物理理必修一第一二章知识点
物理必修一 知识点总结

物理必修一知识点总结第一章运动的描述运动是物体相对于其他物体的位置发生变化的现象。
描述运动的方法有常用的位移、速度、加速度、时间等概念。
1. 位移位移是指物体从一个位置到另一个位置的位置变化量。
通常用Δ表示,表示位移的大小和方向。
2. 速度速度是指物体在单位时间内所经过的位移量。
一般用v表示,速度的大小和方向都很重要。
3. 加速度加速度是指速度的变化率,即速度随时间的变化率。
一般用a表示,加速度的大小和方向也都很重要。
4. 加速度的方向如果速度的大小变化的方向和速度的方向相同,表示加速度的方向与速度的方向一致;如果速度的大小变化的方向和速度的方向相反,表示加速度的方向与速度的方向相反。
第二章牛顿运动定律牛顿运动定律是描述物体在受力作用下的运动规律的基本原理。
主要包括牛顿第一定律、牛顿第二定律和牛顿第三定律。
1. 牛顿第一定律牛顿第一定律又称惯性定律,指物体如果受力为零,则物体的速度保持不变,即物体静止或匀速直线运动。
2. 牛顿第二定律牛顿第二定律指出,物体受到的合外力和物体的加速度成正比,方向与合外力方向一致。
即F=ma,其中F表示合外力,m表示物体的质量,a表示物体的加速度。
3. 牛顿第三定律牛顿第三定律指出,任何两个物体之间的相互作用力是相等的,方向相反。
即作用力和反作用力之间存在着对等关系。
第三章机械能机械能包括动能和势能两个方面。
1. 动能动能是物体由于运动而具有的能量,公式为E=1/2mv^2。
其中E表示动能,m表示物体的质量,v表示物体的速度。
2. 势能势能是物体由于位置而具有的能量,包括重力势能、弹性势能等。
重力势能的公式为E=mgh,其中E表示重力势能,m表示物体的质量,g表示重力加速度,h表示物体的高度。
第四章动量守恒定律动量守恒定律是描述碰撞过程中物体动量守恒的基本原理。
动量守恒定律表明,在一个封闭系统中,物体的总动量保持不变。
1. 动量动量是描述物体运动状态的物理量,公式为p=mv。
物理必修一·必修二知识点总结

物理必修1知识点第一章运动的描述一、基本概念1、质点:在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略时,把物体简化为一个点,认为物体的质量都集中在这个点上,这个点称为质点。
2、参考系:任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
3、坐标系:定量的描述运动,采用坐标系。
4、时刻和时间间隔:1.钟表指示的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。
两个时刻之间的间隔称为时间,时间在时间轴上对应一段。
2.时间和时刻的单位都是秒,符号为s,常见单位还有min,h5、路程:物体运动轨迹的长度6、位移:表示物体位置的变动。
可用从起点到末点的有向线段来表示,是矢量。
位移的大小小于或等于路程。
7、速度:物理意义:表示物体位置变化的快慢程度。
分类平均速度:物体通过的位移与所用的时间之比。
瞬时速度:某一时刻〔或某一位置的速度。
与速率的区别和联系速度是矢量,而速率是标量平均速度=位移/时间,平均速率=路程/时间瞬时速度的大小等于瞬时速率8、加速度物理意义:表示物体速度变化的快慢程度定义:物体的加速度等于物体速度变化〔vt—v0与完成这一变化所用时间的比值a=〔vt—v0/t 〔即等于速度的变化率a不由△v、t决定,而是由F、m决定。
方向:与速度变化量的方向相同,与速度的方向不确定。
〔或与合力的方向相同二、运动图象〔只研究直线运动1、x—t图象〔即位移图象〔1、纵截距表示物体的初始位置。
〔2、倾斜直线表示物体作匀变速直线运动,水平直线表示物体静止,曲线表示物体作变速直线运动。
〔3、斜率表示速度。
斜率的绝对值表示速度的大小,斜率的正负表示速度的方向。
2、v—t图象〔速度图象〔1、纵截距表示物体的初速度。
〔2、倾斜直线表示物体作匀变速直线运动,水平直线表示物体作匀速直线运动,曲线表示物体作变加速直线运动〔加速度大小发生变化。
