2018年高考数学一轮复习第五章数列第31讲数列求和课件理

合集下载

最新-2018届高三数学一轮复习 31 数列的概念课件 理 大纲版 精品

最新-2018届高三数学一轮复习 31 数列的概念课件 理 大纲版 精品

∴an+1=2×2n-1=2n.
∴an=2n-1;
当x=-3,y=6时,an+1=-3an+6.
∴an+1-
23=-3(an-
3).
2
∴数列{an- }23是首项为a1-
=3- ,公1比为-3的等比数列.
22
∴an-
3=-
2
(-13)n-1.
2
∴an=
3-
2
(1-3)n-1.
2
综上,当x=2,y=1时,an=2n-1;
2. 数 列 {an} 中 , a1=1,n≥2 时 , 都 有 a1·a2·a3…an=n2, 则
a3+a5=( )
(A) 61
(B) 25
16
9
【解析】选A.方法一:
(C) 25 16
(D) 31 15
当n=2时,a1·a2=22,∴a2=4.
当当nn==34时 时, ,aa11· ·aa22··aa33=·3a24,=∴4a32=,∴94a4.=196
【解析】选C.∵a1·a2·…·an=log2(n+2)∈Z, ∴n+2=2k(k∈N),∴n=2k-2∈(1,2 010],
3<2k≤2 012,∴2≤k≤10,
∴在(1,2 010]内的所有“优数”之和为
(22-2)+(23-2)+…+(210-2)
= 22 (1-2-99) ×2=211-22=2 026.
an =2.
an 1
∴a1=2(a1-1),∴a1=2,
∴a2=2a1=4.
答案:4
8.设数列a1,a2,…,an,…满足a1=a2=1,a3=2,且对任何自然数 n,都有anan+1an+2≠1,又anan+1an+2an+3=an+an+1+an+2+an+3,则 a1+a2+…+a100的值是_____. 【解析】将递推式中的n替换为n+1, 得an+1an+2an+3an+4=an+1+an+2+an+3+an+4,两式相减得 an+1an+2an+3(an+4-an)=an+4-an, 由an+1an+2an+3≠1得an+4-an=0,即an+4=an, ∴数列{an}是周期数列,其周期为4k(k∈Z), 由已知易得a4=4, 故 a1+a2+…+a100=25(a1+a2+a3+a4)=25(1+1+2+4)=200. 答案:200

【高考数学】2018最新高三数学课标一轮复习课件:6.4 数列求和(专题拔高配套PPT课件)

【高考数学】2018最新高三数学课标一轮复习课件:6.4 数列求和(专题拔高配套PPT课件)

.
关闭
设S=sin21°+sin22°+sin23°+…+sin288°+sin289°,则 S=cos21°+cos22°+cos23°+…+cos288°+cos289°,两式相加,得2S=89, 所以S=44.5. 44.5
解析
关闭
答案
第六章
知识梳理 双击自测
6.4 数列求和
考情概览 知识梳理 核心考点 学科素养
6.4
数列求和
第六章
6.4 数列求和
考情概览 知识梳理 核心考点 学科素养
-2-
2015 2014 2013 年份 2017 2016 13,6 分(理) 18,14 分 数列 20,15 分(理) 19,14 分(理) 20,15 分(理) (理) 求和 及其 14,4 分(文) 综合 17(2),8 分(文) 17,15 分(文) 19,14 分(文) 19,14 分 应用 (文) 考查 掌握等差数列、等比数列的前 n 项和公式及其应用. 要求 数列求和是高考的重点,题型以解答题为主,主要考查等 差、等比数列的求和公式、错位相减求和及裂项相消求 考向 和,数列求和常与函数、方程、不等式联系在一起,考查内 分析 容较为全面,在考查基本运算、基本能力的基础上,又注意 考查学生分析问题、解决问题的能力.
第六章
知识梳理 双击自测
6.4 数列求和
考情概览 知识梳理 核心考点 学科素养
-3-
求数列的前 n 项和的方法 (1)公式法 ①等差数列的前 n 项和公式 Sn= ②等比数列的前 n 项和公式 (ⅰ)当 q=1 时,Sn=na1 ; (ⅱ)当 q≠1
������1 (1-������������ ) 时,Sn= 1-������ ������(������1 +������������ ) ������(������-1) =na1+ d. 2 2

