边界层厚度计算方法详述

边界层厚度计算方法详述
边界层厚度计算方法详述

边界层厚度的计算方法详述

与边界层厚度相关的概念,包含边界层厚度,边界层位移厚度和边界层动量厚度三个概念。

边界层厚度δ:严格而言,边界层区与主流区之间无明显界线,通常以速度达到主流区速度的0.99U 作为边界层的外缘。由边界层外缘到物面的垂直距离称为边界层名义厚度。

边界层位移厚度δ*:设想边界层内的流体为无粘性时,以均流速度U流过平板的速度分布如图 1所示。实际流体具有粘性,以相同速度流过平板时,由于壁面无滑移条件,速度从U跌落至0。如此形成的边界层对流动的影响之一是使设想中的无粘性流体流过该区域的质量流量亏损了(图 1中阴影区,平板宽度设为1)。将亏损量折算成无粘性的流量,厚度为δ*(图 1中阴影区)。

图 1 边界层位移厚度示意图 其公式推导:

*0()U U u dy δ

ρδρ=-? 对不可压缩流体

*0(1)u dy U

δδ=-? 其中存在的问题是,很显然,边界层内的质量流量减少了,因为边界层内的沿着壁面切向的速度最大为自由来流的速度,最小为0,而无粘的时候,整个流动的速度都是U 。

损失的质量去哪里了呢?质量是不会丢失的,损失的质量流动到了边界层之外了,如图 2所示。

图 2 排挤厚度

在图 2中,可以明显看出,由于边界层的存在,整个流动向边界层外“排挤”了,把一部分流体质量排挤到了边界层之外。所以,边界层位移厚度,又称作排挤厚度,这个叫法比较形象地说明了边界层位移厚度的物理意义。

对于边界层的动量厚度θ:边界层对流动的影响之二是使设想中的无粘流体流过该区域的动量流量亏损了,按平板单位宽度计算动量流量亏损量,并将其折算成厚度为θ无粘性流体的动量流量

0()U U u U u dy δρθρ*

=-? 对不可压缩流动

0(1)u u dy U U

δθ*

=-? 称θ为动量亏损厚度,简称动量厚度。 现在很多教材中对边界层的动量厚度的说明比较模糊,没有强调出为什么使用上述公式计算。以至于很多人对边界层的动量厚度有了错误的理解。

计算边界层的动量厚度,必须考虑边界层的排挤厚度,即位移厚度!因为在计算动量厚度的时候,要考虑质量守恒的问题。

在边界层内,理想流体通过时的动量为:

10E UUdy UU δ

ρρδ==? 在边界层内,考虑壁面无滑移条件,对于实际粘性流体来说,流体的动量为:

20()()E u y u y dy δ

ρ=? 要注意,我们并不能拿以上两项相减来作为边界层动量的损失,因为有一部分质量被“排挤”到了边界层之外,如果是理想流动,这一部分质量在边界层厚度之内呢。所以,计算动量厚度的时候,一定要把排挤厚度之内的那些动量也减掉,这样才遵守了基

本的质量守恒的原则,所以边界层动量厚度的计算方法为:

*12E E UU ρδ--

如此,在推导之,方可得到以上的结果。当然,要注意利用一下

()*0()U u y dy δ

δδ-=?

保温层厚度计算

保温层厚度的计算与校核 1 已知条件 保温棉内侧对流换热系数h1=70w/(m2·k),温度分别为0℃、-60℃、-138℃。铝片的厚度∝1为5mm,传热系数λ1=236w/(m2·k)。保温棉的传热系数λ2=0.022 w/(m2·k)。保温棉外侧的空气温度为35℃,其表面温度查空气焓湿图,取35℃、65%相对湿度情况下的露点温度。保温棉外侧的对流换热系数h2=8 w/(m2·k)。 2 保温棉厚度计算 2.1 露点温度 空气温度T a=35℃,相对湿度为65%时,查空气焓湿图得到露点温度T d=27.57℃。2.2最大允许冷损失量的计算 根据《工业设备及管道绝热工程设计规范(GB50264-97)》,最大允许冷损失量应按以下公式进行计算: 当T a-T d≤4.5时: [Q]=-(T a-T d)αs; 当T a-T d >4.5时: [Q]=-4.5αs 其中αs绝热层外表面向周围环境的放热系数。 T a-T d=(35-27.57)℃=7.43℃,故最大允许冷损失量 [Q]=-4.5αs=-4.5×8=-36w。 2.3 保温棉厚度的计算 由传热公式知: [Q]= (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 ) 其中∝2为保温层的厚度。 由此得到∝2=λ2×(T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 ) 1 保温层内侧温度为0℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×0?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.018m 2 保温层内侧温度为-60℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?60?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.054m 3 保温层内侧温度为-138℃时 保温层厚度∝2= λ2×T i?T a Q ?1 ?1 ?1 ?2 ?∝1 λ1 =0.022×?138?35 ?36 ?1 70 ?1 8 ?0.005 236 =0.103m 3 保温层厚度的校核 设保温层外侧表面的温度为T f 1 保温层内侧温度为0℃时 取保温层厚度∝2=0.025m 传热量[Q] = (T i-T a)/ (1 ?1+∝1 λ1 +∝2 λ2 +1 ?2 )= (0-35)/ (1 70 +0.005 236 +0.025 0.022 +1 8 )=-27.44w T f=T a+Q ?2=35?27.44 8 =31.57℃>T d=27.57℃故符合要求。

