地下室结构设计中难点问题研究
分析高层建筑中地下室结构设计的问题

① 增加基础配重 。此种方法大致又有 以下几种情况 :增 加 a .
基础底板 的厚度;. b增加基础顶面覆土 厚度 I基础顶面采用重度 c .
而言,塔楼部分一 般在使
大且价格低廉 的填料 。这三种方法的共同特 点是: 在增加基础配
重用 以解 决抗浮 问题 的同时又不可避免的增加 了基础的埋置深
.
二二 丰 二 二 == =}
图 1 基础形式
妻 E
r —一 一
二
一
a 下翻式柱 帽的平 板式筏板基 础;- 低板位 墚 板式 筏板基础 ;_低板 位’ 板式筏板 基础 一 b " c“ 墚
() 2 楼盖提 倡使用宽扁梁或无梁楼盖 。 一般宽扁梁 的截 面高 度为跨度的 1 6 1 2 宽扁梁 的使用将有效地 降低地下结构 的 / ~/ 。 1 2 层高。 从而相对降低了抗浮设防水位 。
刖
舌
用阶段不会存在抗浮 问题。但裙 房及纯地下室部 分经常会有抗
浮不满足要求 的问题。 此种情况. 我院 的工程设 计经验. 针对 结合
近 年来, 随着我国经济的快速发展, 市的高层建筑也越来 城 越多 , 而人们对地下空 间需求 的不断增长 . 地下工程在整个 建设 项 目中所 占的比重还会越 来越 大。 由于地下工程材 料消耗大 、 建 造周期长 、 施工难度大- 结构设计的好坏将会对整个项 目的设计
2 增加 地 下室 的重量 . 2
增加地下室本身的重量有以下几 方面 的优 点: () 1增加地 下室 的重 量是解决地 下室抗浮 问题 的一 个直接 有效的方法, 但这种方法还应 该结合地基 土 的承载 力而定. 不能 顾此 失彼: () 对主体结构 的地基 承载力进行深度 修正时. 加地下 2在 增 室的重量可 以提高主体结构 的有效 埋置深度.从而提 高了主体 结构修正后 的地基承载力特征值。
浅谈地下室结构设计应注意的问题

环球市场/施工技术-162-浅谈地下室结构设计应注意的问题姚畏力呼伦贝尔市建设工程施工图审查站摘要:在工程结构设计中,随着土地资源的紧缺,地下空间的利用越来越得到重视,因此,地下室的建设在现在的建筑中已经非常普遍,但地下室的设计在发展的同时亦存在不少的问题。
由于涉及到工期和投入的建设费用,设计中与地下室相关的不少问题也逐渐变得突出起来。
地下室按其使用功能可分为普通、人防和平战三类,本文仅对普通地下室施工图审查中发现的设计中存在的问题进行探讨并提出相应的措施及建议。
关键词:地下室;施工图审查;设计;问题引言工程结构设计中,如果地下室设计不当,会对整体建筑结构体系产生较大影响。
一般在施工图审查中,对于地下室的埋深,当埋深超过室外地坪至地下室地面高度时,才不计其层数,建筑总高度才能从室外地面算起,并且地下室的墙、柱与上部结构的墙、柱要协调统一。
1.地下室结构设计中存在的问题1.1抗震等级问题在地下室结构设计中,常见的与抗震有关的问题是:半地下室的埋深不足,建筑的层数包括半地下室层已超限,层数和总高度超过相应要求,确定地下室抗震等级为三级,而上部结构为二级,按规范要求,结构的地下室也应为二级,这是对规范掌握和理解不足。
1.2荷载效应与组合地下室外墙进行正截面和斜截面承载力计算时,土压力的荷载效应定性为永久荷载效应,当可变荷载效应控制的组合时,土压力的荷载分项系数取1.2;当永久荷载效应控制的组合时,其荷载分项系数应取1.35。
对于地面活荷载,同样应乘侧压力系数,许多设计中计算不对。
地下室底板的强度计算时,板、覆土的自重对其有利,则荷载分项系数应取1.0。
1.3地下室顶板设计在高层建筑结构中,嵌固端通常选取在首层地下室顶板,但地下室顶板要真正成为结构嵌固端是有条件的。
地下室结构将具有足够的整体刚度和足够的承载力,在地震作用下,当上部结构进入弹塑性工作阶段,地上一层柱底或墙底出现塑性铰时,地下室结构仍可保持弹性工作状态。