2018版高考一轮数学文科:第31讲-数列的综合问题ppt课件

2018版高考一轮数学文科:第31讲-数列的综合问题ppt课件

2014· 新课标全国卷Ⅱ5, 新课标全国卷Ⅱ17, 在等差数列中的等比 2013· 等差数列与等比数列 全国卷Ⅰ17,2016 关系,或在等比数列 2016· ★★★ 的综合 全国卷Ⅱ17,2016· 全国 中的等差关系 卷Ⅲ17 考查与年份、月份有 数列的实际应用 关的应用题 数列与函数、不等式 数列的函数背景、数 2014· 新课标全国卷Ⅱ17 的综合 列中的不等关系 ★☆☆
真题在线
2.[2015· 浙江卷] 已知{an}是等差数列,公 差 d 不为零.若 a2,a3,a7 成等比数列,且 2a1+a2=1, 则 a1=________, d=________.
2 [答案] 3 -1
[解析] 由题意得,a2 3=a2a7,即(a1 + 2d)2 = (a1 + d)· (a1 + 6d) , 所 以 d(3a1+2d)=0.因为 d≠0,所以 3a1 +2d=0,又 2a1+a2=1,所以 3a1
3a1+2d=0, + d = 1 ,联立 解得 3 a + d = 1 , 1
2 a1= , 3 d=-1.
真题在线
3.[2015· 福建卷] 若 a,b 是函数 f(x)=x2 -px+q(p>0, q>0)的两个不同的零点, 且 a, b, -2 这三个数可适当排序后成等差数列, 也可适当排序后成等比数列,则 p+q 的值 等于________.
真题在线
4.[2016· 四川卷] 已知数列{an}的首项为 1,Sn 为数列{an}的前 n 项和,Sn+1=qSn+1, 其中 q>0,n∈N*. (1)若 a2,a3,a2+a3 成等差数列,求数列{an}的通项公式; y2 2 2 2 (2)设双曲线 x -a2=1 的离心率为 en,且 e2=2,求 e2 + e +„+ e 1 2 n. n

高考数学一轮复习 第五章 数列 第31讲 数列求和实战演练 理(2021年最新整理)

高考数学一轮复习 第五章 数列 第31讲 数列求和实战演练 理(2021年最新整理)

2018年高考数学一轮复习第五章数列第31讲数列求和实战演练理编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年高考数学一轮复习第五章数列第31讲数列求和实战演练理)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年高考数学一轮复习第五章数列第31讲数列求和实战演练理的全部内容。

2018年高考数学一轮复习第五章数列第31讲数列求和实战演练理1.(2016·北京卷)已知错误!为等差数列,S n为其前n项和.若a1=6,a3+a5=0,则S6=6.解析:设等差数列错误!的公差为d,∵a1=6,a3+a5=0,∴6+2d+6+4d=0,∴d=-2,∴S6=6×6+错误!×(-2)=6。

2.(2015·全国卷Ⅱ)设S n是数列错误!的前n项和,且a1=-1,a n+1=S n S n+1,则S n=-错误!。

解析:∵a n+1=S n+1-S n,∴S n+1-S n=S n+1S n,又由a1=-1,知S n≠0.∴错误!-错误!=1,∴错误!是等差数列,且公差为-1,而错误!=错误!=-1,∴错误!=-1+(n-1)×(-1)=-n,∴S n=-错误!。