〔3、纵坐标表示速度。
纵坐标的绝对值表示速度的大小,纵坐标的正负表示速度的方向。
完整版)高一物理必修一知识点总结

完整版)高一物理必修一知识点总结高一物理必修一知识点总结第一章运动的描述第一节认识运动机械运动是指物体在空间中的位置发生变化的运动。
运动的特性包括普遍性、永恒性和多样性。
参考系是指任何运动都是相对于某个参照物而言的,选取参考系是自由的。
比较两个物体的运动必须选用同一参考系,参照物不一定静止,但被认为是静止的。
质点是指在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略,把物体简化为一个点,认为物体的质量都集中在这个点上。
质点具有相对性,而不具有绝对性。
理想化模型是根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。
第二节时间位移时间和时刻的单位都是秒,符号为s,常见单位还有min,h。
通常以问题中的初始时刻为零点。
路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
从物体运动的起点指向运动的重点的有向线段称为位移,是矢量。
物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
只有在质点做单向直线运动时,位移的大小等于路程。
两者运算法则不同。
第三节记录物体的运动信息打点记时器是通过在纸带上打出一系列的点来记录物体运动信息的仪器。
电火花打点记时器采用火花打点,电磁打点记时器采用电磁打点。
一般打出两个相邻的点的时间间隔是0.02s。
第四节物体运动的速度物体通过的路程与所用的时间之比叫做速度。
平均速度是物体的位移s与发生这段位移所用时间t的比值。
其方向与物体的位移方向相同。
瞬时速度是物体在某时刻前后无穷短时间内的平均速度。
其方向是物体在运动轨迹上过该点的切线方向。
瞬时速率(简称速率)即瞬时速度的大小。
速率≥速度。
在物体相对滑动的过程中,会产生阻碍物体相对滑动的力,称为滑动摩擦力。
根据公式f=μN(其中μ为动摩擦因数),滑动摩擦力的大小与正压力N成正比。
动摩擦因数μ与相接触的物体材料和接触面的粗糙程度有关,且0<μ<1.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。
高中物理必修一第一二章节知识总结

第一章.运动的描述1、质点、参考系2、时刻、时间间隔以及路程位移区分 考点一:时刻与时间间隔的关系 时间间隔能展示运动的一个过程,时刻只能显示运动的一个瞬间。
对一些关于时间间隔和时刻的表述,能够正确理解。
如:第4s 末、4s 时、第5s 初…均为时刻;4s 内、第4s 、第2s 至第4s 内…均为时间间隔。
反映在时间轴上:时刻在时间轴上表示一点,时间间隔在时间轴上表示一段。
考点二:路程与位移的关系位移表示位置变化,用由初位置到末位置的有向线段表示,是矢量。
路程是运动轨迹的长度,是标量。
只有当物体做单向直线运动时,位移的大小等于路程。
3、速度、平均速度、瞬时速度、速率的关系速度:描述物体运动快慢和方向的物理量,是矢量平均速度:物体在一定的时间间隔内的运动快慢,与位移方向相同 瞬时速度:如果一定的间隔时间非常短,趋向与零 速率:瞬时速度的大小,是标量平均速率:t路S v4、速度、加速度的关系速度 加速度 速度变化量加速度:描述物体速度变化快慢和方向的物理量 定义式a 不由v 、△v 、△t 决定,而是由F 和m 决定或者由v 与0v 决定方向取决于物体运动的方向或者△v 方向5、运动图象的理解及应用由于图象能直观地表示出物理过程和各物理量之间的关系,所以在解题的过程中被广泛应用。
在运动学中,经常用到的有x -t 图象和v —t 图象。