关于建筑工程地下室结构设计中的问题探讨

关于建筑工程地下室结构设计中的问题探讨【摘要】本文主要对建筑工程地下室结构设计中的几个问题进行了详细的探讨和分析,地下室的结构设计在整个建筑结构设计中是比较重要的一个环节,因为地下室的位置较为特殊,如果设计不当,对整个工程性能会产生较大影响,本文就此展开论述,提出了一些观点望同行参考。
【关键词】地下室;结构设计;荷载;外墙压力前言随着高层建筑在我国的迅速发展,建筑高度的不断增加,地下室的层数也随之增加.人们对地下空间需求的不断增长,致使裙房的底盘面积在增加,地下工程在整个建设项目中所占的比重越来越大.建筑类型与功能的愈来愈复杂,结构体系的更加多样化,高层建筑地下室结构设计也越来越成为结构工程师设计工作的主要重点和难点之所在.一、地下室结构设计的特点要求分析地下室结构设计的主要内容包含几个方向:一是主体结构设计,包括顶板、外侧墙、底板等其它构件的结构设计;二是孔口防护设计,包括出入口的防护和消波系统(防护设备)其中出人口的防护包含防护密闭门的选用、门框墙、临空墙的计算,出人口通道(包括风井)的计算等几个方面,而消波系统则包含防爆破活门的选用和扩散室(箱)的设计。
三是地下室是否与上部结构一起计算对于计算结果影响较大,其底板经常同时作为结构的基础,需要考虑地基的反作用力,顶板作为工程的重要部位,需要组合核爆炸力的等效静荷载,外墙则需考虑侧向的土、水的水平作用组合。
总之,地下室的结构设计可按整体设计和构件的单独设计分别进行。
结构设计的可靠性可以降低,一般建筑结构(延性破坏)失效概率为6.8%,而地下室结构(延性破坏)失效概率为6.1%,需考虑结构的动力效应,结构构件可考虑进人塑性工作状态,材料设计强度可以提高。
在快速加载的情况下,材料力学性能发生比较明显的变化。
主要表现为强度提高,但变形性能包括塑性性能等基本不变,这对结构工作起到有利作用。
例如钢材强度可提高1.1~1.5倍,对硷强度可提高1.5倍,这是在设计中考虑材料强度综合调整系数来完成的,重视构造要求。
地下室结构设计工程中常见问题分析及对策

的压弯作用, 仅按墙板弯曲计算弯曲的配筋。
f地下室外墙截 面设计时 , 2 ) 土压力 引起 的 效应为永久荷载效应 。地下室外墙承受 的土压 力 宜取静止土 压力 , 静止土压力宜 由试验确定 。 当不具备试验条件时 , 砂土可取 0 40 5黏性 . -. , 3 4 土 可取 0 4. 5 )。水位稳定的水 压力按永久荷载 7 考虑 , 系数可取 1 ; 急剧变 化 的水压 分项 . 水位 2 力按可变荷载考虑 , 系数宜 取 1 。有人 防 分项 3 要求 的地下室外墙的永久荷载分项 系数 ,当其 效应对结 构不利时取 1 , 2 有利时取 1 ; . 抗爆等 0 效静荷载分项系数取 1 。 . 0 (地下室外墙的配筋计算 。 3 ) 实际设计时 , 配 筋 的计算 , 对于带扶壁柱的外墙 , 不是根据扶壁
一
活需要的产物, 是现代社会工业化、 商业化和城 市化 的必然结果 。 科学技术的进步、 经济的发展 则为高层建筑的发展提供了坚实的物质基础。 地下室 的结构设计 过程错综复杂我们应 以遵循 安全 、适用 和合理的原则 ,及合理的设计 为前 提 , 全 面考虑 , 问题减小 至最低或消 除 , 进行 把 以使建筑地下 室结 构设计工作发挥其最大的经 济作用和社会效益, 最后达成设计要求。
量。
f地下室底板标高的设计。地下室底板标 4 )