3.(2016·山东卷)已知数列错误!的前n项和S n=3n2+8n,错误!是等差数列,且a n=b n+b n。

+1b n的通项公式;(1)求数列{}(2)令c n=错误!,求数列错误!的前n项和T n。

解析:(1)由题意知,当n≥2时,a n=S n-S n-1=6n+5.当n=1时,a1=S1=11,所以a n=6n+5。

高三数学一轮复习数列求和(必修5)精品PPT课件

高三数学一轮复习数列求和(必修5)精品PPT课件
考点一 分组转化求和
分组转化求和就是从通项入手, 若无通项,则先求通项,然后通过对 通项变形,转化为等差或等比或可求 数列前n项和的数列来求之.
课堂互动讲练
例1 已知数列{an}的前几项是3+2- 1,6+22-1,9+23-1,12+24-1,写出 数列{an}的通项并求其前n项和Sn.
课堂互动讲练
1.利用裂项相消法求和时,应 注意抵消后并不一定只剩下第一项和 最后一项,也有可能前面剩两项,后 面也剩两项,再就是将通项公式裂项 后,有时候需要调整前面的系数,使 裂开的两项之差和系数之积与原通项 公式相等.
课堂互动讲练
课堂互动讲练
例2 已知等差数列{an}的首项a1≠0,前n项 和为Sn,且S4+a2=2S3;等比数列{bn}满足 b1=a2,b2=a4.
第4课时 数列求和
基础知识梳理
求数列的前n项和的方法 1.公式法 (1)等差数列的前n项和公式
Sn=

.
基础知识梳理
(2)等比数列前n项和公式 ①当q=1时,Sn=na1;
基础知识梳理
2.分组转化法 把数列的每一项分成两项,使其 转化为几个等差、等比数列,再求 解. 3.裂项相消法 把数列的通项拆成两项之差求 和,正负相消剩下首尾若干项.
课堂互动讲练
课堂互动讲练
课堂互动讲练
【误区警示】 利用错位相减法 求和时,转化为等比数列求和.若公 比是个参数(字母),则应先对参数加 以讨论,一般情况下分等于1和不等于 1两种情况分别求和.
课堂互动讲练
考点四 数列求和的综合应用
对于由递推关系给出的数列,常 借助于Sn+1-Sn=an+1转换为an与an+1 的关系式或Sn与Sn+1的关系式,进而 求出an或Sn使问题得以解决.

