计算流体动力学在化工中的应用
计算流体力学在油气管道中的应用分析

计算流体力学在油气管道中的应用分析随着世界经济的迅速发展,油气资源的需求也在不断增加。
然而,油气资源的开发和运输也存在一定的难点和风险。
其中,在油气管道中的流体动力学问题是一个十分重要的问题。
如何预测管道内的流体流动情况,调控流速,降低风险成为了一个亟待解决的问题。
而计算流体力学(CFD)这一技术则为管道的设计、优化和安全控制提供了重要的技术支持。
一、计算流体力学:管道内流体运动的全方位预测分析计算流体力学是一种数值模拟技术,可以对液体、气体等在流动过程中的物理现象进行数值求解、分析、预测和优化设计。
在油气管道中,CFD技术可以对管道内流体的速度、压力、温度等运动状态进行模拟计算,预测管道内液体或气体的流动状态和流速,确保油气资源的顺畅运输。
同时,可以通过CFD技术对管道的结构、材料及安装方式进行优化设计和改进,提高管道的安全性和运输效率。
二、油气管道中流体动力学问题分析油气管道中的流体动力学问题主要涉及以下几个方面:1. 管道内压力和流速的不均匀分布:由于管道内液体或气体的流动不一定完全均匀,会导致管道内压力和流速分布的不均匀,进而影响管道的运输效率和安全性。
2. 液体或气体在管道内的摩擦和热交换:管道内的液体或气体在长距离的运输过程中会产生一定的阻力和摩擦力,同时还会有一定的热交换现象。
这些现象会影响管道内流体的温度、压力和流速,进而对管道产生一定的影响。
3. 管道内的振动和噪音:油气管道在长时间的运输过程中,由于流体的摩擦和振动等因素,会产生一定的振动和噪音。
这些现象会对管道的结构造成损伤和磨损,影响管道的安全性和运输效率。
三、 CFD技术在油气管道中的应用CFD技术已经成为油气管道设计和优化的重要工具。
例如,在油气输送管道的设计和建设中,CFD技术可以对管道内流体的动力学行为进行预测和模拟,为设计和实施提供科学依据。
在管道的运维和安全控制中,CFD技术可以对管道内流体的温度、压力和流速等参数进行监测和分析,实时反馈管道的运行状况,预测可能发生的事故,确保管道的安全和稳定运行。
化工中的模拟方法及其应用

化工中的模拟方法及其应用化工中的模拟方法及其应用模拟指的是使用计算机等技术对现实世界中的物理、化学、生物等过程进行数值模拟和仿真。
在化工领域中,模拟方法可以帮助工程师和科学家更好地理解化学反应、传质、质量传递等复杂的过程,从而提高产品研发的效率和安全性。
本文将介绍化工中的模拟方法及其应用。
一、分子动力学模拟方法分子动力学模拟方法(MD)是一种基于牛顿力学的计算方法,它能够模拟物质分子的运动和相互作用,包括分子间力、化学反应、吸附等。
MD方法已被广泛应用于材料科学、生物医学、化学工程等领域。
例如,MD可用于研究聚合物的物理化学性质、纳米材料的形成和反应机理、酶的功能等。
在化工领域中,MD可用于模拟化学反应、传质和吸附等行为。
通过计算分子间作用力和相互作用的速度,可预测化学反应的速率和生成物的数量。
MD还可用于研究膜分离、萃取等传质过程。
例如,可以通过MD研究两种液体之间分子交换的速度和量,从而确定最佳操作条件。
二、计算流体力学模拟方法计算流体力学模拟方法(CFD)基于数值算法,通过对流体流动、传热、传质、反应等过程的模拟来预测和优化工业过程。
CFD已广泛应用于化工工艺设计、设备优化和安全性评估。
例如,CFD可用于研究反应器内的流体流动、反应温度和物料分布等,有助于预测反应器行为和优化反应器结构。
CFD还可用于模拟气体的扩散、火灾爆炸等安全事故,从而确定最佳的安全措施和应急响应。
例如,CFD可用于研究建筑物内火灾蔓延情况,优化疏散路线和安装灭火系统。
三、多相流模拟方法多相流模拟方法是一种在系统中同时考虑多种流体相和相变行为的模拟方法。
它可用于研究气液两相、气固两相、液固两相甚至是三相流动过程。
多相流模拟在化工工业中应用广泛,例如在炼油、化学制品生产和环境保护等方面。
在炼油工业中,多相流模拟可用于模拟管道内的油气混合物、油水混合物等流动情况,从而进行设备优化和安全评估。
在化学制品生产中,多相流模拟可用于研究固体颗粒和气体混合物之间的相互作用,优化物料流动性质和协调设备运转。
计算流体动力学(CFD)在化工领域的应用

能 。Y 等人[ 1 2年曾 以严格 的 N s 程 ( 3 u 9 ]9 _ - 方 雷
计算流体力学 (F ) C D 在化 工领域 的应 用
1 1 填料 塔 .