1. 理解图象的含义(1) x -t 图象是描述位移随时间的变化规律 (2) v —t 图象是描述速度随时间的变化规律 2. 明确图象斜率的含义(1) x -t 图象中,图线的斜率表示速度(2) v —t 图象中,图线的斜率表示加速度6、纸带问题(1). 2B A B B C v T+=,2C B C C Dv T+=(2). 2C Bv v C D B Ca TT--==2v x a t T∆∆==(3)()()21234569Tx x x x x x a ++-++=逐差法(4)212at x x =-(如何推导?提示:中间速度)第二章 匀变速直线运动一、匀变速直线运动的规律(1).匀变速直线运动的速度公式: (2).匀变速直线运动的位移公式:212x v t a t=+(3). 位移推论公式:222202,2t tv v vv a x x a--=→=(4).平均速度:(此式只适用于匀变速直线运动)(5).中间时刻速度公式: (6).中间位移速度公式:2xv =(7).任意连续相邻的相等的时间间隔内的位移之差为一恒量:2213212······()n n x x x x x x x x a T a T-∆-=-==-=∆==(T----每个时间间隔的时间)0t v v at =+022tt v v v v +==2t ov v v +=二. 对于初速度为零的匀加速直线运动有下列规律成立:①. 1T 秒末、2T 秒末、3T 秒末…nT 秒末的速度之比为: 1 : 2 : 3 : … : n.②. 1T 秒内、2T 秒内、3T 秒内…nT 秒内的位移之比为: 12 : 22 : 32 : … : n 2.③. 第1T 秒内、第2T 秒内、第3T 秒内…第nT 秒内的位移之比为: 1 : 3 : 5 : … : (2 n-1). 三. 自由落体运动的规律四. X---t 图像与v---t四.图像的比较t v g t=212H g t=22t v gH=。
高一物理必修一第一二章知识点总结

高一物理必修一第一二章知识点总结第一章运动的描述第一节认识运动机械运动:物体在空间中所处为边线发生变化,这样的运动叫作机械运动。
运动的特性:普遍性,永恒性,多样性参考系1.任何运动都是相对于某个参照物而言的,这个参照物称为参考系。
2.参考系的挑选出就是民主自由的。
1)比较两个物体的运动必须选用同一参考系。
2)参照物不一定恒定,但被指出就是恒定的。
质点1.在研究物体运动的过程中,如果物体的大小和形状在所研究问题中可以忽略就是,把物体精简为一个点,指出物体的质量都分散在这个点上,这个点称作质点。
2.质点条件:1)物体中各点的运动情况完全相同(物体搞对应状态)2)物体的大小(线度)<<它通过的距离3.质点具备相对性,而不具备绝对性。
4.理想化模型:根据所研究问题的性质和需要,抓住问题中的主要因素,忽略其次要因素,建立一种理想化的模型,使复杂的问题得到简化。
(为便于研究而建立的一种高度抽象的理想客体)第二节时间加速度时间与时刻1.钟表命令的一个读数对应着某一个瞬间,就是时刻,时刻在时间轴上对应某一点。
两个时刻之间的间隔称作时间,时间在时间轴上对应一段。
△t=t2—t12.时间和时刻的单位都就是秒,符号为s,常用单位除了min,h。
3.通常以问题中的初始时刻为零点。
路程和加速度1.路程表示物体运动轨迹的长度,但不能完全确定物体位置的变化,是标量。
2.从物体运动的起点指向运动的重点的存有向线段称作加速度,就是矢量。
3.物理学中,只有大小的物理量称为标量;既有大小又有方向的物理量称为矢量。
4.只有在质点搞单向直线运动就是,加速度的大小等同于路程。
两者运算法则相同。
第三节记录物体的运动信息阻攻记时器:通过在纸带上拿下一系列的城才记录物体运动信息的仪器。
(电火花阻攻记时器——火花阻攻,电磁阻攻记时器——电磁阻攻);通常拿下两个相连的点的时间间隔就是0.02s。
第四节物体运动的速度物体通过的路程与所用的时间之比叫作速度。
人教版高一物理必修一-第一-二章高考常考知识点总结

必修1一、教材考点知识梳理考点1 运动学的基本概念1、参考系:描述一个物体的运动时,选来作为标准的的另一个物体。
运动是绝对的,静止是相对的。
一个物体是运动的还是静止的,都是相对于参考系而言的。
参考系的选择是任意的,被选为参考系的物体,我们假定它是静止的。