根据《 高规) J 第 4 5条规定 , J 3 G . 8 当地下室 顶板作为上部结构 的嵌 固层时 ,地下一层 的抗 震等级应按上部结构采用 ,地下一层 以下的结 构抗震 等级可根 据具体 隋况 采用三级或 四级 。 因此存在 的常见 问题如 :① 当上部抗震等级为 特一级 ,地下一层隔墙为上部结构落地剪力墙 时, 《 根据 高规》 4 .条规定 : 第 .2 9 取地上一层剪力 墙墙底截 面组合弯矩计算 值的 1 倍作 为地下 . 1 层隔墙的弯矩设计值 ;取地上一层剪力墙底 部地震作用组 合的剪力计 算时的 1 倍 作为地 . 9 下一层隔墙的剪力设计值;地下一层内隔墙的 水平和竖向分布钢筋 的最小配筋应为 0%。② 半地下室埋深不够 , 地下室抗震等级为三级 , 而 上部结构为二级,按 G 5 0 120 第 6 -条 B 0 1- 0 1 . 1 3
地下室设计存在的问题及优化策略

地下室设计存在的问题及优化策略摘要:随着经济的发展,人民生活水平的提高,私家车的数量也在逐年增多。
在土地资源紧张的时代,开发和利用地下空间极大的缓解了土地资源紧缺的问题。
地下空间可作为机动车库、非机动车库、设备用房等用途。
本文以笔者参与的设计项目“容西片区E单元安置房及配套设施项目”为例,对大型地下室设计存在的问题进行分析总结并提出优化策略,以提高设计质量和工程经济性、合理性,为同类型项目设计提供一定的参考依据。
关键词:地下室设计;存在问题;优化措施0引言近年来,为响应国家节能节地号召,新建建设工程项目大多都以整体开挖地下室来缓解土地资源紧缺的,充分利用地下空间。
在实际建设工程项目中,地下空间往往具有规模大,功能复杂等特点,给设计带来一定的挑战。
本文以作者参与的设计项目“容西片区E单元安置房及配套设施项目”为例,从建筑专业角度出发,对大型建筑工程地下室设计存在的问题进行分析总结并提出优化策略。
1项目概况容西片区E单元安置房及配套设施项目位于河北雄安新区容东片区。
本项目包含RX03-08、RX03-09二宗地,项目地上总建筑面积约89.9万平方米,地下室分四个子项分别为RX03-08街区03-08-1#地下车库,建筑面积92991.26平方米;RX03-08街区03-08-2#地下车库,建筑面积63036.64平方米;RX03-09街区03-09-1#地下车库,建筑面积47613.05平方米;RX03-09街区03-09-2#地下车库,建筑面积35597.53平方米。
2地下室设计存在问题地下室设计作为建筑工程设计的重要组成部分,不仅解决了居民的停车需求,节约了土地资源而且还作为设备机房提供了空间,避免地上功能空间。
由于地下室在设计过程中牵涉的专业较多,专业间配合难度大,增加了设计难度。
2.1功能分区问题地下室在设计过程中,大多数设计师把车位布置放在第一位,尽可能的去满足规划设计配建指标,在一些非主要空间布置设备机房。
解析建筑工程中的地下室结构设计方法

解析建筑工程中的地下室结构设计方法摘要:由于我国的人口基数较大,如今土地资源日渐短缺,建筑工程必然会越来越多地向地下转移发展,并呈现出多层地下室结构的趋势。
但是地下室工程因其特殊的施工环境,具有较强的隐蔽性,在施工过程中,涉及较多的工种,施工工艺较为复杂,容易产生各种质量问题,所以对地下室结构的设计提出了较高的要求。
基于此,本文就从建筑工程中的地下室结构设计方法展开分析。
关键词:建筑工程;地下室结构;设计方法1、地下室结构设计面临的难点概述地下室工程由于涉及较多工种,施工十分复杂,因此,在建筑工程地下室结构的设计过程中,应该严密考量其采光、通风、排水、坑道、管道、防火、使用功能、设备用房、人防要求等各个方面。
部分高层建筑群具有大底盘地下室,在使用阶段,通常塔楼部分不会出现抗浮问题,但是纯地下室部分以及裙房容易有抗浮不符合要求的情况出现。
并且,因为在地下室结构抗浮的设计中,一般只重视其正常的使用状态,但是没有充分考虑洪水期和施工过程。
所以在地下室施工时,会出现抗浮不符合要求,进而破坏建筑物局部的现象。