风管保温层要工程量计算方法

风管保温层要工程量计算方 法 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

风管保温层要工程量计算方法 1、矩形按矩形单边长度加一个保暖厚度作为边长计算; 2、圆形按园半径加一个保温厚度作为半径; 3、其中:保温厚度=设计要求的保温厚度+规范规定的允许超厚系数%(即保温厚度*)。 4、通风空调风管橡塑板保温体积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度*保温厚度* (2)圆形风管=(直径+保温厚度**2)**长度*保温厚度* 5、通风空调风管橡塑板保温面积计算公式: (1)矩形风管=(长+宽+保温厚度*)*2*长度=保温面积 (2)圆形风管=(直径+保温厚度**2)**长度=保温面积 6、风管保温层厚度计算方法 1、可以用风管面积乘以一个系数来确定,系数一般取15%左右,视风管大小、施工方法确定。 2、公式:(a+b+4d)*2*L(a、b分别为风管长宽、L为风管长度) 3、公式这样算出来还是要乘以一个损耗及包法兰边的系数 4、直接用风管面积乘以15%左右最方便,也比较准确。(参考方法) 如果你自己弄不明白,或没时间计算,建议找代算,根据情况不同,费用不等。 套定额 套用保温定额中有关于风管保温的定额 一、其他方法

1、你可以搜索下小蚂蚁算量,能做工程量计算、预算,高质、高效 2、你可以在网上搜下预算造价单位,有一些单位做的比较好 3、你可以去第三方平台委托别人做,平台上注意防骗,你可以找单位、也可以找个人来做。 二、注意点 1、计算工程量应按照工程所在地的定额或规定标准计算; 2、工程量计算熟悉定额、规定是基础; 3、计算工程量前看清楚图纸是前提,应注意小的注释,以免看漏看错是计算结果出现错误; 4、工程量计算原则上是不允许错误的,希望不要抱侥幸态度去计算工程量。

保温层厚度计算(2021新版)

保温层厚度计算(2021新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0646

保温层厚度计算(2021新版) 保温层厚度计算有A种方法,选择介绍四种方法:经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1.保温层经济厚度法 (1)厚度公式 式中δ——保温层厚度,m; Do ——保温层外径,m; Di ——保温层内径,取0.125m; A1

——单位换算系数,A1 =1.9×10-3 ; λ——保温材料制品导热系数,取0.028W/(m·℃); τ——年运行时间,取5840h; fn ——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta ——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi ——保温结构单位造价, Pl ——保温层单位造价,硬质聚氨酯泡沫塑料造价1700元/m3 ;

P2 ——保护层单位造价,玻璃钢保护层取135元/m2 ; S——保温工程投资贷款年分摊率,按复利率计息, n——计算年限,取15年; i——年利率(复利率),取7%; a——保温层外表向外散热系数,取11.63W/(cm2 ·℃)。 用试差法,经计算δ=22.5mm。 (2)管道保温层表面散热损失 式中q——单位表面散热损失,W/m。经计算q=42.2W/m,满足国标GB4272—84《设备及管道保温技术通则》要求。 (3)温降计算 式中△t ——卑位长度温降,℃/km; Q——流量,kg/h;

保温层厚度计算公式

保温层“经济厚度法”计算公式中有关参数的取用 幺莉,黄素逸 (华中科技大学,湖北武汉430074) 摘要着重介绍了采用保温层“经济厚度法”的计算公式中有关参数的取用和分析,为热力设备和管道保温结构的工程设计,提供一定的参考。 关键词热力设备保温层经济厚度 1前言 保温层“经济厚度”的计算方法,不但考虑了传热基本原理,而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。因此,在火力发电厂的设计过程中,通常采用“经济厚度法”对热力设备 和管道的保温层厚度进行计算。 对于火力发电厂的热力设备和管道,可分为平壁和管道两种物理模型。当管道和设备的外径大于1020mm时,可按平壁的公式,来计算保温层厚度。 平壁和管道的保温层经济厚度计算公式如下所示: 式中,δ:保温层的经济厚度,m;P h:热价,元/GJ;λ:保温材料的导热系数,W/(m·K);h:年运行小时数,h;t:设备和管道的外表面温度,℃;ta:环境温度,℃;P i:保温材料单位造价,元/m3;S:保温工程投资贷款年分摊率;α:保温层外表面向大气的放热系数,W/(m2·K);d o:保温层外径,m; d i: 保温层内径,m。 由以上列出的保温层“经济厚度法”计算公式可以看出,公式中涉及的参数较多。在保温计算时,这些参数的取值直接会影响到保温层厚度的计算结果。所以,针对不同工程的实际情况,选取适当的参数,对计算结果的精度至关重要。 以下着重对计算公式中的各参数的取值进行讨论和分析。 2参数的取用和分析 2.1设备和管道的外表面温度t 对于无内衬的金属设备和管道,其外表面温度应取介质的设计温度或最高温度;对于有内衬的金属设备和管道,应按有保温层存在进行传热计算确定其外表 面温度。 2.2环境温度t a 保温工程的环境温度,实际上是一个变数,但通常情况下,如果载热介质的温度高而且稳定,环境温度的变化对计算温差的影响有限。因此,一般把工业保温的传热过程视为稳定传热,环境温度通常取用其年平均值来代表,并分为室内、

保温层厚度计算圆筒

一、 聚丙烯PP 外壁热损计算: 采用设备上一个筒形作为研究对象。 根据保温层厚度计算公式: 5 .175.135.12.114.3q d w τλδ= (1-1) 式中: δ————保温层厚度,4.6mm; w d ————管道或圆柱设备的外径,此处为水柱外径,40.8mm; λ————保温层的热导率,0.33kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,60℃; q —————保温后的允许热损失,kJ/(h.m.); 所以δτλ75.135.12.15.114.3w d q Q == (1-2) ==67.0Q q (δ τ λ75.135.12.114.3w d )0.67 (1-3) 得出:聚丙烯外壁的热损值为:681.152 kJ/(h.m.) 二、聚丙烯外层的表面温度的确定按下式计算 πλ2ln 12 11d d q t t w - = (1-4) 式中:q ———聚丙烯层保温热损失,kJ/(h m.);. λ———聚丙烯的热导率,kJ/(h.m. ℃); 1w t ———聚丙烯层外表面温度,℃; 1t ———聚丙烯层内表面温度,℃;