备战高考数学一轮复习讲义第31讲 第1课时 分组求和法与错位相减法

备战高考数学一轮复习讲义第31讲 第1课时 分组求和法与错位相减法

第31讲 数列的求和激活思维1. 已知数列{a n }的通项公式是a n =2n -⎝ ⎛⎭⎪⎫12n ,则其前20项和为( C )A. 379+1220 B. 399+1220 C. 419+1220D. 439+1220解析: 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-⎝ ⎛⎭⎪⎫12+122+123+…+1220=420-⎝ ⎛⎭⎪⎫1-1220=419+1220.2. (人A 选必二P41习题7改)已知数列{a n }中,a 1=a 2=1,a n +2=⎩⎨⎧a n +2,n 是奇数,2a n ,n 是偶数,则数列{a n }的前20项和为( C ) A. 1 121 B. 1 122 C. 1 123D. 1 124解析: 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×92×2=1 123.3. (人A 选必二P25习题7改)若数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( B )A. 9B. 99C. 10D. 100解析: 因为a n =1n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令n +1-1=9,得n =99. 4. (人A 选必二P25习题10改)(多选)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,n ∈N *,设b n =1a n a n +1,数列{b n }的前n 项和T n ,则( AD )A. a 5=9B. a 5=11C. T 5=1011D. T 5=511解析: 设数列{a n }的公差为d ,因为a 2=3,S 4=16,所以a 1+d =3,4a 1+6d =16,解得a 1=1,d =2,所以a n =2n -1,所以a 5=9,所以b n =1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以T n =b 1+b 2+…+b n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1,所以T 5=511. 5. (人A 选必二P40习题3改)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n 2n -1的前n 项和T n = 4-n +22n -1 .解析: 因为T n =1+22+322+423+…+n -12n -2+n 2n -1,所以12T n =12+222+323+424+…+n -12n -1+n 2n ,两式相减得,12T n =1+12+122+123+124+…+12n -1-n 2n =1-12n1-12-n 2n ,故T n =4-n +22n -1.基础回归1. 分组求和法数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列进行求和.2. 分组求和法的常见类型3. 错位相减法求和如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法.如:{a n }是等差数列,{b n }是等比数列,求a 1b 1+a 2b 2+…+a n b n 的和.4. 裂项相消法常用的裂项技巧(1) 1n (n +k )=1k ⎝ ⎛⎭⎪⎫1n -1n +k ;(2)1n +k +n =1k(n +k -n ).5. 常用结论(1) 1+2+3+4+…+n =n (n +1)2.(2) 12+22+…+n 2=n (n +1)(2n +1)6.(3) 在应用错位相减法求和时,若等比数列的公比为参数,应分别讨论公比等于1和不等于1两种情况.第1课时 分组求和法与错位相减法举题说法分组求和法例1 (2022·菏泽二模)已知数列{a n }中,a 1=1,其前n 项和S n 满足2S n +a n +1=2n +1-1.(1)求证:数列⎩⎨⎧⎭⎬⎫a n -2n 3为等比数列;【解答】 由2S n +a n +1=2n +1-1(n ≥1)①,得2S n -1+a n =2n -1(n ≥2)②,由①-②,得a n +a n +1=2n(n ≥2),则a n +1=-a n +2n⇒a n +1-2n +13=-⎝ ⎛⎭⎪⎫a n -2n 3(n ≥2),又当n =1时,由①得a 2=1⇒a 2-223=-⎝ ⎛⎭⎪⎫a 1-23,所以对任意的n ∈N *,都有a n+1-2n +13=-⎝ ⎛⎭⎪⎫a n -2n 3,故⎩⎨⎧⎭⎬⎫a n -2n 3是以13为首项,-1为公比的等比数列. (2) 求S 1+S 2+S 3+…+S 2n .