遥感图像处理遥感图像分类

合集下载

遥感图像分类技术研究

遥感图像分类技术研究

遥感图像分类技术研究一、遥感图像分类的基本概念及背景遥感图像分类是指利用计算机方法将遥感图像进行自动分类,将像元或像素点归类为不同的地物或地物类型。

遥感图像是指通过遥感传感器获取的地球表面信息的图像,主要包括航空遥感、卫星遥感等。

遥感图像分类技术可以广泛应用于国土资源调查、环境遥感监测、农业与林业等许多领域。

二、遥感图像分类技术因素1. 数据预处理数据预处理是遥感图像分类技术中非常重要的一步,主要是对遥感图像进行初步去噪、辐射校正等操作,以提高其质量和可用性。

常用的预处理方法包括滤波、辐射定标、大气校正等。

2. 特征提取遥感图像的特征提取是将遥感图像中的自然结构转换为计算机可识别的数字特征向量的过程。

常用的特征提取方法包括基于纹理的方法、基于谱特征的方法以及形状特征提取方法等。

3. 分类算法常见的遥感图像分类算法包括最大似然法、支持向量机、神经网络等。

其中,最大似然法和支持向量机算法是应用最广泛的两种算法,具有较高的分类准确性和泛化性能。

三、常见的遥感图像分类方法1. 基于纹理分析的方法纹理是指由几何形状、大小、密度、亮度等因素共同作用形成的某种规则的表现形式。

其基本特点是在局部区域内具有规则和可重复性。

利用遥感图像的纹理数据,可以利用基于灰度共生矩阵、滤波器和小波等方法进行纹理分析。

基于纹理分析的方法适用于研究土地利用类型、森林类型等需要区分细致的地物类型。

2. 基于谱信息的方法基于谱信息的遥感图像分类方法利用遥感图像数据的光谱特征进行分类。

这种方法主要基于多光谱数据分类和高光谱数据分类。

多光谱数据是指每个像元采集了数个波段的数据,而高光谱数据则包含了更多的波段数据。

采用基于谱信息的方法可以对土地覆盖类型、植被类型等大尺度空间范围的遥感图像进行分类。

3. 基于空间信息的方法基于空间信息的遥感图像分类方法是指利用遥感图像像素的空间位置信息,结合图像的特征提取和分类方法进行分析。

这种方法主要通过分析像素到邻域像素之间的距离、方向和大小等因素来提取空间信息。

遥感影像处理知识

遥感影像处理知识

1.几何校正:几何校正是利用地面控制点和几何校正数学模型来矫正非系统因素产生的误差,同时也是将图像投影到平面上,使其符合地图投影系统的过程。

2.图像镶嵌:指在一定的数学基础控制下,把多景相邻遥感影像拼接成一个大范围、无缝的图像的过程。

3.图像裁剪:图像裁剪的目的是将研究之外的区域去除。

常用方法是按照行政区划边界或自然区划边界进行图像裁剪。

在基础数据生产中,还经常要进行标准分幅裁剪。

按照ENVI 的图像裁剪过程,可分为规则裁剪和不规则裁剪。

4.图像分类:遥感图像分类也称为遥感图像计算机信息提取技术,是通过模式识别理论,分析图像中反映同类地物的光谱、空间相似性和异类地物的差异,进而将遥感图像自动分成若干地物类别。

5.正射校正:正射校正是对图像空间和几何畸变进行校正生成多中心投影平面正射图像的处理过程。

6.面向对象图像分类技术:是集合邻近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。

7.DEM:数字高程模型是用一组有序数值阵列形式表示地面高程的一种实体地面模型。

8.立体像对:从两个不同位置对同一地区所摄取的一对相片。

9.遥感动态监测:从不同时间或在不同条件获取同一地区的遥感图像中,识别和量化地表变化的类型、空间分布情况和变化量,这一过程就是遥感动态监测过程。

10.高光谱分辨率遥感:是用很窄而连续的波谱通道对地物持续遥感成像的技术。

在可见光到短波红外波段,其波谱分辨率高达纳米数量级,通常具有波段多的特点,波谱通道多达数十甚至数百个,而且各波谱通道间往往是连续的,因此高光谱遥感又通常被称为"成像波谱遥感"。

11.端元波谱:端元波谱作为高光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作用,直接影响波谱识别与混合像元分解结果的精度。