另外,作为一项系统性的工程,地下室工程涉及到设计、材料选择、施工等多方面的因素,进而导致地下室结构在设计过程中会遇到很多难点。
一般来说,地下室结构设计的难点主要集中在外墙结构设计、地下室抗渗、抗浮、抗震设计、结构平面设计、结构超长设计等方面。
2、建筑工程中地下室结构设计的方法分析2.1地下室的抗渗、抗浮设计地下室的抗浮设计应充分考虑地下水位的变化。
因为在地下室结构抗浮的设计中,一般只重视其正常的使用状态,但是没有充分考虑洪水期和施工过程。
所以在地下室施工时,会出现抗浮不符合要求,进而破坏建筑物局部的现象。
或者,大面积整体地下室上面有多栋建筑物,因为地下室本身形状不规则且面积大,局部地上部分无建筑物,处理难度大,事先需进行严密地分析。
此外,地下室结构设计应充分考虑抗渗的问题,通常有如下几种方法:将膨胀剂掺入混凝土,补偿收缩的混凝土;设置膨胀加强带;设置后浇带;增强钢筋混凝土自身的抗拉能力。
地下室结构设计中问题分析及解决措施

地下室结构设计中问题分析及解决措施摘要:地下室支承着上部结构,不可预见的因素影响较多,设计方案的选择受不确定性(如地下水、土质等)的因素影响,造成地下室设计的复杂化,同时也影响建造成本的经济性。
笔者根据多年的工程设计经验,针对一些不确定性因素,总结出以下一些措施来解决地下室结构设计中存在的问题。
关键词:地下室;结构设计;问题1 抗浮问题对于具有大底盘地下室的高层建筑群,塔楼部分的地下室一般在使用阶段不会存在抗浮不足问题,但裙房及纯地下室部分经常会有因为抗浮不满足要求而出现底板被拉裂渗水的现象,在施工阶段,何时停止降水才能借助带地下室的高层建筑的自身重量来平衡浮力,直接影响到建造成本和施工质量。
所以,抗浮设计对带地下室的高层建筑是不容忽视的。
怎样才能做好抗浮设计,本人认为可以这样考虑:1.1确定科学合理的抗浮设防水位地下水位及其变幅是地下室抗浮设计的重要依据,地质勘查单位提供的岩土工程勘查报告中对地下水水位提出了3个指标:①拟建场地历史最高水位;②近3~5年最高水位;③勘查时的实测静止地下水位。
确定地下室抗浮设防水位时应根据设计规范中确定的原则:防水要求严格的地下室,其设防水位可按历年最高地下水位;对防水要求不严格的地下室其设防水位可参照近3~5年最高水位及勘查时的实测静止地下水位,科学地确定地下水位可以合理地选择抗浮措施,降低建造成本,缩短施工周期。
1.2 降低抗浮设防水位的措施在保证建筑使用净高的前提下减少地下室的总高度,提高基坑坑底的设计标高,可以间接降低抗浮设防水位。
具体措施有以下几种:(1)采用平板式筏板基础。
一般而言,平板式筏板基础的重量与“低板位”梁板式筏板基础上填覆土的重量基本相当,但后者的基础高度一般要比前者高。
(2)楼盖提倡使用宽扁梁或无梁楼盖。
一般宽扁梁的截面高度为跨度的1/16~1/22,宽扁梁的使用将有效地降低地下室顶板结构高度,从而相对降低了抗浮设防水位。
1.3 增加地下室的重量增加地下室本身的重量有以下几方面的优点:①增加地下室的重量是解决地下室抗浮问题的一个直接有效的方法,但这种方法还应该结合地基土的承载力而定,不能顾此失彼;②在对主体结构的地基承载力进行深度修正时,增加地下室的重量可以提高主体结构的有效埋置深度,从而提高了主体结构修正后的地基承载力特征值。
地下室结构设计中的问题和改进措施

地下室结构设计中的问题和改进措施地下室结构设计中的问题和改进措施地下室结构设计中的问题和改进措施【摘要】:随着城市土地资源的日益紧缺,建筑及城市交通逐步向地下发展,而高层建筑更由于其功能和结构本身的需要,大多设置了地下室。
随着建筑层数的日益增高,地下结构已向多层发展,其基坑支护、地下结构设计、地下室的施工及防水等日益成为建筑工程界关注的热点。
由于地下室工程的施工环境特殊、隐蔽性大、涉及的工种多、施工复杂,也容易出现质量问题,因而对设计有一定的特殊要求。