【解答】 由(1)知a n -2n 3=(-1)n -13,得a n =2n +(-1)n -13,所以a n +1=2n +1+(-1)n 3,代入①,得S n =2n +13-(-1)n 6-12,所以S 1+S 2+…+S 2n =13(22+23+…+22n +1)-16[(-1)+(-1)2+…+(-1)2n ]-2n 2=13⎝⎛⎭⎪⎫22-22n +21-2-0-n =22n +2-3n -43.某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项的结构特点进行分析研究,将数列的通项合理分解转化.变式 已知在数列{a n }中,a 1=1且2a n +1=6a n +2n -1(n ∈N *). (1)求证:数列⎩⎨⎧⎭⎬⎫a n +n 2为等比数列; 【解答】 因为2a n +1=6a n +2n -1(n ∈N *),所以a n +1=3a n +n -12,所以a n +1+n +12a n +n 2=3a n +n -12+n +12a n +n 2=3a n +32n a n +n 2=3,所以⎩⎨⎧⎭⎬⎫a n +n 2为等比数列,首项为32,公比为3.(2) 求数列{a n }的前n 项和S n .【解答】 由(1)得a n +n 2=32×3n -1=12×3n ,所以a n =12×3n -n2,S n =a 1+a 2+a 3+…+a n =12(31+32+33+…+3n )-12(1+2+3+…+n )=12·3(1-3n)1-3-12·n (n +1)2=3(3n -1)4-n 2+n 4=3n +1-n 2-n -34.错位相减法求和例2 (2022·邯郸二模)已知等比数列{a n }的公比q ≠1,且a 1=2,2a 1+a 3=3a 2. (1) 求数列{a n }的通项公式;【解答】 由2a 1+a 3=3a 2,得2×2+2×q 2=3×2q ,解得q =2或q =1(舍去),所以a n =2×2n -1=2n .(2) 设数列{a n }的前n 项和为S n ,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n S n +2的前n 项和.【解答】 由(1)可知a n =2n,所以S n =2(1-2n )1-2=2n +1-2,所以n S n +2=n2n +1=n ·⎝ ⎛⎭⎪⎫12n +1.设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n S n +2的前n 项和为T n ,T n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+3×⎝ ⎛⎭⎪⎫124+…+n ×⎝ ⎛⎭⎪⎫12n +1①,12T n =1×⎝ ⎛⎭⎪⎫123+2×⎝ ⎛⎭⎪⎫124+3×⎝ ⎛⎭⎪⎫125+…+n ×⎝ ⎛⎭⎪⎫12n +2②,①-②,得12T n=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+⎝ ⎛⎭⎪⎫124+…+⎝ ⎛⎭⎪⎫12n +1-n ×⎝ ⎛⎭⎪⎫12n +2,即12T n =14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n ×⎝ ⎛⎭⎪⎫12n +2,所以T n =1-(n +2)·⎝ ⎛⎭⎪⎫12n +1.用错位相减法求和时,应注意防范以下错误:1. 两式相减时最后一项因为没有对应项而忘记变号.2. 对相减后的和式的结构认识模糊,错把中间的n -1项和当作n 项和.3. 在应用错位相减法求和时,若等比数列的公比q 为参数,应分公比q =1和q ≠1两种情况求解.4. 在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.变式 (2022·临沂二模)已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=2S n +1. (1) 求{a n }的通项公式;【解答】 由S n +1=2S n +1,得S n =2S n -1+1(n ≥2,n ∈N *),所以S n +1-S n =2S n -2S n -1,所以a n +1=2a n (n ≥2,n ∈N *).又a 1=1,S n +1=2S n +1,所以a 2+a 1=2a 1+1,整理得a 2=2a 1,所以数列{a n }是首项为1,公比为2的等比数列,所以数列{a n }的通项公式为a n =2n -1.(2) 记b n =log 2a na n,求数列{b n }的前n 项和T n .【解答】 由(1)得a n =2n -1,所以b n =log 2a na n=log 22n -12n -1=n -12n -1,所以T n =b 1+b 2+b 3+…+b n ,即T n =0+12+222+…+n -12n -1,12T n =0+122+223+…+n -12n ,两式相减,得12T n =12+122+…+12n -1-n -12n =12⎝ ⎛⎭⎪⎫1-12n -11-12-n -12n =1-n +12n ,所以T n =2-n +12n -1.