选择不同的物体作为参考系,可能得出不同的结论,但选择时要以使运动的描述尽可能简单为原则。
通常以地面为参考系。
2、质点:用来代替物体的有质量的点。
质点是一种理想化的模型。
物体可看作质点的条件:研究物体的运动时,物体的大小和形状对研究结果的影响可以忽略。
物体可被看作质点的几种情况:(1)平动的物体通常可视为质点;(2)有转动但相对平动而言可以忽略时,也可以把物体视为质点;(3)同一物体,有时可看成质点,有时不能.当物体本身的大小对所研究问题的影响不能忽略时,不能把物体看作质点,反之,则可以。
[注意](1)不能以物体的大小和形状为标准来判断物体是否可以看作质点,关键要看所研究问题的性质.当物体的大小和形状对所研究的问题的影响可以忽略不计时,物体可视为质点;(2)质点并不是质量很小的点,要区别于几何学中的“点”。
3、时间和时刻:时刻是指某一瞬间,用时间轴上的一个点来表示,它与状态量相对应;时间是指起始时刻到终止时刻之间的间隔,用时间轴上的一段线段来表示,它与过程量相对应。
4、矢量和标量既有大小,又有方向的物理量。
矢量相加遵从平行四边形定则。
标量只有大小,没有方向,标量相加遵从算数加法法则。
常见的矢量有:位移,速度,速度变化量,加速度,平均速度,瞬时速度,力。
常见的标量有:路程,时间,平均速率,瞬时速率,质量,密度。
5、位移和路程:位移用来描述质点位置的变化,是质点由初位置指向末位置的有向线段,是矢量;路程是质点实际运动轨迹的长度,是标量。
6、速度:用来描述质点运动快慢和方向的物理量,是矢量。
(1)平均速度:是位移与通过这段位移所用时间的比值,其定义式为xvt∆=∆,方向与位移的方向相同。
(完整版)高中物理必修一全套笔记
(完整版)高中物理必修一全套笔记第一章机械基础1.1 物理学的基本概念- 物理学是一门研究自然界中物质运动和能量转化的学科。
- 物理学的研究对象包括力、运动、能量、热、电磁等等。
- 物理学的基本方法包括实验和理论分析。
1.2 物理量和单位- 物理量是用于描述物理现象或物体特性的量,比如长度、质量、时间等等。
- 长度的国际单位是米(m)。
长度的国际单位是米(m)。
- 质量的国际单位是千克(kg)。
质量的国际单位是千克(kg)。
- 时间的国际单位是秒(s)。
时间的国际单位是秒(s)。
1.3 运动与力- 运动是物体位置随时间的变化。
- 力是引起物体运动或改变物体运动状态的原因。
- 力的大小可以通过测力计测量,单位是牛顿(N)。
力的大小可以通过测力计测量,单位是牛顿(N)。
- 力的方向可以通过力的箭头来表示。
力的方向可以通过力的箭头来表示。
1.4 牛顿运动定律1. 牛顿第一定律(惯性定律):物体在没有外力作用时保持静止或匀速直线运动。
2. 牛顿第二定律(运动定律):物体的加速度与施加在其上的力成正比,与物体的质量成反比。
3. 牛顿第三定律(作用与反作用定律):相互作用的两个物体之间的力大小相等、方向相反。
1.5 动能和动能定理- 动能是物体由于运动而具有的能量。
- 物体的动能(K)与物体的质量(m)和速度(v)的平方成正比,即K = 1/2mv^2。
- 动能定理表明:物体受力做功,会改变物体的动能。
- 功(W)可以通过力(F)乘以运动的距离(s)来计算,即W = Fs。
第二章物体的运动规律2.1 直线运动- 直线运动有匀速直线运动和变速直线运动两种情况。
- 匀速直线运动:物体在相同时间内的位移相等。
匀速直线运动:物体在相同时间内的位移相等。
- 变速直线运动:物体在相同时间内的位移不相等。
变速直线运动:物体在相同时间内的位移不相等。
2.2 抛体运动- 在重力作用下,物体做抛体运动。
- 抛体的运动轨迹是一个抛物线。
高一物理必修一每章知识点
高一物理必修一每章知识点导语:高一物理必修一是学生在物理学习中的第一门课程,它奠定了学生对物理基本概念和规律的理解基础。
本文将对这门课程的每章知识点进行详细讲解,帮助学生更好地掌握物理学习的要点。
1. 第一章:物理学科和物理量在物理学科和物理量这一章中,学生将会了解到物理学的科研方法以及物理量的定义和分类。