文章就地下室结构设计常遇到的问题作一介绍。
【关键词】:地下室;结构设计;筏板基础;平面设计1.基础形式的选取及计算问题目前高层建筑中比较成熟且常用的基础形式有:筏板基础(包括平板式筏板基础和“低板位”梁板式筏板基础)、箱型基础、桩筏和桩箱基础等。
筏板基础是用的最多的一种基础形式,因此,文章将重点讨论筏板基础的有关问题。
1)平板式筏板基础和梁板式筏板基础的适用范围。
相邻柱间距及柱荷载差别较小时适用平板式筏板基础,反之则宜采用梁板式筏板基础。
通常,在材料用量相当的情况下,梁板式筏板基础的()刚度较平板式筏板基础大,底板标高变化较多时宜采用平板式筏板基础。
2)梁高、板厚的选取及计算方法问题。
目前计算筏板基础时,常用的方法有“倒楼盖”方法、弹性地基梁板方法和有限元分析方法,其中“倒楼盖”方法是一种传统方法,按该法进行基础设计时,基础内力按基底反力直线分布进行计算。
按《建筑地基基础设计规范》(GB50007—20XX)的要求,基础内力按基底反力直线分布进行计算时,要求地基土比较均匀、上部结构刚度较好、荷载分布比较均匀、梁板式筏板基础梁的高跨比或平板式筏板基础的厚跨比不小于1/6,当不满足上述要求时应按弹性地基梁板计算。
“规范”对基础梁高跨比和板厚跨比的要求,其本质是要保证基础具有一定的刚度,私以为,基础刚度应与基底反力的大小相匹配,对于层数较多的高层建筑而言,该要求很容易满足,但对于层数较少的高层建筑而言,该条要求就显得偏严。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨地下室结构设计中难点问题的研究摘要:近些年来,随着社会经济和房地产业的发展,城市建设中出现了大量的地下室,特别是高层建筑的地下部分。
因为考虑高层建筑物的埋深要求,一般都会设置地下室。
将设备用房、生活水池、消防水池和汽车停车位等设在地下室,既能充分发挥地下室作用,又能满足基础埋深的要求。
因此,在建筑设计中,地下室结构设计日显重要。
现简要论述地下室结构设计中经常遇到的几个难点问题,与同行共同探讨。
关键词:结构设计;地下室工程;抗浮、抗渗设计
abstract: in recent years, along with the social economy and real estate industry development, city construction there appear a large number of basement, especially high building underground parts. because of the high buildings considered buried depth requirements, general will set up the basement. will equipment room, life pool, pool and car parking spaces such as fire is in the basement, already can give full play to the basement effect, and can meet the requirements of the buried deep foundation. therefore, in architecture design, the basement structure design more and more importantly. now briefly discusses the basement structure design always met in several difficult problem, with counterparts to discuss.
