页6之前调入的页面,分别为5、1、2、4,可见4为最先进入内存的,本次应换出,然后把页6调入内存。
发生缺页中断的次数为15。
在LRU算法中,最近最少使用的页面被先换出。
当页6要调入时,内存的状态为5、2、1,考查页6之前调入的页面,分别为5、1、2,可见2为最近一段时间内使用最少的,本次应换出,然后把页6调入内存。
发生缺页中断的次数为11。
在OPT算法中,在最远的将来才被访问的页面被先换出。
当页6要调入时,内存的状态为1、2、5,考查页6后面要调入的页面,分别为2、1、2、…,可见5为最近一段时间内使用最少的,本次应换出,然
后把页6调入内存。
【精品】FIFO页面调度算法处理缺页中断源代码及结果

F I F O页面调度算法处理缺页中断源代码及结果一、源代码#include <cstdio>#include <cstring>#define SizeOfPage 100#define SizeOfBlock 128#define M 4struct info//页表{long textNumber;//页号bool flag; //标志long block;//块号long disk;//在磁盘上的位置bool dirty;//修改标志}pagelist[SizeOfPage];long po;//队列标记long P[M];int num;void init(){memset(pagelist,0,sizeof(pagelist));//根据实验数据初始化pagelist[0].textNumber=0;pagelist[0].flag=1;pagelist[0].block=5;pagelist[0].dirty=0;pagelist[0].disk=11;pagelist[1].textNumber=1;pagelist[1].flag=1;pagelist[1].block=8;pagelist[1].dirty=0;pagelist[1].disk=12;pagelist[2].textNumber=2;pagelist[2].flag=1;pagelist[2].block=9;pagelist[2].disk=13;pagelist[3].textNumber=3;pagelist[3].flag=1;pagelist[3].block=1;pagelist[3].dirty=0;pagelist[3].disk=21;pagelist[4].textNumber=4;pagelist[4].flag=0;pagelist[4].dirty=0;pagelist[4].disk=22;pagelist[5].textNumber=5;pagelist[5].flag=0;pagelist[5].dirty=0;pagelist[5].disk=23;pagelist[6].textNumber=6;pagelist[6].flag=0;pagelist[6].dirty=0;pagelist[6].disk=121;num=6;}void init_ex2(){po=0;P[0]=0;P[1]=1;P[2]=2;P[3]=3;init();}void work(){long p,q,i;char s[100];bool stop=0;do{printf("请输入指令的页号、单元号,以及是否为存指令(输入exit 结束循环):\n");if (scanf("%ld%ld",&p,&q)!=2){scanf("%s",s);if (strcmp(s,"exit")==0){stop=1;}}else if(q>128){printf("注意!所输入的地址单元已经越界!\n请继续......\n");q=-1;}else{scanf("%s",s);if (pagelist[p].flag){printf("绝对地址=%ld\n",pagelist[p].block*SizeOfBlock+q);if (s[0]=='Y' || s[0]=='y'){pagelist[p].dirty=1;//已修改过}}else{if (pagelist[P[po]].dirty){//将更新后的内容写回外存pagelist[P[po]].dirty=0;}pagelist[P[po]].flag=0;//修改要调出的页标志printf("调出 %ld 调入%ld\n",P[po],p); //显示调出调入页面pagelist[p].block=pagelist[P[po]].block;pagelist[p].flag=1;//该页被调入内存P[po]=p;po=(po+1)%M;}}}while (!stop);printf("数组P 的值为:\n");for (i=0;i<M;i++){printf("P[%ld]=%ld\n",i,P[i]);}}void printInit(){int i;printf("____________________________________________________________________\n");printf("| 页号 | 标志 | 主存块号 | 修改标志 |在磁盘上的位置\n");for(i=0;i<=num;i++){if(pagelist[i].flag==1)printf("| %ld | %d | %ld | %d| %ld \n",pagelist[i].textNumber,pagelist[i].flag,pagelist[i].block,pagelist[i].dirty,pagelist[i].disk);elseprintf("| %ld | %d | | %d | %ld \n",pagelist[i].textNumber,pagelist[i].flag,pagelist[i].dirty,pagelist[i].disk);}printf("___________________________________________________________ _________\n");}int main(){printf("初始化页表:\n");init();//打印页表printInit();init_ex2();work(); //算法分析return 0;}二、结果如下:A、初始化页表B、测试数据I、未发生缺页中断时2、发生缺页中断时3、退出时显示现在主存中的页面号(即数组的值)。