物理学作为一门研究自然界基本规律的科学,运用科学方法进行观察、实验、理论分析和数学表达等等。
物理量则是对物理规律和现象的度量和描述,可以分为基本物理量和导出物理量。
2. 第二章:运动的描述运动是物理学研究的重点之一,学生在这一章将会学习到描述物体运动的基本量和方法。
运动可以分为直线运动和曲线运动,可以用位移、速度、加速度等物理量来描述。
通过学习运动的描述方法,学生可以更准确地分析和预测物体的运动状态。
3. 第三章:牛顿运动定律和一维运动牛顿运动定律是物理学中的基本定律之一,它描述了物体在外力作用下的运动情况。
学生在这一章将会学习到牛顿第一定律、牛顿第二定律和牛顿第三定律。
这些定律对于理解物体的运动规律和相互作用具有重要意义。
4. 第四章:运动的规律和周期现象运动的规律和周期现象是物理学中的重要内容,学生在这一章将会学习到一些典型的运动规律和周期现象。
例如,匀速直线运动和匀加速直线运动的规律,以及简谐振动和波动的周期现象。
这些规律和现象在日常生活中都有广泛应用。
5. 第五章:万有引力和行星运动万有引力是物理学的基本定律之一,它描述了物体之间的引力相互作用。
学生在这一章将会学习到万有引力定律以及行星运动的规律。
通过学习这些内容,学生可以更好地理解宇宙中行星轨道的形成和发展。
6. 第六章:力和力的合成力是物理学中研究物体受到的外力和内力的学科之一,学生在这一章将会学习到力的基本概念和力的合成方法。
力的合成是指通过几个力的叠加来获得一个等效力的方法,它对于分析复杂的力系统和求解物体的平衡条件有很重要的应用。
高一物理必修一第一章知识点总结
高一物理必修一第一章知识点总结物理必修一知识点总结第一章运动的描述第一节质点、参考系和坐标系质点是有质量但不计形状和大小的物质,参考系是用来作为参考的物体,坐标系是在某一问题中确定坐标的方法。
第二节时间和位移时刻和时间间隔路程是物体运动轨迹的长度,位移是表示物体(质点)的位置变化。
矢量有大小和方向,标量只有大小没有方向。
第三节运动快慢的描述——速度速度用位移与发生这个位移所用时间的比值表示物体运动的快慢。
速度是矢量,既有大小,又有方向。
平均速度是物体在时间间隔内的平均快慢程度,瞬时速度是时间间隔非常非常小,在这个时间间隔内的平均速度。
第四节实验:用打点计时器测速度打点计时器可以测量瞬时速度,速度—时间图象(v-t图象)可以描述速度v与时间t关系的图象。
第五节速度变化快慢的描述——加速度加速度是速度的变化量与发生这一变化所用时间的比值。
在直线运动中,如果速度增加,加速度的方向与速度的方向相同;如果速度减小,加速度的大方向与速度的方向相反。
第二章匀变速直线运动的研究第一节实验:探究小车速度随时间变化的规律第二节匀变速直线运动的进行实验匀变速直线运动沿着一条直线,且加速度不变的运动。
速度与时间的关系可以用速度公式v=v+at表示,匀变速直线运动的位移可以用公式v2-v2=2ax表示。
第三节匀变速直线运动的位移与时间的关系匀速直线运动的位移是速度乘以时间,匀变速直线运动的位移可以用公式v2-v2=2ax表示。
自由落体运动自由落体加速度(重力加速度)是物体自由下落时所受的加速度,大小为9.8米每二次方秒。
自由落体运动是指物体只在重力作用下从静止开始下落的运动。
在自由落体运动中,物体的初速度为0,而加速度是恒定的。
这种运动可以用公式v=gt来描述,其中g表示重力加速度,通常取9.8m/s²或10m/s²。
另外,自由落体运动的位移公式为x=vt+at²/2.___是自由落体运动的研究者之一,他通过猜想和假说,进行了一系列的实验验证,最终得出了自由落体运动的规律。
高一物理必修一各章知识点
高一物理必修一各章知识点高一物理必修一是学生初步接触物理学的门槛,通过学习必修一的各章知识点,学生将对物理学的基本原理和方法有所了解。
本文将逐一介绍每章的知识点,帮助学生全面掌握高一物理必修一的内容。
1. 第一章:力和运动第一章主要介绍了力的概念和运动的描写。
力是物体运动和静止的原因,可以使物体改变速度、改变方向或者改变形状。
而运动则可以用物体的位移、速度和加速度来描述。
此外,力的合成和分解、牛顿第一定律、牛顿第二定律以及重力等概念也是本章重点内容。