keywords: structure design; the basement project;
anti-uplift and anti-permeability design
中图分类号:tb482.2文献标识码:a文章编号:
一、地下室结构设计难点概述地下室工程涉及的专业极为复杂,在建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。
对于具有大底盘地下室的高层建筑群体而言,塔楼部分一般在使用阶段不会存在抗浮问题,但裙房及纯地下室部分经常会有抗浮不满足要求的问题。
而且由于实际地下室抗浮设计中往往只考虑正常使用极限状态,对施工过程和洪水期重视不足,因而也会造成施工过程中由于抗浮不够而出现局部破坏,加上地下室防水工程是一项系统性工程,涉及设计、施工、材料选择等诸多方面因素,因此造成了地下室结构设计难点繁多,一般来讲概括起来为:(1)结构平面设计;(2)抗震设计;(3)地下室抗浮、抗渗设计;(4)外墙结构设计。
二、建筑工程地下室结构优化设计
(一)结构平面设计在高层建筑的地下室结构设计时,需综合考虑防火、使用功能、人防要求、设备用房及管道、坑道、排水、通风、采光等各专业的配合。
例如地下室的长度超过设计规定长度时,需要与结构专业配合,确定是否设置变形缝,通常应尽可能少设或不设变形缝,因为设置变形缝会使得变形缝处的防水处理变得复杂。
设计人员可以通过设置后浇带和合理使用混凝外加剂或地上
设缝、地下不设缝等方式,达到不设缝的目的。
若地下室过长依靠设置后浇带的方法难以解决,设计人员应合理地调整平面将地下室分割成几个小地下室,中间用较窄的通道相连,以满足使用及管道相连的要求,而将变形缝设置在通道处,这样可以使接缝较少且处于受力较小处,便于补救。
在结构设计时应合理地设置采光通风井,若高层建筑采光通风井位置设计不当,例如在侧壁外作附加通长采光井,而采光井外壁又不能与地下室顶板整体连接,会造成地下室保证结构稳定功能的丧失,不能有效地将上部的地震及风力作用传至侧壁及地面,不能满足高层建筑的埋深要求。
(二)抗震设计一般来讲地下室抗震设计中较为常见的问题为:多层建筑中半地下室埋深不够,房屋层数包括半地下室层已达8层,层数和总高度超过要求,违反gb50011-2001第7.1.2条。
地下室顶板为上部结构嵌固端,地下室一层抗震等级定为三级,而上部结构为二级,按gb50011-2001第6.1.3条地下室也应为二级。
若地下室设计不当,对其整体的抗震性能会产生较大的影响。
根据施工图审查要点,一般来讲,对于半地下室的埋深要求应大于地下室外地面以上的高度,才能不计算其层数,总高度才能从室外地面算起。
地下室的墙柱与上部结构的墙柱应协调统一。
对地下室顶板室内外板面标高变化处,当标高变化超过梁高范围时则形成错层,应采取一定的措施进行处理,否则不应作为上部结构的部位。
相关规范明确规定,作为上部结构部位的地下室楼层的顶楼,盖应采用梁板结构,地下室顶板为无梁楼盖时不应作为上部结构的部位。
结构计算
应向下计算至满足要求的地下室楼层或底板,但剪力墙底部加强区层数应从地面往上计算,并应包括地下层。
(三)地下室抗浮、抗渗设计一般来讲,此类设计常见问题为:地下水位未按勘察报告确定,或勘察报告未提供计算浮力的地下水位及其变幅,违反了gb50007-2002第3.0.2条;斜坡道未进行抗浮验算,斜坡道与主体分缝处未作处理;抗浮验算不满足要求,不符合gb50009-2001第3.2.5条等。