的作用 、 湍流曳力的作用。上述学者采用的方法在流 体的宏观流动研究中具有优势, 但不能反映流体的微
观流动状况。在研究微观流体的流动方面, o o 等 Hs n d 人【19 年用 商业 软件 P O NC 采 用标准 k一 £ 6 97 J H E IS 模型对 M lpk30 eaa 5Y型规整填料塔内流体 的流动情 l 况进行了 C D模拟。他们仍采用 C e c ln u t i s h mi d sr Tme aI y
V I 0, o. 2 No. 2 F b. 2 o e 2. O 6
计算 流体 动 力学 ( F 在 化 工领 域 的应 用 C D)
魏新利 李 慧 张 军
i ni8 T ea pia o sa dd vlp nso F nc e c n ier gf l hc n ld l w r cco esp m— l l .h p l t n e eo me t f D i hmia egn ei edw ihicu e fl t e ,y ln e a a e ci n C l n i d ie o d tr ic e clra tr escao , udzd b d ha x h n e r ve e . o ,boh mia eco ,xictr f ii e , e t c ag ra r i d l e e ee w Ke wo d C mp tt n lFud D n mis C e c l n ier g N me c i lt n y rs o u i a i y a c h m a gn e n u r a Smuai ao l i E i il o
CFD技术在化工机械设计中的应用

CFD技术在化工机械设计中的应用摘要:CFD技术又称计算机流体力学,目前该项技术广泛应用于化工机械设计领域以提升设备使用性能,具有一定应用优势。
现阶段,基于化工机械设计发展市场,相关管理部门及企业自身不断加大资金及技术投入,旨在通过利用先进设计技术如CFD技术提升生产能力以满足市场需求。
基于此,本文将主要从CFD 技术的概念简述出发,对CFD技术在化工机械设计中的具体应用及应用优势进行重点分析。
关键词:CFD技术;化工机械设计;数值模拟;计算机流体力学前言CFD技术是在近代科学技术不断发展的前提下,综合数值数学与计算机科学的一种具有强大应用能力的交叉学科知识产物。
CFD技术通过利用计算机技术,将不同数学方程中的积分、微分重新进行组合代数以获得离散的数值解,目前广泛应用于流体机械产业中。
通过将CFD技术应用于化工机械设计有利于改善以往化工机械设计模式中存在的弊端,同时促进化工机械设备使用性能及作业质量的提升,满足企业和市场发展需求。
1.CFD技术概念简述CFD技术有称计算机流体动力学技术,是新时代下计算机技术、数值数学以及流体力学等不同学科综合作用的产物。
其基本作用原理在于通过利用计算机将数学方程式数值求解进行离散并重新代数组合的方式,获得在流体流动中离散状态下的数值解。
通过利用CFD技术,化工机械设计可以利用流体流动中离散状态下的方程式,重新对各项相关数据进行评估[1]。
充分利用离散状态下问题控制的非线性特征对机械设计中不同数值的参数进行验证分析。
与此同时,CFD技术的应用也在科学层面为化工机械设计的数据验证提供更为高效的评估方法。
更为重要的是,CFD技术的应用在化工机械设计实践中可以为相关工作人员提供更为详尽、完整的数据参照。
在解决参数计算进行数据建模的过程中,可以突破常规物理模型及实验模型限制,具有强大的应用能力。
1.CFD技术在化工机械设计中的具体应用2.1在旋风分离器中的应用2.1.1建立模型通过利用CFD技术可以设计旋风分离器进行化工机械生产中的分离、除尘等具体工作,提升化工机械生产效率。
《计算流体力学》作业答案

计算流体力学作业答案问题1:什么是计算流体力学?计算流体力学(Computational Fluid Dynamics,简称CFD)是研究流体力学问题的一种方法,它使用数值方法对流体流动进行数值模拟和计算。
主要包括求解流体运动的方程组,通过空间离散和时间积分等计算方法,得到流体在给定条件下的运动和相应的物理量。
问题2:CFD的应用领域有哪些?CFD的应用领域非常广泛,包括但不限于以下几个方面:1.汽车工业:CFD可以用于汽车流场的模拟和优化,包括空气动力学性能和燃烧过程等。