请求页式管理缺页中断模拟设计--FIFO、OPT

课程设计题目请求页式管理缺页中断模拟设计--FIFO、OPT学院计算机科学与技术专业班级姓名指导教师吴利军2013 年 1 月16 日课程设计任务书学生姓名:指导教师:吴利军_ 工作单位:计算机科学与技术学院题目: 请求页式管理缺页中断模拟设计--FIFO、OPT初始条件:1.预备内容:阅读操作系统的内存管理章节内容,了解有关虚拟存储器、页式存储管理等概念,并体会和了解缺页和页面置换的具体实施方法。
2.实践准备:掌握一种计算机高级语言的使用。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1.实现指定淘汰算法。
能够处理以下的情形:⑴能够输入给作业分配的内存块数;⑵能够输入给定的页面,并计算发生缺页的次数以及缺页率;⑶缺页时,如果发生页面置换,输出淘汰的页号。
2.设计报告内容应说明:⑴需求分析;⑵功能设计(数据结构及模块说明);⑶开发平台及源程序的主要部分;⑷测试用例,运行结果与运行情况分析;⑸自我评价与总结:i)你认为你完成的设计哪些地方做得比较好或比较出色;ii)什么地方做得不太好,以后如何改正;iii)从本设计得到的收获(在编写,调试,执行过程中的经验和教训);iv)完成本题是否有其他方法(如果有,简要说明该方法);时间安排:设计安排一周:周1、周2:完成程序分析及设计。
周2、周3:完成程序调试及测试。
周4、周5:验收、撰写课程设计报告。
(注意事项:严禁抄袭,一旦发现,一律按0分记)指导教师签名:年月日系主任(或责任教师)签名:年月日请求页式管理缺页中断模拟设计——FIFO、OPT1课程设计目的与功能1.1设计目的结合《操作系统》所学内存页式管理章节,掌握虚拟内存设计的重要性,熟悉和掌握请求分页式存储管理的实现原理,通过分析、设计和实现页式虚拟存储管理缺页中断的模拟系统,重点掌握当请求页面不在内存而内存块已经全部被占用时的替换算法(主要通过FIFO和OPT实现),并考察替换算法的评价指标——缺页次数和缺页率,得到淘汰的页面次序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算机科学与技术系实验报告专业名称网络工程课程名称操作系统原理项目名称FIFO页面调度算法处理缺页中断班级 12网络工程(1)班学号 1204031030姓名方彬同组人员朱佳宝、王卫、凌含涛、胡星瑞实验日期 2014.12.02一、实验目的与要求:(1)熟悉、掌握先进先出FIFO算法,并实现用先进先出FIFO算法页面调度算法处理缺页中断.(2)理解基于先进先出FIFO的内存管理调度算法,更好的掌握算法的思想,结合实验理解算法更直观,深刻具体。
通过对先进先出FIFO的调度算法的模拟实验可以清楚的了解内存管理是如何调度的,以及加深对内存管理的了解。
二、实验内容1)任务分析:以无歧义的陈述说明实验任务,并明确规定:(a)输入的形式和输入值的范围;在输入文本框中输入,输入值的范围在0~6之间(b) 输出的形式;输出为缺页序列的表格(c) 程序所能达到的功能;输入页号,输出缺页序列,实现先进先出算法的模拟(d) 测试数据:包括正确的输入及其输出结果和错误的输入及其输出结果。
①输入值为空:②输入值越界:③正确的输入值:2)概要设计:说明本程序中用到的所有抽象数据类型的定义、主程序的流程以及各程序模块之间的层次(调用)关系。
本程序中定义了一个数组int[] mainstore = {3,2,1,0 };用于模拟主存存放页;此外还定义了一个数组int[] flag = {0,0,0,0,0,0,0 };用于表明页号的修改标志位,便于之后的操作。
该程序的只要流程如下:3)详细设计:实现概要设计中定义的所有数据类型,对每个操作只需要写出伪码算法;对主程序和其他模块也都需要写出伪码算法(伪码算法达到的详细程度建议为:按照伪码算法可以在计算机键盘直接输入高级程序设计语言程序);画出函数和过程的调用关系图。
using System;using System.Collections.Generic;using ponentModel;using System.Data;using System.Drawing;using System.Linq;using System.Text;using System.Threading.Tasks;using System.Windows.Forms;using lru;using change;namespace 操作系统{public partial class Form1 : Form{public Form1(){InitializeComponent();}//定义一个窗口类,在类里面定义一个窗口int[] mainstore = {3,2,1,0 };//定义数组用于存放页int[] flag = {0,0,0,0,0,0,0 };//定义修改标志位的数组int blo = 0;//用来控制在表格的哪一列输出页号序列private void button1_Click(object sender, EventArgs e)//定义一个事件响应,即对输入进行操作{if (string.IsNullOrEmpty(txt.Text))MessageBox.Show("请输入页号!");else if (int.Parse(txt.Text) > 6 || int.Parse(txt.Text) < 0)MessageBox.Show("输入页号不合法,请重新输入!");//判断输入是否合法else{int page = int.Parse(txt.Text);int i=0;if (page != mainstore[0] && page != mainstore[1] && page != mainstore[2] && page != mainstore[3])//插入页内存中不存在,进行FIFO算法{int lll;lll = mainstore[0];if (flag[mainstore[0]] == 0)//修改标志位为0,直接覆盖{mainstore[0] = page;flag[lll] = 