并项法求和例3 (2022·南平三模)已知数列{a n }满足a 1=1,a n +1a n =n +1n .(1) 求数列{a n }的通项公式;【解答】 因为a 1=1,a n +1a n =n +1n ,所以当n ≥2时,a 2a 1·a 3a 2·…·a n a n -1=21×32×…×n n -1,则a na 1=n ,即a n =n ,当n =1时,也成立,所以a n =n .(2) 若{b n }满足b 2n =2a n -24,b 2n -1=2a n -22.设S n 为数列{b n }的前n 项和,求S 20.【解答】 由(1)知b 2n =2a n -24=2n -24,b 2n -1=2a n -22=2n -22,则b 2n +b 2n -1=4n -46,则S 20=(b 1+b 2)+(b 3+b 4)+…+(b 19+b 20)=(4×1-46)+(4×2-46)+…+(4×10-46)=4×(1+10)×102-46×10=-240.当数列{a n }的连续两项a n -1+a n 或多项的和(差)为等差数列或等比数列时,通常用并项法进行求和.变式 在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项和S 100等于( D )A. -200B. -100C. 200D. 100解析: 设等差数列{a n }的公差为d ,由题意可得⎩⎨⎧a 1+3d =5,a 1+6d =11⇒⎩⎨⎧a 1=-1,d =2⇒a n =2n -3,所以b n =(-1)n (2n -3).又b 2n -1+b 2n =-a 2n -1+a 2n =-(4n -5)+4n -3=2,所以S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100.随堂内化1. 若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( A )A. 15B. 12C. -12D. -15解析: a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15.2. 数列⎩⎨⎧⎭⎬⎫n 2n 的前n 项和是( D )A. 2-n 2nB. 2-12n -1C. 2-n -12n -1-n 2nD. 2-12n -1-n2n解析:由题知S n =1×12+2×14+3×18+…+n ×12n ①,则12S n =1×14+2×18+3×116+…+(n -1)×12n +n ×12n +1②.两式相减得12S n =12+14+18+…+12n -n ×12n +1=12⎝ ⎛⎭⎪⎫1-12n 1-12-n 2n +1,所以S n =2⎝⎛⎭⎪⎫1-12n -n 2n +1=2-12n -1-n 2n . 3. (多选)在等差数列{a n }中,已知a 2=4,通项为a n ,前4项和为18,设b n =n ·2a n -2,数列{b n }的前n 项和为T n ,则( AC )A. a n =n +2B. a n =n +3C. T n =(n -1)×2n +1+2D. T n =(n -1)×2n +1+3解析: 设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧a 1+d =4,4a 1+4×32d =18,解得⎩⎨⎧a 1=3,d =1,所以a n =n +2,可得b n =n ·2n ,所以T n =b 1+b 2+b 3+…+b n =1×2+2×22+3×23+…+n ×2n ①,2T n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n+1②.由①-②得-T n =2+22+23+…+2n -n ×2n +1=2-2n +11-2-n ×2n +1=(1-n )×2n +1-2,所以T n =(n -1)×2n +1+2.4. 已知数列:112,214,318,…,⎝ ⎛⎭⎪⎫n +12n ,…,则其前n 项和关于n 的表达式为n(n+1)2-12n+1.解析:设所求的前n项和为S n,则S n=(1+2+3+…+n)+⎝⎛⎭⎪⎫12+14+…+12n=n(n+1)2+12⎝⎛⎭⎪⎫1-12n1-12=n(n+1)2-12n+1.5. 1+11+111+…+的和是10n+1-9n-1081.解析:因为=19×=10n-19,所以1+11+111+…+=19[(10-1)+(102-1)+(103-1)+…+(10n-1)]=19(10+102+103+…+10n)-n9=19×10(1-10n)1-10-n9=10n+1-9n-1081.练案❶趁热打铁,事半功倍. 请老师布置同学们及时完成《配套精练》.练案❷ 1. 补不足、提能力,老师可增加训练《抓分题·高考夯基固本天天练》(分基础和提高两个版本)对应内容,成书可向当地发行咨询购买.2. 为提高高考答卷速度及综合应考能力,老师可适时安排《一年好卷》或《抓分卷·高考保分增效天天练》,成书可向当地发行咨询购买.。