2.航空航天工业:CFD可以用于飞机、火箭等流体动力学性能的预测和优化,包括机身、机翼的设计和改进等。
3.能源领域:CFD可以用于燃烧、热交换等能源领域的流体力学问题求解和优化。
4.管道流动:CFD可以用于石油、化工等行业的管道流动模拟和流体输送优化。
5.空气净化:CFD可以用于大气污染物的传输和分布模拟,以及空气净化设备的设计和改进。
6.生物医药:CFD可以用于生物流体输送和生物反应过程的模拟和分析,包括血液流动、药物输送等。
问题3:CFD的数值方法有哪些?CFD的数值方法一般包括以下几种:1.有限差分法(Finite Difference Method,FDM):将模拟区域划分为网格,并在网格上离散化流体运动的方程组,利用有限差分近似求解。
2.有限体积法(Finite Volume Method,FVM):将模拟区域划分为有限体积单元,通过对流体流量和通量的控制方程进行离散化,求解离散化方程组。
3.有限元法(Finite Element Method,FEM):将模拟区域划分为有限元网格,通过对流体运动方程进行弱形式的变分推导,将流动问题转化为求解线性方程组。
4.谱方法(Spectral Method):采用谱方法可以对流体运动方程进行高精度的空间离散,通常基于傅里叶变换或者基函数展开的方式进行求解。
5.计算网格方法(Meshless Methods):不依赖网格的数值方法,主要包括粒子方法(Particle Methods)、网格自适应方法(Gridless Method)等。
计算流体动力学在化工中的应用

计算流体力学在化工中的应用摘要:计算流体力学(CFD)用于求解固定几何形状设备内的流体的动量、热量和质量方程以及相关的其它方程,是化学工程师用于分析问题和解决问题强有力的和用途广泛的工具。
本文综述了CFD 在化学工程领域的应用进展及发展趋势。
关键词:计算流体力学;流体流动;化学工程;数值模拟计算流体力学(Computational Fluid Dynamics, CFD)是流体力学的一个分支,用于求解固定几何形状空间内的流体的动量、热量和质量方程以及相关的其他方程,并通过计算机模拟获得某种流体在特定条件下的有关数据[1]。
CFD最早运用于汽车制造业、航天事业及核工业,解决空气动力学中的流体力学问题。
CFD计算相对于实验研究,具有成本低、速度快、资料完备、可以模拟真实及理想条件等优点,从而使CFD成为研究各种流体现象,设计、操作和研究各种流动系统和流动过程的有利工具。
20世纪60年代末,CFD技术已经在流体力学各相关行业得到了广泛的应用,化学工程的模拟计算始于20世纪90年代后期,如今CFD已经成为研究化工领域中流体流动和传质重要工具。
CFD可以用于各种化工装置的模拟、分析及预测,如模拟搅拌槽混合设备的设计、放大;可以预测流体流动过程中的传质、传热,如模拟加热器中的传热效果,蒸馏塔中的两相传质流动状态;可以描述化学反应及反应速率,进行反应器模拟,如模拟出燃烧反应器、生化反应器中的反应速率;还可有效模拟分离、过滤及干燥等设备及装置内流体的流动。
一、CFD在化学工程中的基本原理CFD是通过数值计算方法来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。
一般情况下,CFD的数值计算方法主要包括有限差分法、有限元法及有限体积法[2]。
CFD是多领域交叉的学科,涉及计算机科学、流体力学、偏微分方程的数学理论、计算几何、数值分析等学科。
流体动力学在工业领域的应用

流体动力学在工业领域的应用概述流体动力学是研究流体运动规律和性质的学科,它在工业领域有着广泛的应用。
本文将重点介绍流体动力学在工业领域的应用,包括流体力学的基本原理、在飞机制造、能源产业、化工工程、环境保护等方面的应用。
流体力学的基本原理流体力学研究的对象是流动的液体和气体,它基于质量守恒、动量守恒、能量守恒和热力学等基本原理。
流体动力学研究流体的速度场、压力场、密度场等,并通过对这些场的分析,得出流体运动的规律和性质。
流体动力学的基本方程包括连续性方程、动量方程和能量方程。
连续性方程描述了流体的质量守恒,动量方程描述了流体的动量守恒,能量方程描述了流体的能量守恒。
流体力学的研究方法主要有实验方法、数值方法和解析方法。