2d ———聚丙烯保温层外径,mm; 1d ———聚丙烯保温层内径,mm; 聚苯乙烯内表面温度即为聚丙烯保温层外表面温度。得出聚丙烯层外温度为:52.72℃ 三、聚苯乙烯保温层计算过程如下: 通过式(1-3)计算外层聚苯乙烯保温层的厚度为: 5 .175.135.12.114.3q d w τλδ= 式中: δ————聚苯乙烯保温层厚度, mm; w d ————管道或圆柱设备的外径,40.8mm; λ————保温层的热导率,0.1476kJ/(h.m. ℃); τ———未保温的管道或圆柱设备外表面温度,52.72℃; q —————保温后的允许热损失,104.7kJ/(h.m.); 计算得: 聚苯乙烯保温层厚度为:24.97mm 。 同理: 聚乙烯保温层计算同上。厚度为:30.03 mm 。

边界层厚度计算方法详述

边界层厚度的计算方法详述 与边界层厚度相关的概念,包含边界层厚度,边界层位移厚度和边界层动量厚度三个概念。 边界层厚度δ:严格而言,边界层区与主流区之间无明显界线,通常以速度达到主流区速度的0.99U 作为边界层的外缘。由边界层外缘到物面的垂直距离称为边界层名义厚度。 边界层位移厚度δ*:设想边界层内的流体为无粘性时,以均流速度U流过平板的速度分布如图 1所示。实际流体具有粘性,以相同速度流过平板时,由于壁面无滑移条件,速度从U跌落至0。如此形成的边界层对流动的影响之一是使设想中的无粘性流体流过该区域的质量流量亏损了(图 1中阴影区,平板宽度设为1)。将亏损量折算成无粘性的流量,厚度为δ*(图 1中阴影区)。 图 1 边界层位移厚度示意图 其公式推导: *0()U U u dy δ ρδρ=-? 对不可压缩流体 *0(1)u dy U δδ=-? 其中存在的问题是,很显然,边界层内的质量流量减少了,因为边界层内的沿着壁面切向的速度最大为自由来流的速度,最小为0,而无粘的时候,整个流动的速度都是U 。 损失的质量去哪里了呢?质量是不会丢失的,损失的质量流动到了边界层之外了,如图 2所示。 图 2 排挤厚度 在图 2中,可以明显看出,由于边界层的存在,整个流动向边界层外“排挤”了,把一部分流

体质量排挤到了边界层之外。所以,边界层位移厚度,又称作排挤厚度,这个叫法比较形象地说明了边界层位移厚度的物理意义。

对于边界层的动量厚度θ:边界层对流动的影响之二是使设想中的无粘流体流过该区域的动量流量亏损了,按平板单位宽度计算动量流量亏损量,并将其折算成厚度为θ无粘性流体的动量流量 0()U U u U u dy δρθρ* =-? 对不可压缩流动 0(1)u u dy U U δθ*=-? 称θ为动量亏损厚度,简称动量厚度。 现在很多教材中对边界层的动量厚度的说明比较模糊,没有强调出为什么使用上述公式计算。以至于很多人对边界层的动量厚度有了错误的理解。 计算边界层的动量厚度,必须考虑边界层的排挤厚度,即位移厚度!因为在计算动量厚度的时候,要考虑质量守恒的问题。 在边界层内,理想流体通过时的动量为: 10E UUdy UU δ ρρδ==? 在边界层内,考虑壁面无滑移条件,对于实际粘性流体来说,流体的动量为: 20()()E u y u y dy δ ρ=? 要注意,我们并不能拿以上两项相减来作为边界层动量的损失,因为有一部分质量被“排挤”到了边界层之外,如果是理想流动,这一部分质量在边界层厚度之内呢。所以,计算动量厚度的时候,一定要把排挤厚度之内的那些动量也减掉,这样才遵守了基本的质量守恒的原则,所以边界层动量厚度的计算方法为: *12E E UU ρδ-- 如此,在推导之,方可得到以上的结果。当然,要注意利用一下 ()*0()U u y dy δ δδ-=?

保温保冷厚度计算举例

一、蒸汽管道保温厚度计算 计算的已知条件 管道直径:219mm,管道长度:100m 管道内介质温度:t0=400℃和150 ℃ 环境温度:平均温度t a=25℃保温表面温度:t s=45℃(温差20℃) CAS铝镁质保温隔热材料的导热方程:0.038+0.00015tcp,导热系数修正系数1.2 复合硅酸盐保温材料的导热方程:0.038+0.00018tcp,导热系数修正系数1.8 120kg/m3管壳的导热方程:0.048+0.00021 tcp,导热系数修正系数1.8 注:复合硅酸盐、岩棉管壳的导热方程摘自《保温绝热材料及其制品的生产工艺与质量检验标准规范实用手册》。 1、介质温度为400℃,表面温度为45℃,温差为20℃,材料保温厚度计算 CAS铝镁质保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00015×(400+45)÷2}×1.2=0.0857 复合硅酸盐保温隔热材料(热面400℃,冷面45℃)的平均导热系数 λ={0.038+0.00018×(400+45)÷2}×1.8=0.1405 岩棉管壳(热面400℃,冷面45℃)的平均导热系数 λ={0.048+0.00021×(400+45)÷2}×1.8=0.1705 温差为20℃,室内管道表面换热系数 as=5.0+3.4+1.27=9.67w/㎡.k a、用CAS铝镁质保温隔热材料保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.0852×(400-45)}÷{9.67×(45-25)}=0.3128 (D1/D)ln(D1/D)=0.3128/0.219=1.4282 查表X-XlnX函数得到:X=(D1/D)=2.02 (采用内查法:XlnX X 1.419 2.02 1.439 2.03 ①1.439—1.419=0.02 0.02÷10=0.002 ②1.4282—1.419=0.0092 ③0.0092÷0.002=4.6 ④1.4282对应的X为:2.02+(2.03—2.02)×4.6=2.0246) 保温层厚度:δ=D(X-1)/2=219(2.02—1)/2=111.7mm。 保温厚度定为110mm。 b、用复合硅酸盐保温 D1ln(D1/D)=2λ(t0-t s)/ ={2×0.1405×(400-45)}÷{9.67×(45-25)}=0.5158