地下水位及其变幅是地下室抗浮设计的重要依据。
实际在地下室抗浮设计时仅考虑正常使用的极限状态,而对施工过程和洪水期重视不足,因而会造成地下室施工过程中因抗浮不够而出现局部破坏。
另外,在同一整体大面积地下室的上部常建有多栋高层和低层建筑,由于地下室的面积较大、形状又不规则,且地下室上方的局部没有建筑,此类抗浮问题相对难以处理,须作细致分析后再进行处理。
地下室结构设计除应满足受力要求外,抗渗也是其中一个重点。
由于钢筋混凝土结构通常带裂缝工作,要达到抗渗目的,一般可采取以下措施:(1)补偿收缩混凝土。
在混凝土中掺微膨胀剂,以混凝土的膨胀值抵消混凝土的最终收缩值。
当其差值大于或等于混凝土的极限拉伸时,即可控制裂缝;(2)膨胀带。
混凝土中膨胀剂的膨胀变形不会完全补偿混凝土的早期收缩变形,而设置补偿收缩混凝土带可以实现混凝士连续浇注无缝施工;(3)后浇带。
后浇带作为混凝土早期短时期释放约束力的一种技术措施,较长久性变形缝已有很大的改进并广泛应用;(4)提高钢筋混凝土的抗拉能力。
混凝土应考虑增加抗变形钢筋,
如侧壁增加水平温度筋,在混凝土面层起强化作用;侧壁受底板和顶板的约束,混凝土胀缩不一致,可在墙体中部设置一道水平暗梁抵抗拉力。
当然,在采取以上措施时,同时要注意混凝土的养护。
(四)外墙结构设计地下室的外墙是结构设计的重点,应按水、土压力验算,在设计时应注意以下要求:(1)荷载。
地下室外墙所承受的荷载分为水平荷载和竖向荷载。
竖向荷载包括上部及地下室结构的楼盖传重和自重,水平荷载包括地面荷载、侧向土压力和人防等效静荷载。
在实际工程设计中,竖向荷载及风荷载或地震作用产生的内力一般不起控制作用,墙体配筋主要由垂直墙面的水平荷载产生的弯矩确定,而且通常不考虑与竖向荷载组合的压弯作用,仅按墙板弯曲计算弯曲的配筋;(2)静止土压力系数。
静止土压力宜由试验确定,当不具备试验条件时,砂土可取0.34~0.45,粘性土可取0.5~0.7;(3)地下室外墙的配筋计算。
实际设计时,在外墙的配筋计算中,对于带扶壁柱的外墙,不是根据扶壁柱的尺寸大小进行计算,而是均按双向板计算配筋;扶壁柱则按地下室结构的整体电算分析结果进行配筋,不按外墙双向板传递荷载验算扶壁柱配筋。
根据外墙与扶壁柱变形协调的原理,这种设计将使得外墙竖向受力筋配筋不足、扶壁柱配筋偏少、外墙的水平分布筋则有富余量。
因此,在计算地下室外墙的配筋时,对于垂直于外墙方向有钢筋混凝土内隔墙相连的外墙板块或外墙扶壁柱截面尺寸较大的外
墙板块,如高层建筑外框架柱之间,按双向板计算配筋为宜,其余的宜按竖向单向板计算。
对竖向荷载较小的外墙扶壁柱,其内外侧
主筋也应予以适当加强。
外墙的水平分布筋应根据扶壁柱截面尺寸的大小,适当地配以外侧附加短水平负筋加强,外墙转角处也应适当加强。
地下室外墙计算时底部为固定支座(即底板作为外墙的嵌固端),侧壁底部弯矩与相邻的底板弯矩相等,底板的抗弯能力应不小于侧壁的抗弯能力,其厚度应与配筋量相匹配。
这种情况在地下车道中最为典型,车道侧壁为悬臂构件,底板的抗弯能力应不小于侧壁底部的抗弯能力。
三、结语高层建筑地下室结构设计显然是一个复杂的过程,但是,只要把握设计要点,抓住设计重点,以合理的设计为前提,进行全面考虑,使建筑地下室结构设计工作发挥其最大的经济作用和社会效益、战略效益。