实验方法通过实验装置对流体进行观测和测量;数值方法通过计算机模拟对流体进行数值计算;解析方法通过数学方法对流体进行描述和分析。
流体动力学在飞机制造中的应用流体动力学在飞机制造中有着重要的应用。
在飞机设计过程中,需要考虑飞机的气动外形,以及气动特性对飞行性能的影响。
流体动力学可以通过数值模拟和风洞实验等方法,评估不同气动外形对飞机性能的影响。
另外,流体动力学还可以帮助设计喷气发动机。
喷气发动机是飞机的动力装置,通过喷射高速气流产生推力。
流体动力学可以对喷气发动机内部的流动进行分析和优化,以提高发动机的热效率和推力。
流体动力学在能源产业中的应用流体动力学在能源产业中也有广泛的应用。
一方面,流体动力学可以用于研究和优化传统能源的开采和利用过程。
比如,在石油和天然气开采过程中,流体动力学可以帮助分析地下流体的运动规律和渗透性,以提高开采效率。
另一方面,流体动力学在新能源领域也有重要的应用。
比如,通过对风力发电和水力发电站的流体运动进行分析和优化,可以提高发电效率。
另外,流体动力学还可以用于研究和优化太阳能发电系统中的热传输和流动特性。
流体动力学在化工工程中的应用在化工工程中,流体动力学有着广泛的应用。
流体力学在工程中的应用

流体力学在工程中的应用流体力学是研究流体(液体和气体)行为的科学,其基本理论和方法在现代工程技术中扮演着至关重要的角色。
无论是在设计、制造还是运营维护中,流体力学的原理都不可或缺。
本文将详细讨论流体力学在工程中的几种主要应用,包括航空航天、土木工程、机械工程和能源领域,旨在提供一个全面的视角,帮助读者理解流体力学的重要性和应用方式。
一、航空航天工程中的流体力学在航空航天工程中,流体力学的应用尤为显著。
飞机在飞行过程中,周围空气的流动对其升力、阻力、稳定性等特性产生直接影响。
因此,在飞机设计时需要通过流体动力学分析来优化其形状和结构,以提高飞行性能。
1.1 升力和阻力的计算在设计飞机机翼时,计算升力和阻力是非常重要的。
根据伯努利原理,当空气流速增大时,机翼上方的气压降低,从而产生升力。
通过模拟不同机翼形状和攻角,可以获得最佳的升力与阻力比。
这不仅影响到飞机的性能,还关系到燃油效率和航程。
1.2 风洞试验风洞试验是一种常用的方法,用于测试模型在气流中的表现。
在风洞中,研究人员可以实际观察气流与模型之间的相互作用,进而对模型进行改进。
这种实验方法可以有效减少设计过程中可能出现的误差,提高飞行器的整体性能。
1.3 航空发动机设计航空发动机作为航空器最关键的部分之一,流体力学在其设计过程中也至关重要。
在发动机燃烧室内,空气和燃料混合后进行燃烧,因此流体动力学分析可以帮助优化燃烧过程,提升推力效率。
此外,在涡轮和压缩机的设计中,能够精确计算气流状态并预测涡旋和冲击波,从而提高发动机的效能和可靠性。
二、土木工程中的流体力学土木工程通常涉及大量液体系统,例如供水、排水及防洪体系,而流体力学则为这些系统提供了科学基础。
在建筑物及基础设施设计中,对于地基、水文及水资源管理等方面,都离不开流体力学的理论支持。
2.1 水资源管理水资源管理是土木工程的重要组成部分。
在城市规划中,需要合理设计供排水系统以确保水资源的高效利用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算流体力学在化工中的应用摘要:计算流体力学(CFD)用于求解固定几何形状设备内的流体的动量、热量和质量方程以及相关的其它方程,是化学工程师用于分析问题和解决问题强有力的和用途广泛的工具。
本文综述了CFD 在化学工程领域的应用进展及发展趋势。
关键词:计算流体力学;流体流动;化学工程;数值模拟计算流体力学(Computational Fluid Dynamics, CFD)是流体力学的一个分支,用于求解固定几何形状空间内的流体的动量、热量和质量方程以及相关的其他方程,并通过计算机模拟获得某种流体在特定条件下的有关数据[1]。
CFD最早运用于汽车制造业、航天事业及核工业,解决空气动力学中的流体力学问题。
CFD计算相对于实验研究,具有成本低、速度快、资料完备、可以模拟真实及理想条件等优点,从而使CFD成为研究各种流体现象,设计、操作和研究各种流动系统和流动过程的有利工具。
20世纪60年代末,CFD技术已经在流体力学各相关行业得到了广泛的应用,化学工程的模拟计算始于20世纪90年代后期,如今CFD已经成为研究化工领域中流体流动和传质重要工具。