最佳保温层厚度的计算

最佳保温层厚度的计算(再取个名字) 一、 摘要 通过对热传导和保温隔热材料性能的研究,根据题意,建立了解决保温层材料和厚度的计算模型。 针对第一个问题(即珍珠岩的厚度应为多少),我们建立模型一。利用傅立叶定律列出方程,通过室温与屋顶内表面有温差和对散热过程、感热过程的分析,给出两个不等式,通过对不等式的求解,得出珍珠岩保温层的厚度范围5δ≥0.533893cm 且5δ≥10.3713cm ,由于保温层材料已给定是珍珠岩,单价为定值,所以用料最省就最经济,又由于保温层要同时考虑保温和隔热两种效果,还要用料最省,故珍珠岩保温层的厚度选择为10.3713cm ,约为10.4cm ,通过资料查证,保温层珍珠岩的厚度在7cm 到20cm 之间,所以在忽略误差的情况下,通过模型一对珍珠岩保温层的计算得出的结果是正确的。 针对第二个问题(即如果更换保温层成其他保温材料,哪种好?并求其厚度。),我们建立模型二。在保温层用一种材料替代的情况下,利用0,1规划,列出关系式,目标函数设为保温层费用的求解函数,由于热阻大的材料保温隔热的效果好,所以在限制条件中,替代材料的热阻要大于等于珍珠岩的热阻,在目标函数中未知变量为所选保温隔热材料的厚度和单价,厚度又由导热系数导出,通过编译程序代入所有已知材料的种类数,并依次输入它们对应的导热系数和对应的单价,即算出最优材料及其对应的厚度和价钱,输出的结果为 。 本文的特色在于两个模型用了两种不同的计算方法,模型一思路清晰,运行简单,但只能计算已知保温隔热材料的厚度,并不是判断最优材料和计算厚度的通式,模型二利用0,1规划,建立了判断最经济材料和计算其厚度的通式,运行简便,无论是思路还是使用范围都优于模型一,模型二可为模型一求解,模型一可为模型二检验。 (最后一个问题不知道是否可行,你检验一下程序二。) 关键词:保温隔热材料,热阻,导热系数,温度差,外围结构

管道保温的计算公式

绝热工程量。 (1)设备筒体或管道绝热、防潮和保护层计算公式: V=π×(D+1.033δ)×1.033δ S=π×(D+2.1δ+0.0082)×L 式中D——直径 1.033、 2.1——调整系数; δ——绝热层厚度; L——设备筒体或管道长; 0.0082——捆扎线直径或钢带厚。 (2)伴热管道绝热工程量计算式: ①单管伴热或双管伴热(管径相同,夹角小于90°时)。 D′=D1+D2 +(10~20mm) 式中D′——伴热管道综合值; D1 ——主管道直径; D2 ——伴热管道直径; (10~20mm)——主管道与伴热管道之间的间隙。 ②双管伴热 (管径相同,夹角大于90°时)。 D′=D1+1.5D2 +(10~20mm) ③双管伴热 (管径不同,夹角小于90°时)。 D′=D1 +D伴大+(10~20mm) 式中D′——伴热管道综合值; D1 ——主管道直径。 将上述D′计算结果分别代入相应公式计算出伴热管道的绝热层、防潮层和保护层工程量。 (3)设备封头绝热、防潮和保护层工程量计算式。 V=\[(D+1.033δ)/2\]2 π×1.033δ×1.5×N S=\[(D+2.1δ)/2\]2 ×π×1.5×N (4)阀门绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×2.5D×1.033δ×1.05×N S=π(D+2.1δ)×2.5D×1.05×N (5)法兰绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×1.5D×1.033δ×1.05×N S=π×(D+2.1δ)×1.5D×1.05×N (6)弯头绝热、防潮和保护层计算公式。 V=π(D+1.033δ)×1.5D×2π×1.033δ× N/B S=π×(D+2.1δ)×1.5D×2π×N/B

中央空调保温材料厚度计算

1.保温的类型: 保热:热水系统,蒸汽管道等; 保冷:新风系统风管,冷冻水供回水管等; 2.需保温的场合: 1、不保温,冷、热损耗大,且不经济时; 2、由于冷、热损失,使介质温度达不到要求温度,因而不能保证室内参数时; 3、当管道穿过室内参数要求严格的空调房间,而管道散出的冷热量对室内参数影响不利时; 4、管道的冷表面可能结露时。 3.景瑞空调系统常用保温材料: 岩棉 离心玻璃棉 橡塑海绵 阻燃聚乙烯泡沫塑料 硬质聚氨酯泡沫塑料