2. 第二章:牛顿运动定律及应用第二章主要阐述了牛顿三大运动定律及其应用。
牛顿第一定律也称为惯性定律,它说明了物体在无外力作用下将保持匀速直线运动或静止。
牛顿第二定律则指出物体受到的合外力等于其质量与加速度的乘积。
牛顿第三定律则说明了相互作用力的平衡和反作用力的产生。
这些定律经常应用于力的分析、物体的平衡以及弹力、摩擦力的计算等。
3. 第三章:机械能第三章介绍了机械能的概念和运用。
机械能是指动能和势能的总和,动能是指物体的运动能力,而势能则是指物体由于位置而产生的能量。
机械能守恒定律指出系统中的机械能总量在没有外力做功的情况下保持不变。
在实际应用中,往往需要计算物体的动能、势能以及机械能转化等问题。
4. 第四章:作用和反作用第四章主要介绍了作用和反作用的概念和运用。
作用力和反作用力总是成对出现,且大小相等、方向相反。
这个概念体现了牛顿第三定律的内容。
通过分析物体之间的作用和反作用力,可以解决一些常见的力学问题。
本章还涉及平衡条件、斜面运动、速度比较等内容。
5. 第五章:万有引力第五章介绍了万有引力的概念和运用。
牛顿通过研究行星运动,提出了万有引力定律。
按照该定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
万有引力广泛应用于行星运动、人造卫星轨道计算等领域。
此外,本章还包括开普勒行星运动定律和地球引力加速度等内容。
通过对高一物理必修一各章知识点的学习,学生将对力和运动、牛顿运动定律及应用、机械能、作用和反作用、万有引力等重要概念有所掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一、二章运动的描述、匀变速直线运动的研究(一)质点:1、将物体希成质点的条件:质点是用来代替物体的有质量的点。
在研究物理问题时,如果可以忽略物体的大小、形状对所研究问题的影响,则该物体可视为质点。
一个物体是否可以看做质点.要视具体储况而定。
若物体的形状、大小以及物体上各部分运动的差异对研究的问题是次要的或不起作用的,就可以将物体看做质点。
例如,研究北京到广州的距离时,火车的大小和形状相对北京到广州的距离而言是次要因素,可以忽赂其大小和形状.火车可以视为质点。
若研究火车过桥时间,则火车不能看成质点。
2、质点的物理意义质点是科学抽象的结果,是理想化的物理模型。
尽管不是实际存在的物体,但它是实际物体的一种近似,是为了研究问题方便而进行的科学抽象,突出了事物的主要特征,抓住了主要因素,忽略次要因素,使所研究的复杂问鹏到简化。
(二)参考系1.参考系与参考系的选择物体相对其他物体位置的变化叫做机械运动,它是自然界中最基本的运动形式;在描述物体运动时,选作为标准的另一物体为参考系。
研究同一物体运动时,选不同的参考系,观察的运动结果可能不同。
例如,路边的树木,若以地面为参考系,则是静止的;若以运动的汽车为参考系,则是运动的。
在研究物体运动时,参考系的选择是任意的,但恰当选择参照系可使所研究问题简化,一般选择地面(或相对大地静止的物体)作为参考系。
2.运动的绝对性与相对性运动既是绝对的又是相对的,我们知道世界上的万物在不停地运动,但我们研究的物体的运动都是相对参考系而言的,这就是运动的相对性。
一个物体是否运动,怎样运动,取决于它相对所选的参考系的位置是否变化。
(三)坐标系要准确描述物体的位置及位置变化需要建立坐标系。
坐标系包括一维、二维和三维空间,主要用来确定物体所在的空间位置。
例如,物体在一维空间运动,只需建立直线坐标系即可准确描述物体的位置。
1.质点是理想化模型.应区别于几何中的点。
2.在物理学的研究中,“理想化模型”的建立具有十分重要的意义。
引入“理想化模型”可以使问题处理大为简化而又不会发生大的偏差。
在一定条件下,可以把实际事物当做“理想化模型”来处理。
例如“在研究地球绕太阳公转的运动时,由于地球的直径(约1.3x104km)远小于地球和太阳之间的距离约(约1.8x108km),因此地球上各点相对于太阳的运动可以看做是相同的,即地球的大小、形状可以忽略不计,这时就可以将地球作为质点来处理。