2018届高考数学一轮复习专题三数列课件文

2018届高考数学一轮复习专题三数列课件文
2,n=1, 所以 Tn=3n-n2-2 5n+11,n≥2,n∈N*.
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。
• 一、听理科课重在理解基本概念和规律
• 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解, 同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。
【阅卷点评】 ①由题意列出方程组得 2 分; ②解得 a1 与 d 得 2 分,漏解得 1 分; ③正确导出 an,bn 得 2 分,漏解得 1 分; ④写出 cn 得 1 分; ⑤把错位相减的两个式子,按照上下对应好,再相减,就能正 确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.
(2016·浙江卷)设数列{an}的前 n 项和为 Sn,已知 S2=4,an+1= 2Sn+1,n∈N*.
(2)设 bn=|3n-1-n-2|,n∈N*,b1=2,b2=1. 当 n≥3 时,由于 3n-1>n+2,故 bn=3n-1-n-2,n≥3. 设数列{bn}的前 n 项和为 Tn,则 T1=2,T2=3. 当 n≥3 时,Tn=3+911--33n-2-n+72n-2 =3n-n2-2 5n+11,

作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。
• 二、听文科课要注重在理解中记忆

2018年高考数学一轮复习课件:第五章 数列 第31讲

2018年高考数学一轮复习课件:第五章 数列 第31讲

• =(-1+4)+(-7+10)+(-13+16)+(-19+ 22)+(-25+28)
• =3×5=15.
第十四页,编辑于星期六:二十二点 二十分。
5.已知数列an的前 n 项和为 Sn 且 an=n·2n,则 Sn=_(_n_-__1__)·_2__n+__1_+. 2 解析:∵an=n·2n,∴Sn=1·21+2·22+3·23+…+n·2n.① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1.② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2. ∴Sn=(n-1)2n+1+2.
第十一页,编辑于星期六:二十二点 二十分。
2.数列an的通项公式是 an=
1 n+
n+1,前
n
项和为
9,则
n=(B)Fra bibliotekA.9
B.99
C.10
D.100
解析:∵an=
1 n+
n+1=
n+1-
n,
∴Sn=a1+a2+a3+…+an=( 2-1)+( 3- 2)+…+( n+1- n)= n+1-1. ∴ n+1-1=9,即 n+1=10.∴n=99.
第六页,编辑于星期六:二十二点 二十分。
3.裂项相消法
(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得
其和.
(2)常见的裂项技巧
①nn1+1=1n-n+1 1.
②nn1+2=121n-n+1 2.
③2n-112n+1=122n1-1-2n1+1.

1 n+
n+1=
n+1-
第四页,编辑于星期六:二十二点 二十分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)求 Sn=a+2a2+3a3+…+nan 时只要把上式等号两边同时乘以 a 即可根据错位 相减法求得.( ×)
(5)如果数列an是周期为 k 的周期数列,那么 Skm=mSk(m,k 为大于 1 的正整 数).( √ )
解析:(1)正确.根据等差数列求和公式以及运算的合理性可知. (2)正确.根据等比数列的求和公式和通项公式可知. (3)错误.直接验证可知n2-1 1=12n-1 1-n+1 1. (4)错误.含有字母的数列求和常需要分类讨论,此题需要分 a=0,a=1,以及 a≠0 且 a≠1 三种情况求和,只有当 a≠0 且 a≠1 时才能用错位相减法求和. (5)正确.根据周期性可得.
(2)由 an=2n-1 得 bn=2n-1+q2n-1. 当 q>0 且 q≠1 时,Sn=[1+3+5+7+…+(2n-1)]+(q1+q3+q5+q7+…+q2n- 1)=n2+q11--qq22n; 当 q=1 时,bn=2n,则 Sn=n(n+1).
2.倒序相加法与并项求和法 (1)倒序相加法 如果一个数列an的前 n 项中首末两端等“距离”的两项的和相等或等于同一个常 数,那么求这个数列的前 n 项和可用倒序相加法,如等差数列的前 n 项和公式即是用 此法推导的. (2)并项求和法 在一个数列的前 n 项和中,可两两结合求解,则称之为并项求和. 形如 an=(-1)nf(n)类型,可采用两项合并求解. 例如,Sn=1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22 -12)=(100+99)+(98+97)+…+(2+1)=5 050.
• =3×5=15.
5.已知数列an的前 n 项和为 Sn 且 an=n·2n,则 Sn=_(_n_-___1_)_·_2_n_+__1.+2
解析:∵an=n·2n,∴Sn=1·21+2·22+3·23+…+n·2n.① ∴2Sn=1·22+2·23+…+(n-1)·2n+n·2n+1.② ①-②,得-Sn=2+22+23+…+2n-n·2n+1 =211--22n-n·2n+1=2n+1-2-n·2n+1=(1-n)2n+1-2. ∴Sn=(n-1)2n+1+2.
•一 分组法求和
分组转化法求和的常见类型 (1)若 an=bn±cn,且bn,cn为等差或等比数列,可采用分组转化法求an的前 n 项 和. (2)通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列bn,cn是等比或等差数列, 可采用分组转化法求和.
【例 1】 已知等差数列an满足:a5=9,a2+a6=14. (1)求an的通项公式; (2)若 bn=an+qan(q>0),求数列bn的前 n 项和 Sn. 解析:(1)设数列an的首项为 a1,公差为 d, 则由 a5=9,a2+a6 =14,得a21a+1+4d6=d=9,14. 解得da=1=21., 所以an的通项公式 an=2n-1.
3.裂项相消法
(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得
其和.
(2)常见的裂项技巧
①nn1+1=1n-n+1 1.
②nn1+2=121n-n+1 2.
③2n-112n+1=122n1-1-2n1+1.