CFD可以用于各种化工装置的模拟、分析及预测,如模拟搅拌槽混合设备的设计、放大;可以预测流体流动过程中的传质、传热,如模拟加热器中的传热效果,蒸馏塔中的两相传质流动状态;可以描述化学反应及反应速率,进行反应器模拟,如模拟出燃烧反应器、生化反应器中的反应速率;还可有效模拟分离、过滤及干燥等设备及装置内流体的流动。
一、CFD在化学工程中的基本原理CFD是通过数值计算方法来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。
一般情况下,CFD的数值计算方法主要包括有限差分法、有限元法及有限体积法[2]。
CFD是多领域交叉的学科,涉及计算机科学、流体力学、偏微分方程的数学理论、计算几何、数值分析等学科。
这些学科的交叉融合,相互促进和支持,推动着这些学科的深入发展。
CFD的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。
随着信息技术的发展,市场上也出现了CFD软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。
常见的CFD软件有:FLUENT、PHOENICS、CFX、STAR-CD、FIDIP等。
其中FLUENT由美国FLUENT公司于1983年推出的,是目前功能最全面、适用性最广、国内使用最广泛的CFD软件之一。
二、CFD在化学工程中的应用1.在搅拌槽中的应用分析搅拌槽由于其内部流动的复杂性,搅拌混合目前尚未形成完善的理论体系,对搅拌槽等混合设备的放大设计,经验成分往往多于理论计算。
在工业实际中,特别是快速反应体系或高黏度非牛顿物系,工业规模的反应器存在不同程度的非均匀性,随着规模的增大,这种不均匀性更加严重,经验放大设计方法的可靠性受到前所未有的挑战,因此对搅拌槽内部流场有必要进行更深入的研究。
自从Harvey等[3]用计算机对搅拌槽内的流场进行二维模拟以来,近年来利用CFD的方法研究搅拌槽内的流场发展很快,使用这种方法不仅可以节省大量的研究经费,而且还可以获得通过实验手段所不能得到的数据。
Sun等[4]利用CFD中的相关湍流模型计算了搅拌槽内的气液两相流动,并且对其进行了三维模拟,通过实验研究表明,计算流体力学的数值模拟能有效的计算搅拌器上部的气体部分,但其模拟数值也存在一定的缺陷,即不能有效模拟搅拌器底部区域。
Wang等[5]以欧拉-欧拉方法为基础,采用相关湍流模型对搅拌槽中液-液-固三相体系各相的流场分布进行了CFD数值模拟,结果表明固体颗粒对液液两相分布有很大的影响,液相分布与实验结果吻合较好,固相分布结果与实验数据还存在一些差异,但是随在叶轮转速的增加也趋向一致。
此外,CFD与多普勒激光测速仪(Laser Doppler Velocimetry, LDV)有效结合可以更深入的研究搅拌装置,因为LDV测量数据可以验证CFD计算结果,并且使用LDV 测定特定点的速度也可作为CFD计算的边界条件。
2.在换热器中的应用分析换热设备在化学工程中被广泛使用,详细、准确地预测壳程的流动、传热特性对设计经济和可靠的换热器以及评价现有管壳式换热器的性能对工业应用十分重要。
针对管壳式换热器几何结构复杂,流动和传热的影响因素很多等特点,运用CFD对管壳式换热器的壳侧流场进行计算机模拟,可以对其他方法难以掌握的壳侧瞬态的温度场和速度场有所了解,利于换热器的机理分析和结构优化。
熊智强等[6]利用CFD技术对管壳式换热器弓形折流板附近流场进行了数值模拟,发现在弓形折流板背面,有部分区域的流速较低,一定程度上存在着流动死区,采用在弓形折流板上开孔的方法后,CFD计算结果显示其传热效率提高,壳侧压降减。
3.在反应工程中的应用研究CFD在化学反应工程领域也得到了广泛应用。
Meier等[7]使用CFD设计和优化新型高温太阳能化学反应器。
CFD模拟提供了计算速度、温度和压力场,以及粒子运动轨迹,而这些数据在高辐射和高温条件下无法测量得到。
Holgren和Anderson[8]通过CFD软件采用有限元法模拟了用整块催化剂进行的催化燃烧、部分氧化和液相加氢等化学反应,并与实验结果进行了比较。
4.在精馏塔中的应用研究CFD是研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。