高中阶段我们只研究可以转化为质点的物体的运动。
甲、乙、丙三架观光电梯,甲中乘客看一高楼在向下运动,乙中乘客看甲在向下运动,丙中乘客看甲、乙都在向上运动。
这三架电梯相对地面的运动情况可能是( )A甲向上、乙向下、丙不动B甲向上、乙向上、丙不动C甲向上、乙向上、丙向下D甲向上、乙向上、丙向上1、时刻和时间间隔的区别关于时刻和时间间隔,如:我们说上午8时上课,8时45分下课,这里的“8时”“8时45分”是这节课开始和结束的时刻,而这两个时刻之间的45分钟,则是两个时刻之间的时间间隔。
2、路程和位移的区别位移是描述物体位置变化的物理量,而路程则是描述物体运动路径(轨迹)长短的物理量。
位移的大小又有方向,而路程只有大小没有方向,与运动路径无关;而路程是按运动路径计算的实际长度。
由于物体运动的路径可能是直线,也可能是曲线,两点间又以直线距为最短,所以物体位移的大小智能小于、最多等于路程,不可能大与路程。
3、矢量和标量的去区别与时间、温度、路程等物理量不同,位移既有大小又有方向,而时间、温度、路程等物理量只有大小没有方向。
像位移这样的物理量就是矢量,矢量既有大小又有力向;像时间、温度、路程这样的物理量叫做标量.标量只有大小没有方向。
标量相加遵从算术加法的法则,而矢量相加则道从几何加法的法则。
4、平均速度和瞬时速度平均速度:由公式v=Δx/Δt可以求得一个速度值,如果在时间Δt内物体运动的快慢程度是不变的,这就是说物体的速度是不变的,如果在时间Δt内物体运动的快慢程度是变化的,这个速度值表示的是物体在时间Δt内运动的平均快慢程度,称为平均速度。
瞬时速度:在公式v=Δx/Δt中,如果时间Δt非常小,接近于零,表示的就是物体在这一瞬时的速度,称为瞬时速度。
故瞬时速度对应的是某一瞬时,或者说某一时刻、某一位置。
它能精确地描述物体运动过程中各个时刻运动快慢情况。
瞬时速度定义:运动物体在某一时刻(或某一位置)的速度。
瞬时速度简称速度,因此以后碰到“速度”一词,如果没有特别说明均指瞬时速度。
汽车或靡托车的速度计,其指针所指的数值,就是该时刻汽车的瞬时速率。
5、平均速度与瞬时速度的区与联系平均速度只能粗略地描述物体运动快慢,瞬时速度能精确地描述物体运动快慢。
平均速度是指某一段时间或莱—段位移内的速度值r是过程量‘粥时速度是指莱一时刻咸菜一位量的速度值,是状态量。
瞬时速度等于时间趋近于0时的平均速度。
6、速度与速率的区别与联系速度是矢量,平均速度的大小等于位移与时间的比值。
方向和位移的方向相同;瞬时速度的方向和运动方向相同。
瞬时速度的大小简称速率,是标量,没有方向。
下列有关速度的说法中,正确的是( )A速率就是瞬时速度的大小B平均速度就是初、未两态速度的平均值C对于匀速直线运动,平均速度与瞬时速度相等D由于速度等于位移与发生这段位移用的时间的比,则速度是平均速度7、加速度表达式:a=Δv/Δt式中,Δv表示速度的变化,如果用v t表示末速度,用v0表示初速度,则Δv=v t- v0,故a=(v t- v0)/Δt。
加速度既有大小,也有方向,是矢量。
方向与速度变化量Δv的方向相同。
在加速度的定义式中,Δv是速度的变化量,它是运动物体的末速度与初速度的差,即Δv=v t- v0。
因为速度本身是矢量,所以其差也是矢量。
对于单向直线运动而言,速度可用带有正负号的代数量表示,因此其差等于末速度与初速度的代数差。
Δt是速度改变加所经历的时间,必须注意两者的对应性。
因为速度的变化量Δv是矢量,所加速度也是矢量。
加速度的方向就是速度变化的方向。
在直线运动中,速度变化的方向可以与速度的方向相同,也可以与速度的方向相反。
因此,加速度的方向可以与速度的方向相同,也可以与速度的方向相反。
在直线运动中,加速度可以用一个带有正负号的数值表示,绝对值表示其大小,正负号表示其方向。
加速度为正表示其方向与规定的正方向相同,加速度为负表示其方向与规定的正方向相反。
加速度不是“加”出来的速度,而是“加速”的“快慢程度”,确切地说是速度变化的快慢程度,它是速度对时间的变化率,是表示速度变化快慢的物理量。