4.标准中对空调保温厚度的规定: 设备及管道保温技术通则 上海市公共建筑节能设计标准 ASHARE 90.1-1999 5.保温厚度的算法: 保冷厚度一般大于保热厚度,具保冷效果对空调系统影响较大,因而一般在设计中,按照保冷的厚度计算; 按防结露厚度计算 防结露是指要求保温后管道、设备表面湿度应大于保温层外的空气露点温度,保证绝大多数时间不结露,这也是空调系统保温的基本要求。 矩形设备、管道: 圆形管道:

按经济厚度计算 经济厚度是指保温后,全年的冷或热损失价值与保温投资的年折算价值之和为最小的保温材料厚度。 矩形设备、管道: 圆形管道: 其中: ——保温层厚度,m; ——保温材料导热系数,w/m-k; ——保温材料外表面换热系数,w/m2-k,一般取8.14; ——保温层外空气露点温度,℃;

——管内流体温度,℃; ——保温层外空气温度,℃; ——保温前管道外径,m; ——计算年限,取12年; ——单位换算系数, ; ——全年输送冷媒的小时数,h; ——冷价,元/106kJ; ——保温层单位造价,元/m3;

保温层厚度的计算

保温层厚度的计算 (1)保温层厚度的计算公式 δ=3.14dwl.2λ1.35tl.75/ql.5 (式1) δ——保温层厚度(mm); dw——管道的外径(mm): λ一一保温层的导热系数(KJ/h·m·℃); t一一未保温的管道的外表面的温度(℃): q一一保温后的允许热损失(KJ/m·h)。 (2)允许热损 根据建设部2003年颁布的《全国民用建筑工程设计技术措施·给水排水》中的规定选取(若要用到这本书里的数据可向我要,我已经下载下来了) 3)参数确定 公称管径为:2 0、40、5 0的管道(钢)其外径分别为33.5mm、48mm、60mm 保温层的导热系数λ:1.1中已经确定,未保温的管道的外表面的温度t:由于钢的导热系数很大,管道壁又薄,所以可以认为管道的外表面的温度和流体的温度相等(误差不超过0.2℃) (4)根据式——1计算的保温层厚度如表4: 3.结果验证和实际热损 (1)模型的建立 如图所示是包裹着保温材料的管道的横截面。设管道中的热水温度为t1,管道内壁的温度是t 2,管道和保温材料接触处的温度为t3,保温材料外表面的温度为t4,管道所处空间的温度为t5:设管道的内径是r1外径是r2,保温材料的外径是r3。 设管道材料的数为λ2,管内热水和管导热系数为λ1,保温材料导热系外空气与管壁间的对流换热系数分别a1、a2。 由传热学公式可知,热水通过管道壁和保温层传热给空气的过程总热阻为 R=1/(2a1πr1)+(1nr2/r1)/2πλ1+(1nr3/r2)/2πλ2+l/2a2πr3 =R1十R2+R3+R4 (式2) 式中: R1——管内对流换热热阻,R1=1/(2a1πr1); R2——管壁导热热阻,R2=(1nr2/r1)/2πλ1; R3——保温层导热热阻,R3=(1nr3/r2)/2πλ2; R4——保温层外对流换热热阻,R4=1/2a3πr3. q=(t1-t5)/(Rl+R2+R3+R4) (式3) 由于所计算的管道材料为铸铁、钢或者铜,其导热系数都很大,而且管道壁的厚度很小,所以其热阻可以忽略,认为其外壁温度和其中热水的温度相等;同时,为了计算的简便可以将R4忽略,这样得出的结果将比实际的值偏大,但若在偏大的情况下能满足表——3的要求,则精确的结果肯定也能满足。 所以 q≈(tl-t5)/R3=(tl-t5)/(1nr3/r2)/2πλ2 (式4) (2)分区 在采用同一种保温材料并且厚度也相同的条件下,如果环境的温度不相同,管道的热损是不一样的。为了验证所选用的保温层是否符合使用要求,现根据一月份(全年温度最低的月份)的平均气温的高低把全国划分为五个区。 1月份平均气温不低于1 0℃的(A区):

保温层的厚度怎么计算

保温层的厚度怎么计算 我有个内蒙古的项目,冰冻线为2米,排水管是浅埋的,需要保温。保温材料采用PU硬泡, 但是保温材层需要多厚阿。保温层的厚度由什么决定,有计算的公式吗,怎么计算?内蒙的 最低温度大概是零下三四十度。有哪位有这方面的经验的,请帮帮忙阿 保温计算 1蒸汽直埋保温管的蒸汽温度,℃,蒸汽压力,MPa; 2土壤导热系数,W/m.K; 3管中心平均埋深,m; 4最热月地表面平均温度,℃; 5保温结构采用: “钢套钢—外滑动(滚动型)—空气层”; 6钢外套管的外壁温度≤50℃; 7管道沿程平均热损失≤200W/m; 8保温管寿命≥20年(正常使用)。 一个完整的热工管道和热工设备的绝热结构,通常包括:(1)防腐层;(2)滑动层(可与腐层并用);(3)绝热层;(4)防水防潮层;(5)外保护层(也可以兼作防水防潮层)。由于热水系统所用的管道都已经经过防腐处理,所以绝热设计的任务主要是绝热层、防水防 潮层和外保护层的设计。 9 绝热层的设计 9.1 材料导热系数 导热系数λ,单位W/(m·℃),是表证物质导热能力的热物理参数,在数值上等于单位导热面积、单位温度梯度,在单位时间内的导热量。数值越大,导热能力越强,数值越小,绝热性能越好。该参数的大小,主要取决于传热介质的成分和结构,同时还与温度、湿度、压力、密度、以及热流的方向有关。成分相同的材料,导热系数不一定相同,即便是已经成型的同一种保温材料制品,其导热系数也会因为使用的具体系统、具体环境不同而有所差异。 为了计算的方便,本文根据相关的部门标准和国标的相关规定来选择材料的导热系数作 为设计的标准。 9.1.1 硬质聚氨脂泡沫塑料 硬质聚氨脂泡沫塑料是用聚醚与多异氰酸脂为主要原料,再加入阻燃剂、稳泡剂和发泡剂等,经混合搅拌、化学反应而成的一种微孔发泡体,其导热系数一般在0.016~ 0.055W/(m·℃)。使用温度-100~100℃。 按照原石油部部颁标准(SYJ18-1986),对于设备及管道用的硬质聚氨脂塑料泡沫的基 本要求如表1: 9.1.2 聚苯乙烯泡沫塑料 聚苯乙烯泡沫塑料简称EPS,是以苯乙烯为主要原料,经发泡剂发泡而成的一种内部有无数密封微孔的材料。聚苯乙烯泡沫塑料的导热系数在0.033~0.044 W/(m·℃),安全使