1;}Else//修改标志位为1,数组执行FIFO{for (i = 0; i < 3; i++)mainstore[i] = mainstore[i + 1];mainstore[3] = page;}MessageBox.Show("当前调走页号"+lll.ToString ()+"\n存入页号为"+page.ToString ());l0.Text = "0";l1.Text = "0";l2.Text = "0";l3.Text = "0";l4.Text = "0";l5.Text = "0";l6.Text = "0";//标志位初始化;for (int j = 0; j < 4; j++){if (mainstore[j] == 0)l0.Text = "1";if (mainstore[j] == 1)l1.Text = "1";if (mainstore[j] == 2)l2.Text = "1";if (mainstore[j] == 3)l3.Text = "1";if (mainstore[j] == 4)l4.Text = "1";if (mainstore[j] == 5)l5.Text = "1";if (mainstore[j] == 6)l6.Text = "1";}//根据插入页号,将标志位置1for (int k = 0;k < 7; k++){if (lll == 0)ll0.Text = "1";if (lll == 1)ll1.Text = "1";if (lll == 2)ll2.Text = "1";if (lll == 3)ll3.Text = "1";if (lll == 4)ll4.Text = "1";if (lll == 5)ll5.Text = "1";if (lll == 6)ll6.Text = "1";}//根据情况,将修改标志位置1}else{MessageBox.Show("该页已在主存中!" );}blo++;if(blo==1){txt10.Text = mainstore[0].ToString();txt11.Text = mainstore[1].ToString();txt12.Text = mainstore[2].ToString();txt13.Text = mainstore[3].ToString();}else if(blo==2){txt20.Text = mainstore[0].ToString();txt21.Text = mainstore[1].ToString();txt22.Text = mainstore[2].ToString();txt23.Text = mainstore[3].ToString();}else if(blo==3){txt30.Text = mainstore[0].ToString();txt31.Text = mainstore[1].ToString();txt32.Text = mainstore[2].ToString();txt33.Text = mainstore[3].ToString();}else if(blo==4){txt40.Text = mainstore[0].ToString();txt41.Text = mainstore[1].ToString();txt42.Text = mainstore[2].ToString();txt43.Text = mainstore[3].ToString();}else if(blo==5){txt50.Text = mainstore[0].ToString();txt51.Text = mainstore[1].ToString();txt52.Text = mainstore[2].ToString();txt53.Text = mainstore[3].ToString();}else if(blo==6){txt60.Text = mainstore[0].ToString();txt61.Text = mainstore[1].ToString();txt62.Text = mainstore[2].ToString();txt63.Text = mainstore[3].ToString();}else if(blo==7){txt70.Text = mainstore[0].ToString();txt71.Text = mainstore[1].ToString();txt72.Text = mainstore[2].ToString();txt73.Text = mainstore[3].ToString();}else if(blo==8){txt80.Text = mainstore[0].ToString();txt81.Text = mainstore[1].ToString();txt82.Text = mainstore[2].ToString();txt83.Text = mainstore[3].ToString();}//根据插入数量,决定在输出表的指定列输出}}private void 刷新ToolStripMenuItem_Click(object sender, EventArgs e){Form1 the_new = new Form1();the_new.Show();}private void 退出ToolStripMenuItem_Click(object sender, EventArgs e){this.Close();}4)调试分析:(a)调试过程中遇到哪些问题,是如何解决的;Q1:一开始的程序只能输入9个页号序列,超过之后就不能够再显示新的页号序列;(定义了一个变量BLO,用于记录输入页号数量,做求模运算mod 9,这样当超过九个之后又会从第一列开始覆盖)Q2:考虑到程序的用户友好性,增加了序列刷新功能,刷新输出区域;(定义了一个button,点击后将输出区域初始化)Q3:开始没有理解修改标志位的作用,所以功能没有实现;(经过与同学的讨论,定义了一个数组flag[],将页号作为flag[]的下标选择置1或置0)(b) 算法的时空分析:算法的时间复杂度和空间复杂度分析;5)测试结果:包括输入和输出,测试数据应该完整和严格。