12.可视域分析:可视域分析工具利用DEM数据,可以从一个或多个观察源来确定可见的地表范围,观测源可以是一个单点,线或多边形13.三维可视化:ENVI的三维可视化功能可以将DEM数据以网格结构、规则格网或点的形式显示出来或者将一幅图像叠加到DEM数据上。

遥感图像分析

遥感图像分析

遥感图像分析遥感图像分析是利用遥感技术对获取的遥感图像进行解译和处理,以获取地表信息和探索地理现象的一种方法。

本文将介绍遥感图像分析的基本原理、常用的分析方法以及其在各个领域的应用。

一、遥感图像分析的基本原理遥感图像是通过遥感卫星或飞机等平台获取地球表面信息的图像,利用其进行分析可以揭示出地表的空间分布、变化规律及与地理现象的联系。

遥感图像主要包括光学遥感图像和微波遥感图像两种类型,其中光学遥感图像主要利用反射特性获取地表信息,而微波遥感图像则是通过电磁波的散射和回波等特性获取地表信息。

二、遥感图像分析的常用方法1. 图像预处理:遥感图像预处理是为了提取有效的地表信息,常用的预处理方法包括辐射定标、大气校正、几何校正等。

通过这些预处理方法,可以降低图像中的噪声,使图像更加清晰,有利于后续的分析工作。

2. 特征提取:特征提取是遥感图像分析的核心步骤,它是将图像转化为可供分析和解释的信息的过程。

常用的特征提取方法包括光谱特征提取、纹理特征提取、形状特征提取等。

通过提取图像的各种特征,可以获得地表的物理和几何信息。

3. 分类分类是遥感图像分析的重要任务,它是将图像中的像素划分为不同的类别。

常见的分类方法包括有监督分类、无监督分类和半监督分类等。

分类结果可以用来监测地表的变化,研究地表的演化过程以及评估地表的植被覆盖程度等。

4. 变化检测:变化检测是遥感图像分析的一项重要任务,它通过对多期遥感图像进行比较,来识别出地表变化的位置和程度。

常见的变化检测方法包括基于像元的变化检测和基于物体的变化检测等。

变化检测可以应用于城市规划、农田利用变化分析等领域。

三、遥感图像分析的应用1. 农业:遥感图像可以提供农作物的生长状态、土壤湿度、植被覆盖度等信息,帮助农民合理安排农作物的种植和施肥。

2. 环境监测:通过遥感图像分析,可以监测海洋和河流水质、大气污染、森林覆盖变化等环境问题,为环境保护和资源管理提供数据支持。

遥感图像分类方法及应用示例

遥感图像分类方法及应用示例

遥感图像分类方法及应用示例遥感技术是通过卫星、飞机等远距离传感器获取地表信息的一种技术手段。

遥感图像分类是遥感技术中的一项重要任务,它可以将遥感图像中的像素按照其特征进行分类,并生成分类结果。

本文将介绍遥感图像分类的方法,并给出一些应用示例。

一、遥感图像分类方法1. 基于像元的分类方法基于像元的分类方法是将遥感图像中的每个像素点看作一个样本进行分类,通过像素点的光谱特征来确定其所属类别。

常见的方法有最大似然法、支持向量机等。

最大似然法是一种基于统计学原理的分类方法,它通过求解样本的概率密度函数来确定像素点的类别。

支持向量机是一种基于样本间距离的分类方法,它通过构建超平面将不同类别的样本分开。

2. 基于对象的分类方法基于对象的分类方法是将遥感图像中的像素组成的对象进行分类,通过对象的形状、纹理等特征来确定其所属类别。

常见的方法有基于区域的分割和基于对象的分类。

基于区域的分割将遥感图像中的像素按照相似性进行分组,形成具有相同特征的区域。

基于对象的分类是在分割得到的区域基础上,通过提取区域的特征来确定其所属类别。

3. 基于深度学习的分类方法随着深度学习技术的发展,基于深度学习的分类方法在遥感图像分类中得到了广泛应用。

深度学习通过构建深层神经网络模型,可以自动学习遥感图像中的特征表示。

常见的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。

卷积神经网络可以有效地提取图像的空间特征,循环神经网络可以捕捉图像序列的时序特征。

二、遥感图像分类的应用示例1. 农作物类型分类农作物类型分类是农业生产中的重要任务,可以帮助农民了解农田的分布情况和种植结构,指导农作物管理和精细化农业。

通过遥感图像分类方法,可以将农田遥感图像中的不同农作物进行分类,比如小麦、玉米、水稻等。

这样可以帮助农民进行农作物识别和农田监测,提高农业效益。

2. 土地利用分类土地利用分类是城市规划和土地资源管理中的重要任务,可以帮助决策者了解土地利用的分布情况和变化趋势,指导城市规划和土地资源开发。

遥感图像分类后处理

遥感图像分类后处理
Analysis,在弹出对话框中选择
,点击OK;
3) 在Majority/Minority Parameters面板中,点击Select All Items选中所有的类别,
Choose按钮设置输出路径,点击
执行操作。
1 Majority/Minority Parameters面板参数设置
4)查看结果如图所示,可以看到原始分类结果的碎斑归为了背景类别中,更加平滑。
ENVI 5.x:Toolbox/Statistics/View Statistics File
ENVI Classic:Classification > Post Classification > View Statistics File
(6)如下图所示为显示统计结果的窗口,统计结果以图形和列表形式表示。从Select
OK;
4)在Raster to Vector Parameters面板中设置矢量输出参数。这里选择林地和沙地两
OK即可。
注:Output可选Single Layer和One Layer per Class两种情况。如果选择Single
,则所有的类别均输出到一个evf矢量文件中;如果选择One Layer per Class,则
首先将被选的分类用一个膨胀操作合并到一块,然后用变换核对分类图像进行腐蚀
下面介绍详细操作流程:
1)打开分类结果——分类后处理数据\can_tmr_class.dat";
2)打开聚类处理工具,路径为Toolbox /Classification/Post Classification/Clump
4个或8个像元,判定一个像元
如果一类中被分析的像元数少于输入的阈值,这些像元就会被从该

遥感图像分类常见方法

遥感图像分类常见方法

遥感图像分类常见方法一、前言遥感分类算法大致有三个阶段(1)基于传统数学统计的方法;(2)经典机器学习;(3)深度学习。

按是否有样本可以分为监督分类和非监督分类两种。

实现分类的流程是:特征+算法二、分类之特征工程分类本来就是计算机领域的问题,遥感分类的本质也是图像处理。

遥感分类属于CV领域的一个子集。

不论是监督还是非监督,分类的前提是特征工程。

构建特征工程的目的是突出关注目标和其他目标之间的差异,从而使得分类具有更好的效果。

遥感的特征工程可以大致分为三类:(1)纹理特征,(2)光谱特征,(3)时序特征。

当然,由上述特征还可延伸出LAI等生物量信息,但其本质上是由光谱特征反演出来的。

(1)纹理特征纹理特征一般从高空间分辨率的遥感影像提取才有效果,纹理特征又可以分为以下三种:统计方法:灰度共生矩阵、灰度游程长度法等模型方法:自相关模型、Markov随机场模型、分形模型等数学变换方法:空间域滤波、傅里叶滤波, Gabor和小波模型等。