第7章节层流边界层理论

第7章层流边界层理论 7.1 大雷诺数下物体绕流的特性 我们知道,流动雷诺数是度量惯性力和粘性内摩擦切力的相互关系的准则数,大雷诺数下的运动就意味着惯性力的作用远大于粘性力。所以早年发展起来的非粘性流体力学理论对解决很多实际问题获得了成功。但是后来的实验和理论分析均发现,无论雷诺数如何大,壁面附近的流动与非粘性流体的流动都有本质上的差别,而且从数学的观点来看,忽略粘性项的非粘性流体远动方程的解并不能满足粘性流体在壁面上无滑移的边界条件,所以不能应用非粘性流体力学理论来解决贴近物面的区域中流体的运动问题。 1904年普朗特第一次提出边界层流动的概念。他认为对于如水和空气等具有普通粘性的流体绕流物体时,粘性的影晌仅限于贴近物面的薄层中,在这一薄层以外,粘性影响可以忽略,应用经典的非拈性流体力学方程来求解这里的流动是可行的。普朗特把边界上受到粘性影响的这一薄层称之为边界层,并且根据在大雷诺数下边界层非常薄这一前提,对粘性强体运动方程作了简化,得到了后人称之为普朗特方程的边界层微分方程。过了四年,他的学生布拉修斯首先运用这一方程成功地求解了零压力梯度平板的边界层问题,得到了计算摩擦阻力的公式。从此,边界层理论正式成为流体力学的新兴分支而迅速地发展起来。 图7-1 沿薄平板的水流 简单的实验就可以证实普朗特的思想。例如沿薄平板的水流照片(见图7-1)和直接测量的机翼表面附近的速度分布(见图7-2),即可以看到边界层的存在。观察图7-2示中的流动图景,整个流场可以划分为边界层、尾迹流和外部势流三个区域。 在边界层内,流速由壁面上的零值急速地增加到与自由来流速度同数量级的值。因此沿物面法线方向的速度梯度很大,即使流体的粘性系数较小表现出来的粘性力也较大。同时,由于速度梯度很大,使得通过边界层的流体具有相当的涡旋强度,流动是有旋的。 当边界层内的粘性有旋流离开物体流入下游时,在物体后面形成尾迹流。在尾迹流中,初始阶段还带有一定强度的涡旋,速度梯度也还相当显著,但是由于没有了固体壁面的阻滞作用,不能再产生新的涡旋,随着远离物体,原有的涡旋将逐渐扩散和衰减,速度分布渐趋均匀,直至在远下游处尾迹完全消失。 在边界层和尾迹以外的区域,流动的速度梯度很小,即使粘性系数较大的流体粘性力的影响也很小,可以把它忽略,流动可以看成是非粘性的和无旋的。

保温层厚度计算(正式版)

文件编号:TP-AR-L8384 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 保温层厚度计算(正式版)

保温层厚度计算(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 保温层厚度计算有A种方法,选择介绍四种方 法:经济厚度法;直埋管道保温热力法;多层绝热层 法;允许降温法。将计算结果经对比分析后选定厚 度。 1.保温层经济厚度法 (1)厚度公式

式中δ——保温层厚度,m; Do——保温层外径,m; Di——保温层内径,取0.125m; A1——单位换算系数,A1=1.9×10-3 ; λ——保温材料制品导热系数,取0.028 W /(m·℃); τ——年运行时间,取5840h; fn——热价,现取7元/106kJ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55℃; ta——保温结构周围环境的空气温度,取极端土壤地温5℃; Pi——保温结构单位造价,

平板层流边界层的近似计算

§8-4平板层流边界层的近似计算 作为应用边界层的积分关系式来决实际问题的例子,下面我们来研究不可压粘性流体定常流流经平板的问题。如图所示: 设x轴沿着平板,y轴为平板法线方向。坐标原点在平板前缘点上,来流的沿x轴,板长为l。 假定来流流经平板时,平板上下两层形成层流边界层,如图所示。现在要求的是边界的厚度的变化规律和摩擦阻力F D。 由于顺来流方向放置的平板很薄,可以认为不引起流动的改 变。所以,在边界层外边界上,,由势流的伯努利方程:

两边对x求导,则: 即:p=常数,即边界层外边界上压力为常数。而边界层内,。 所以整个边界层内向点压力相同。即整个流场压力处处相等。代入上式则变成: (1) (1)式中有三个未知数u,,δ,所以再补充两个方程。 ①当x固定时,假设边界层内速度u的分布为: (2) 可以看出层内随y↑—>u↑,这和实际情况是符合的。 边界条件: 1) 壁面外,y=0,u=0; 2) 边界层外边界处,y=δ,u= V∞;