在板式塔板上的气液传质方面,Mudde等[9]应用低雷诺数的模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。
Vivek等[10]以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD软件模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。
三、结束语由于化工过程中经常会出现流体,所以CFD在化学工程领域得到了广泛的应用。
所有涉及流体流动、热交换、分子输运、燃烧等现象的问题,几乎都可以通过CFD的方法进行分析和模拟。
但CFD还不是一种很成熟的技术,在处理复杂的物理现象、湍流和反应等现象,难以找到合适的模型,对计算机配置要求也高,对于许多问题所应用的数学模型也还不够精确。
即使是所谓的通用CFD软件,也不是适合于所有流体力学问题,需要使用者根据研究的对象做认真的选择。
即使如此,CFD 已经成为化工过程研究中不可缺少的工具,随着现代计算机硬件和软件技术的发展,CFD将会在化工领域得到更广泛的应用。
参考文献:[1]姚朝晖,周强. 计算流体力学入门[M]. 北京:清华大学出版社,2010.[2]王福军. 计算流体动力学分析—CFD软件原理与应用[M]. 北京:清华大学出版社,2004.[3] Harvey P S, Greaves M. Turbulent flow in an agitated vessel. PartⅡ:Numerical solution and modelprediction [J]. Transaction of the Institute of Chemical Engineers, 1982, 60: 201-210.[4] Sun H Y, Mao Z S, Yu G Z. Experimental and numerical study of gas hold-up in surface aeratedslimed tanks [J]. Chemical Engineering Science, 2006, 61:4098-4110.[5] Wang F, Mao Z S, Wang Y F, et al. Measurement of phase holdups in liquid-liquid-solid three-phase stirred tanks and CFD simulation [J]. Chemical Engineering Science, 2006, 61:7535-7550.[6]熊智强,喻九阳,曾春.折流板开孔改进管壳式换热器性能的CF'D分析[J]. 武汉化工学院学报,2006, 38(4): 67-70.[7] Meier A, et al. Modeling of a novel high-temperature solar chemical reactor [J].ChemicalEngineering Science, 1996, 51 (11): 3181-3186.[8] Holmgern A, Anderson B. Mass transfer in monolith catalysts–CO oxidation experiments andsimulations [J]. Chemical Engineering Science, 1998, 53 (13): 2285-2298.[9] Mudde R F. 2D and 3D simulations of an internal airlift loop reactor on the basis of a two-fluidmodel[J]. Chemical Engineering Science, 2001, 56 (21): 6351-6358.[10]Vivek V. B.Dynamics of gas–liquid flow in a rectangular bubble column: experiments andsingle/multi-group CFD simulations [J]. Chemical Engineering Science, 2002, 57(22): 4715-4736.。