(2)光谱特征光谱特征包括地物原始光谱反射率和衍生植被指数两种。

光谱特征较纹理特征容易获得,缺点是反射光谱容易受到“同物异谱”和“异物同谱”的影响。

光谱特征:R,G,B,NIR等衍生植被指数:NDVI,EVI等(3)时序特征由多时相遥感数据提取的特征成为时序特征,包括光谱时序和纹理时序。

时序特征可以描述作物在生育进程中动态的生长变化,已成为遥感农作物分类的重要特征支撑。

大量研究表明,生育期内高频次的时间特征会显著提升分类效果;多特征时间序列比单特征时间序列更能表征不同作物之间的差异特征比较特征的计算是基于数学方法计算的。

(1)光谱植被指数就是加、减、乘,除;(2)纹理特征一般通过滤波模板计算;(3)但数学中更高级,更有用的特征应该是偏导,在矩阵中,偏导及其重要。

因为偏导能够综合多个变量,因此个人认为,偏导特征会更具优势。

传统的统计学方法偏导较少,机器学习次之,深度学习偏导参数最多。

遥感图像分类

遥感图像分类

原始遥感图像
对应的专题图像
用光谱信息 对影像逐个 像元地分类, 在结果的分 类地图上会 出现“噪声”
产生噪声的原因有原始影像本身的噪声,在地类 交界处的像元中包括有多种类别,其混合的幅射 量造成错分类,以及其它原因等
另外还有一种现象,分类是正确的,但某种类别 零星分布于地面,占的面积很小,我们对大面积 的类型感兴趣,因此希望用综合的方法使它从图 面上消失
简单集群分类方法
K-均值法(K-means Algorithm) Cluster分类法 迭代自组织数据分析技术方法(Iterative
Self-Organization Data Analysis Techniques, ISODATA)
通过自然的聚类,把它分成8类
K-均值算法的聚类准则是使每一聚类中,像元到 该类别中心的距离的平方和最小
A. 按照某个原则选择一些初始聚类中心 B. 计算像元与初始类别中心的距离,把像素分配
到最近的类别中
C. 计算并改正重新组合的类别中心 D. 过程重复直到满足迭代结束的条件
仅凭遥感影像地物的光谱特征的分布 规律,即自然聚类的特性,进行“盲 目”的分类
其分类的结果只是对不同类别达到了 区分,但并不能确定类别的属性;其 类别的属性是通过分类结束后目视判 读或实地调查确定的
遥感图像计算机分类
色调、颜色、阴影、形状、纹理、大小、位置、图型、相关布局
基于光谱的
基于空间关系的
遥感图像特征集
遥感图像 遥感图像计算机分类流程框图
将影像数据的连续变化转化为地图模式, 以提供给用户有意义的信息
获得关于地面覆盖和地表特征数据的更深 刻的认识
较目视解译客观,在分析大数据集时比较 经济
基本思想:通过迭代,逐次移动各类的中心,直 至得到最好的聚类结果为止