1 n+
n+1=
n+1-
n.
• 4.错位相减法
• 如果一个数列的各项是由一个等差数列和一 个等比数列的对应项之积构成的,那么这个 数列的前n项和即可用此法来求,如等比数列 的前n项和公式就是用此法推导的.
第五章
数列
第31讲 数列求和
考纲要求
考情分析
命题趋势
1.熟练掌握等差、 等比数列的前n项和 公式.
2016,全国卷Ⅱ, 17T
2016,江苏卷,18T
利用公式求 数列的前n 项和;利用
2.掌握非等差、等比 2016,北京卷,12T 常见求和模
数列求和的几种常
型求数列的
见方法.
前n项和.
分值:5分ຫໍສະໝຸດ 栏目导 航2.数列an的通项公式是 an=
1 n+
n+1,前
n
项和为
9,则
n=(
B
)
A.9
B.99
C.10
D.100
解析:∵an=
1 n+
n+1=
n+1-
n,
∴Sn=a1+a2+a3+…+an=( 2-1)+( 3- 2)+…+( n+1- n)= n+1-1.
∴ n+1-1=9,即 n+1=10.∴n=99.
3.若数列an的通项公式为 an=2n+2n-1,则数列an的前 n 项和为( C )
A.2n+n2-1
B.2n+1+n2-1
C.2n+1+n2-2
D.2n+n-2
解析:Sn=a1+a2+a3+…+an =(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n-1)=(2+22+… +2n)+2(1+2+3+…+n)-n =211--22n+2×nn2+1-n=2(2n-1)+n2+n-n =2n+1+n2-2.
• 4.若数列的通项公式是an=(-1)n(3n-2),则Aa1+ a2+a3+…+a10=( )
• A.15
B.12
C.-12
D.-15
• 解析:∵an=(-1)n(3n-2),∴a1+a2+a3+…+a10 • =-1+4-7+10-13+16-19+22-25+28
• =(-1+4)+(-7+10)+(-13+16)+(-19+22)+ (-25+28)
1.思维辨析(在括号内打“√”或“×”). (1)如果已知等差数列的通项公式,则在求其前 n 项和时使用公式 Sn=na12+an较 为合理.( √ ) (2)如果数列an为等比数列,且公比不等于 1,则其前 n 项和 Sn=a11--aqn+1.( √ ) (3)当 n≥2 时,n2-1 1=n-1 1-n+1 1.( × )
板块一 板块二 板块三 板块四
1.公式法与分组求和法
(1)公式法
直接利用等差数列、等比数列的前 n 项和公式求和.
①等差数列的前 n 项和公式: Sn=na12+an=_n_a_1_+__n_n_2-__1__d.
②等比数列的前 n 项和公式: Sn=naa11-1-,aqqnq==1_,_a_1_11_--__qq_n___q≠1. (2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用 分组求和法分别求和后相加减.
相关文档
最新文档