3) 边界层外边界处,y=δ,; 4) 边界层外边界处,由于u=V∞,由层流边界层微分方程(即普朗特边界层方程),在边界层的外边界上: 5) 在平板壁面处,y=0,u=υ=0,又由上式(普朗特边界层方程),得: ; 把边界条件代入(2)式,得: 再把上面的五个系数代入(2)式,得第一个补充关系式,即层流边界层中的速度分布规律为: 再对上式求导,并利用牛顿内摩擦定律,得:

(3) 再将上式代入(1)式求积分,则得到: (4) (5) 将(3),(4),(5)代入(1)式,得: ,积分得: 确定积分常数C,x=0, =0,C=0,于是得:

边界层的测定

实验报告 课程名称:________过程工程原理实验____________指导老师:__叶向群____成绩:__________________ 实验名称:___空气纵掠平板时流动边界层、热边界层的测量___实验类型:__________同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 了解实验装置的原理、测量系统及测试方法。 2. 掌握流动边界层内速度分布和热边界层内温度分布的规律,加深对边界层理论中各概念的理解。 3. 了解动量传递与热量传递间的类比关系。 二、实验内容和原理 图1 平板附近形成的流动边界层和热边界层示意图 如图1所示,平板表面具有恒定的热流密度0q ,当温度为∞T 的空气以均匀来流∞u 掠过平板时,在平 板附近形成流动边界层和热边界层。 记δ、T δ为平板流动边界层及热边界层厚,则δ、T δ仅为x 的函数,且T δδ/为常数。δ、T δ与x 的关系可通过测量不同x 处气流的速度分布()y u x 、温度分布()y T x 来确定。 实验中,用热电偶可得到温差;用毕托管可测得气体流速。具体如下: 热电偶A 、B 均为铜—康铜热电偶,以空气来流作为参考温度,热端、冷端每度温差的热电偶输出可近似取为C mv ?/043.0,因此 专业:__化工1101___ 姓名:_____梁昊_____ 学号:___3110000442__ 日期:________________ 地点:________________

保温层厚度计算

保温层厚度计算 Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 编订:___________________ 审核:___________________ 单位:___________________ 文件编号:KG-A0-3696-80 保温层厚度计算 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行

具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 保温层厚度计算有A种方法,选择介绍四种方法: 经济厚度法;直埋管道保温热力法;多层绝热层法;允许降温法。将计算结果经对比分析后选定厚度。 1?保温层经济厚度法 (1)厚度公式 式中5——保温层厚度,m; Do ---- 保温层外径,m; D i 保温层内径,取0. 125m; A1——单位换算系数,A1=? 9X10-3

■ , 入保温材料制品导热系数9取0. 028 W / (m ?°C); T---- 年运行时间,取5840h ; fn ------ 热价,现取7元/ 106kJ ; t——设备及管道外壁温度,不计玻璃钢管酌保温性能,取介质温度55°C; ta——保温结构周围环境的空气温度,取极端土壤地温5°C; Pi——保温结构单位造价, PI——保温层单位造价,硬质聚氨酯泡沫塑料 造价1700元/ m3 ■ J

边界层理论

边界层理论 思考题及练习题 1.为什么在高雷诺数下出现边界层? 2.边界层的边界线是否是流线?为什么? 3.边界层名义厚度 随雷诺数的增加而————————。 4.从物体的前沿向后边界层的名义厚度逐渐————————。 5.在边界层内部,沿物面法线方向流动可以分为————————。 6. 影响边界层厚度的因素有哪些? 7.引入边界层概念后, 绕物体流动的流场划分为怎样的两个流动区域,对求解粘性流体高Re 绕流问题有何意义? 8.为什么高Re 下绕物体的流动粘性的影响仅局限在物体表面一薄层范围内,而外部流动可以当作理想流体来处理? 9.在外边界层边界上的压力分布可以由势流方法求出,为什么这一压力分布可以近似作为物面上压力分布? 10.边界层内的流线为什么会出现偏移,其偏移的大小为何? 11.物面上局部摩擦切应力沿流动方向逐渐减小,简述其原因。 12.不可压缩流体高Re 下沿平板的定常流动,物面上的压力沿流向的分布规律为————。 13.卡门边界层动量积分方程适用的条件为何?求解它需要补充什么条件? 14.卡门边界层动量积分方程求解边界层问题所得的结果与实际情况吻合的前提是————。 15.简述边界层排挤厚度,动量损失厚度的物理意义。 16.简述平板混合边界层的何定义。 17. 边界层名义厚度定义是( ) (a )沿物面法向流速由零增为99%U 的连线 (b )流速由0增为99%U 处的连线 (c )流速由0增至99%U 处的流线 (d )流速为99%0U 质点的迹线。 18. 边界层名义厚度,排挤厚度,动量损失厚度之间的关系为( ) (a )*>>δδθ (b )* <<δδθ (c )*>>δθδ (d )*<<δθδ 19. 在高雷诺数情况下,流体绕平板无攻角地流动,平板上局部摩擦阻力0τ沿流向( )。 (a )不变 (b )不断增加 (c )不断减小 (d )层流边界层时减小,湍流边界层时增加。