遥感图像的分类方法

遥感图像的分类方法

遥感图像的分类方法
遥感图像的分类方法常见有以下几种:
1. 监督分类方法:该方法需要先准备一些具有标签的样本数据集进行训练,并从中学习模式进行分类。

常见的监督分类方法包括最大似然分类、支持向量机等。

2. 无监督分类方法:该方法不需要标签样本数据集,通过对图像像素进行统计分析和聚类来确定类别。

常见的无监督分类方法包括K均值聚类、高斯混合模型等。

3. 半监督分类方法:该方法结合监督和无监督分类方法的优势,同时利用有标签和无标签样本数据进行分类。

常见的半监督分类方法包括标签传播、半监督支持向量机等。

4. 深度学习分类方法:近年来,随着深度学习方法的发展,基于卷积神经网络(CNN)的遥感图像分类方法变得流行。

这些方法通过搭建深度学习网络模型并使用大量的标签样本进行训练,能够实现较高的分类精度。

除了以上几种方法外,还有基于纹理特征、形状特征等的分类方法。

不同的分类方法适用于不同的遥感图像场景和实际需求。

综合考虑数据集大小、分类效果、计算时间等因素,选择合适的分类方法对于遥感图像的分类任务非常重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像处理遥感图 像分类
遥感图像的分类
遥感图像的分类
一.遥感图像分类概述 二.遥感图像分类原理 三.遥感图像分类基本过程 四.遥感图像分类方法 五.遥感图像分类后处理 六.遥感图像分类精度检查 七.遥感图像分类中存在的问题
一、遥感图像分类概述
1. 分类的定义 2. 分类的意义 3. 分类的难点
四、遥感图像分类方法
利用遥感图像进行分类(classification) 是以区别图像中所含的多个目标物为目的的, 对每个像元或比较匀质的像元组给出对应其特 征的名称。在分类中注重的是各像元的灰度及 纹理等特征。分类方法主要包括以下三大类:
1. 监督分类法 2. 非监督分类法 3. 新的探索:模糊分类法、面向对象分类法等;
分类原理—特征提取
➢ 统计特征变量可以构成特征空间,多波段遥感 图像特征变量可以构成高维特征空间。
➢ 一般说来,高维特征空间数据量大,但这些信 息中仅包含少量的样本分类信息。
➢ 为了抽取这些最有效的信息,可以通过变换把 高维特征空间所表达的信息内容集中在一到几 个变量图像上。
➢ 主成分变换可以把互相存在相关性的原始多波 段遥感图像转换为相互独立的多波段新图像, 而且使原始遥感图像的绝大部分信息集中在变 换后的前几个组分构成的图像上,实现特征空 间降维和压缩的目的。
(一)监督分类
➢监督分类法:选择具有代表已知地面覆盖类型 的训练样本区,用训练样本区中已知地面各类 地物样本的光谱特性来“训练”计算机,获得 识别各类地物的判别函数或模式(如均值、方 差、判别域等),并以此对未知地区的像元进 行分类处理,分别归入到已知具有最大相似度 的类别中。
➢监督分类主要包括:最小距离分类法、最近邻 分类法、多级切割分类法、最大似然比分类法 等;
2. 遥感图像分类的主要依据是地物的光谱特征,即地物电磁波辐射的 测量值,这些测量值可以用作遥感图像分类的原始特征变量。然而 ,就某些特定地物的分类而言,多波段影像的原始亮度值并不能很 好地表达类别特征,因此需要对数字图像进行运算处理(如比值处 理、差值处理、主成分变换以及K-T变换等),以寻找能有效描述 地物类别特征的模式变量,然后利用这些特征变量对数字图像进行 分类。分类是对图像上每个像素按照亮度接近程度给出对应类别, 以达到大致区分遥感图像中多种地物的目的。
1、最小距离分类法
➢最小距离分类法概念; ➢最小距离分类法判据; ➢最小距离分类法特点; ➢最小距离分类法示例;