物体的速度增量很大,但如果经历的时间很长,加速度的值仍可能很小。
加速度只是在数值上等于单位时间内增加的速度。
8、速度v、速度变化量Δv、加速度a的区别速度是运动状态量,对应于某一时刻(或某一位置)的运动快慢和方向。
速度变化量Δv=v t- v0是运动过程量,对应于某一段时间(或发生某一段位移),若取v0为正,则Δv>o表示速度增加,Δv<0表示速度减小,Δv=o表示速度不变。
加速度a=Δv/Δt也称为“速度变化率”,表示在单位时间内的速度变化量,反映了速度变化的快慢及方向。
加速度a与速度v无直接联系,与Δv也无宜接联系,v大,a不一定大,Δv大,a也不一定大,如飞机飞行的速度v很大,a也可能等于0;列车由静止到高速行驶,其速度变化量很大,但经历时间也长,所以加速度并不大。
下列关于加速度的说法中.正确的是( )A速度变化越大,加速度一定越大B速度变化所用的时间越短,加速度一定越大C速度变化越快,加速度—定越大D单位时间内速度变化越大,加速度一定越大已知甲的加速度比乙的加速度大,则下列说法正确的是( )A甲的速度一定比乙的速度大B甲的速度变化量一定比乙的速度变化量大C甲的速度变化一定比乙的速度变化快D如果甲、乙两物体的速度变化量相同,则甲用的时间一定比乙少9、如何判断物体做加速运动还是减速运动判断的方法为:根据加速度的方向与速度方向的关系来进行判断;加速度的方向和速度的方向相同,物体做加速运动。
a不变.则v均匀增加,即为匀加速运动;a增大,则v增加得越来越快,a减小,则v增加得越来越慢。
加速度和速度方向相反,物体做减速运动。
a不变.则v均匀减小,即为匀减速运动;a增大,则v减小得越来越快,a减小,则v减小得越来越慢。
物体做加速运动还是减速运动,不取决于加速度的正、负,也不取决于加速度的大小,而是取决于加速度的方向与速度方向是同向还是反向。
10、两个基本公式x=v0t+1/2at2v t2-v02=2at弄清它们的物理意义,不能仅停留在数学意义上。
要知道它们是怎么推导出来的点要充分认识到它们都是矢量式;a的取值要注意正负。
(一)物理思维方法1、科学抽象—物理模型思想这是物理学中常用的一种方法。
在研究具体问题时,为了研究的方便,抓住主要因素,忽略次要因素,从而从实际问题中抽象出理想模型。
把实际复杂的问题简化处理。
如质点、匀速直线运动、匀变速直线运动、自由落体运动等都是抽象了的理想化的物理模型。
2、数形结合思想本章的一大特点是同时用两种数学工具:公式法描述物体运动的规律。
把数学公式表达的函数关系与图像的物理意义及运动轨迹相结合的方法,有助于更透彻地理解物理运动的特征及规律。
3、极限思想在分折变速直线运动的瞬时速度时,我们采用无限取微逐渐逼近的方法,即在物体经过的某点后面取很小的一段位移.这段位移取得越小,物体在该段时间内的速度变化就越小,在该段位移上的平均速度就越精确地描述物体在该点的运动快慢情况。
当位移足够小时(或时间足够短时),该段位移上的平均速度就等于物体经过该点时的瞬时速度。
这充分体现了物理中常用的极限思想。
匀变速直线运动规律应用匀变速直线运动的规律:实质上是研究做匀变速直线运动物体的初速度、末速度、加速度。
位移和时间这五个量的关系。
具体应用时可以由两个基本公式演绎推理得出几种特殊运动的公式以及各种有用的推论,一般分为如下情况。
(1)从两个基本公式出发,可以解决各种类型的匀变速直线运动的问题;(2)在分析不知道时间或不需知道时间的问题时,一般用速度位移关系的推论。
(3)处理初速度为零的匀加速直线运动和末速度为零的匀减速直线运动时。
通常用比例关系的方法来解比较方便。
匀变速立线运动问题的解题思想:(1)选定研究对象,分析各阶段运动性质;(2)根据题意画运动草图;(3)根据已知条件及待求量,选定有关规律列出方程,注意抓住加速度这一关键量;(4)统一单位制,求解方程。
解题方法:(1)列方程法;(2)列不等式法;(3)推理分析法;(4)图像法。
巧用运动图像解题:运动图像(v-t图像、x-t图像)能直观描述运动规律与特征,我们可以用来定性比较、分析或定量、计算和讨论一些物理量。