保温层厚度计算公式

保温层厚度计算公式 Prepared on 24 November 2020

保温层“经济厚度法”计算公式中有关参数的取用 幺莉,黄素逸 (华中科技大学,湖北武汉430074) 摘要着重介绍了采用保温层“经济厚度法”的计算公式中有关参数的取用和分析,为热力设备和管道保温结构的工程设计,提供一定的参考。 关键词热力设备保温层经济厚度 1前言 保温层“经济厚度”的计算方法,不但考虑了传热基本原理,而且考虑了保温材料的投资费用、能源价格、贷款利率、导热系数等经济因素对保温层厚度的影响。因此,在火力发电厂的设计过程中,通常采用“经济厚度法”对热力设 备和管道的保温层厚度进行计算。 对于火力发电厂的热力设备和管道,可分为平壁和管道两种物理模型。当管道和设备的外径大于1020mm时,可按平壁的公式,来计算保温层厚度。 平壁和管道的保温层经济厚度计算公式如下所示: 式中,δ:保温层的经济厚度,m;P h:热价,元/GJ;λ:保温材料的导热系数,W/(m·K);h:年运行小时数,h;t:设备和管道的外表面温度,℃;ta:环境温度,℃;P i:保温材料单位造价,元/m3;S:保温工程投资贷款年分摊率;α:保温层外表面向大气的放热系数,W/(m2·K);d o:保温层外 径,m; d i:保温层内径,m。 由以上列出的保温层“经济厚度法”计算公式可以看出,公式中涉及的参数较多。在保温计算时,这些参数的取值直接会影响到保温层厚度的计算结果。所以,针对不同工程的实际情况,选取适当的参数,对计算结果的精度至关重要。以下着重对计算公式中的各参数的取值进行讨论和分析。 2参数的取用和分析

平板边界层测量

三、圆柱压力分布测量 1 实验目的: (1)测量圆柱表面压力分布,与理论值比较。并由压力分布计算圆柱阻力。 (2)用镜像法进行洞壁干扰修正。 (3)了解压力扫描测试仪工作原理和使用方法。 2 实验装置: 图1 风洞示意图 图2 圆柱模型测点分布示意图 (1)圆柱:在二维小风洞侧壁上安装一个直径50毫米的圆柱,圆柱均匀分布有24个测孔(如图)。 (2)风速管:用于测量气流速度和压力。 (3)坐标架:安装在风洞外部,用于调节风速管位置。 (4)压力扫描测试仪:用于测量压差。拨盘位置1~24与圆柱测点一一对应。

压差显示拨盘Array测压导管连接端子群 各端点与圆柱测压点对应连接,指 示数字与拨盘一一对应。注意:风速管 静压孔接0端、总压孔接30端 3实验准备: (1)安装好圆柱,并使其测压孔1对准风洞轴线(安装圆盘上的标志线指向0度位置)。 安装好风速管,使其对准气流方向。并置于圆柱尾流区上方气流均匀区; (2)将风速管、静压孔分别与压力扫描测试仪相连。注意各点对应关系; (3)记录当天大气压、温度和风洞变频器的频率值。 4实验步骤: (1)测来流速度:启动风洞,变频器调整到设定频率值,将压力扫描试测仪拨盘指针拨到0位置,调整坐标架,使风速管置于最上方或最下方(气流均匀区),记录读数。(2)测量圆柱表面压力分布:转动压力扫描测试仪拨盘,从1点测至24点,分别记录测试仪读数。 (3)检查实验数据,确认无误后,风洞停车。 (4)整理实验数据,按照要求完成实验报告。 5数据处理: (1)画出圆柱压力分布的矢量图 用极坐标图表示沿圆柱表面的压力分布。 (2)计算圆柱压力分布和阻力系数 用角度为横坐标,压力系数为纵坐标画出理论的和实验的圆柱压力分布曲线。 对实验数据积分,求出圆柱阻力系数(具体方法见讲义)。 求出实验Re数。

保温材料的计算方法

1、热阻值计算公式,及其中值的单位,和代表意义。国外要求R=12~18,是什 么意思(比我们的1.14~2.56大十倍) 答复: 热阻的计算公式如下: R=δ/λ (δ--材料厚度λ--材料导热系数) 导热系数λ 是指在稳态条件下1米厚的物体两侧表面温差为1度,1小时内通过1平 方面积的热量,单位为[W/(m?K)],它是材料特性,同厚度没有关系,符号为λ。 热阻 R 材料厚度除以导热系数,是指阻抗传热的能力,单位为[(m2?K) / W],同 材料厚度有关系,符号为R。 传热系数 K 在稳态条件下,围护结构两侧空气温度差为1K,单位时间内通过单位面积 传递的热量。值为热阻的倒数。 如果R在11—30的,那么单位是不一样,它的单位为 1h.ft2.F/Btu ,其对应 换算为:R=11=1.9373 (m2.k/w); R=13=2.290(m2.k/w); R=15=2.642(m2.k/w); R=19=3.346(m2.k/w); R=21=3.698(m2.k/w); R=30=5.284(m2.k/w); 2、以那种构造措施较好, 如屋面在斜屋面板下,还是底部水平内顶板内, 墙面在外墙板与檩条间,还是内墙板与檩条间 答复: 屋面在斜屋面板下 墙面在外墙板与檩条间, 3、带铝箔贴面的棉毡,整体的强度,抗拉强度,抗破强度有无指标 答复: 主要靠贴面,参数见附件 4、带铝箔贴面的棉毡,整体的憎水防潮性能有无数据 答复:

带铝箔贴面的棉毡,其抗水汽渗透性能有一定提高;目前公司开发的幕墙棉,有很好的憎水率,达到99%以上,但产品手册尚未正式发布。 5、室外环境温度,最低摄氏 -21度,湿度〉60%,但要求温度在18度以上,应该选用哪种规格的保温棉(我推荐的是屋面12K125mmFSK,墙面12K75mmFSK,够不够(鸡舍,体形系数较大,墙高3米,跨度16米) 答复: 见附件中的计算和以下澄清。 关于第五点需要澄清一下,鸡舍这种对于室内温湿度控制较严格的场所,光靠玻璃棉进行保温来保持室内恒定温度肯定是远远不够的。需要外部加热装置进行冬天热量的补充。玻璃棉只能起到延缓热量散失的效果。关于厚度及具体的热量计算请参考附件。

相关文档
最新文档