最小距离分类法-概念
➢最小距离分类法(minimum distance classifier)
是用特征空间中的距离表示像元数
据和分类类别特征的相似程度,在距离
最小时(相似度最大)的类别上对像元
4、最大似然比分类法(Maximum Likelihood)
最大似然比分类法(maximum likelihood classifier)是应用非常广泛的监督分类之一。
➢主要是利用概率密度函数,求出每个像素对于各类别的 似然度(likelihood),把该像元分到似然度最大的类 别中去的方法。
➢它假定训练区地物的光谱特征和自然界大部分随机现象 一样,近似服从正态分布,利用训练区可求出均值、方 差以及协方差等特征参数,从而可求出总体的先验概率 密度函数。当总体分布不符合正态分布时,其分类可靠 性将下降,这种情况下不宜采用最大似然比分类法。
(三)概述—分类的难点
利用计算机对遥感数字图像进行分类难度很大。
➢遥感图像是从遥远的高空成像的,成像过程要受 传感器、大气条件、太阳位置等多种因素的影响 。影像中所提供的目标地物信息不仅不完全,而 且或多或少地带有噪声,因此人们需要从不完全 的信息中尽可能精确地提取出地表场景中感兴趣 的目标物。
➢遥感影像信息量丰富,与一般的图像相比,其包 容的内容远比普通的图像多,因而内容非常“拥 挤”。不同地物间信息的相互影响与干扰使得要 提取出感兴趣的目标变得非常困难。
用多级切割法分割三维特征空间
多级切割法特点
多级分割法分类便于直观理解如何分割特征空间 ,以及待分类像素如何与分类类别相对应。但它要求 分割面总是与各特征轴正交,如果各类别在特征空间 中呈现倾斜分布,就会产生分类误差。因此运用多级 分割法分类前,需要先进行主成分分析,或采用其他 方法对各轴进行相互独立的正交变换,然后进行多级 分割。
➢ 最近邻分类器:计算带分类像元到训练数据中最近像 元的欧式距离;
➢ k-最近邻分类器:以待分类像元为中心,沿各个方 向搜索,直到搜索出k个用户指定的训练像元为止(如 :k=10)
➢ k-最近邻权重分类器:加权重的分类器;
最近邻分类法示意图
3、多级切割法
多级切割法(multi-level slice classifier)是根据设定 在各轴上的值域分割多维特征空间的分类方法。 ➢ 这种方法要求通过选取训练区,详细了解分类类别(总 体)的特征,并以较高的精度设定每个分类类别的在各轴上 的一系列分割点(光谱特征上限值和下限值),以便构成特 征子空间。 ➢ 对于一个未知类别的像素来说,它的分类取决于它落入 哪个类别特征子空间中。 ➢ 因此多级切割分类法要求训练区样本的选择必须覆盖所 有的类型,在分类过程中,需要利用待分类像素光谱特征值 与各个类别特征子空间在每一维上的值域进行内外判断,检 查其落入哪个类别特征子空间中,直到完成各像素的分类。
p
dig xki M kg
k 1
M kg
1 mg
lg
xkl
为g类k变量的均值
g类的像元数
分类原理—相似度判断
➢ 相关系数
是指像素间的关联程度。采用相关系数衡 量相似度时,相关程度越大,相似度越大。两 个像素之间的相关系数rij可以定义为:
均值
n
( xki xi )( xkj x j )
rij
k 1 n
n
(xki xi )2
( xkj x j )2
k 1
k 1
像元i的第k个分量
三、分类基本过程
遥感数字图像计算机分类基本过程如下:
➢ 首先明确遥感图像分类的目的及其需要解决的问题,在 此基础上根据应用目的选取特定区域的遥感数字图像, 图像选取时应考虑图像的空间分辨率、光谱分辨率、成 像时间、图像质量等。
(四)分类原理—特征提取
➢ 在很多情况下,利用少量特征就可以进行遥感 图像的地学专题分类,因此需要从遥感图像n 个特征中选取k个特征作为分类依据,我们把
从n个特征中选取k个更有效特征的过程称为特 征提取。
➢ 特征提取要求所选择的特征相对于其他特征更 便于有效地分类,使图像分类不必在高维特征 空间里进行,其变量的选择需要根据经验和反 复的实验来确定。
数据进行分类的方法。
Step 2 – for each unclassified pixel, calcuபைடு நூலகம்ate the distance to average for each training area
最小距离分类法-判据
➢ 最小距离分类法判据 这种方法要求对遥感图像中每一个类别选一个具有代表意义的
(五)分类原理—相似度判断
➢ 遥感图像计算机分类的依据是遥感图像像素的相似度 。相似度是两类模式之间的相似程度。在遥感图像分 类过程中,常使用距离和相关系数来衡量相似度。
➢ 距离: 特征空间中象元数据和分类类别特征的相似程
度。距离最小即相似程度最大。
➢ 度量特征空间中的距离经常采用以下几种算法:
绝对值距离
➢遥感图像的地域性、季节性和不同成像方式更增 加了计算机对遥感数字图像进行解译的难度。
二、分类原理
1. 分类原理概述; 2. 统计特征量; 3. 统计特征量举例; 4. 特征提取; 5. 相似度判断;
(一) 分类原理概述
1. 计算机遥感图像分类是统计模式识别技术在遥感领域中的具体应用 。统计模式识别的关键是提取待识别模式的一组统计特征值,然后 按照一定准则作出决策,从而对遥感图像予以识别。
(三)分类原理—统计特征量举例
取n*n的窗口,有关矩阵为: ➢关联矩阵
以偏离图像灰度为i的点一定位置(方向 和距离)的点的灰度为j的概率Pδ(i,j),求出 关联矩阵,从该矩阵中算出各种纹理的特征量 (能量、熵、相关性等)
➢旋转矩阵 以方向上灰度为i的点连续出现k个的频率
P(i,k)为元素,求出旋转矩阵。从矩阵中算 出各种纹理的特征量。
统计特征量(均值),首先计算待分像元与已知类别之间的距离 ,然后将其归属于距离最小的一类。
最小距离分类法-特点
➢优点:最小距离分类法原理简单,计算 速度快;
➢缺点:分类精度不高,没有解决分类的
边界问题; ➢适用对象:它可以在快速浏览分类概况
中使用;
最小距离分类法-示例
2、最近邻分类法
在多波段遥感图像分类中,每一类别具有多个统计特征量 。最近邻域分类法首先计算待分像元到每一类中每一个统计 特征量间的距离,这样,该像元到每一类都有几个距离值, 取其中最小的一个距离作为该像元到该类别的距离,最后比 较该待分像元到所有类别间的距离,将其归属于距离最小的 一类。 该方法有三种具体的分类器:
n
dij xik x jk
k 1
类别k的平均值矢量
欧氏距离
d
2 k
(x
k
)T
(x
k
)
x为像元数据矢量
分类原理—相似度判断
➢ 马氏距离(Mahalanobis,既考虑离散度,也 考虑各轴间的总体分布相关)
di2j (xi x j )T
1 ij
(
xi
xj)
➢ 混合距离(像元i到第g类类均值的距离)
分类基本过程
➢ 找出代表这些类别的统计特征。 ➢ 为了测定总体特征,在监督分类中可选择具有代表性的
训练场地进行采样,测定其特征。在无监督分类中,可 用聚类等方法对特征相似的像素进行归类,测定其特征 。 ➢ 对遥感图像中各像素进行分类。包括对每个像素进行分 类和对预先分割均匀的区域进行分类。 ➢ 分类精度检查。在监督分类中把已知的训练数据及分类 类别与分类结果进行比较,确认分类的精度及可靠性。 在非监督分类中,采用随机抽样方法,分类效果的好坏 需经实际检验或利用分类区域的调查材料、专题图进行 核查。 ➢ 对判别分析的结果统计检验。
相关文档
最新文档