第六章单片机系统扩展

合集下载

《单片机原理及应用》第6章 51单片机中断系统应用基础

《单片机原理及应用》第6章   51单片机中断系统应用基础
• 单片机原理及应用(第4版)
• 姜志海 王蕾 姜沛勋 编著
• 电子工业出版社
第6章 51单片机中断系统应用基础
• 本章主要介绍中断系统的应用。 • 包括:
6.1 中断结构与控制 6.2 中断优先级与中断子程序 6.3 外部中断应用举例 6.4 实验与设计
6.1 中断结构与控制
5个中断源
• 外部中断:外部中断0 /INT0
6.2 中断优先级与中断子程序
• 优先级排列如下(从高到低): 外部中断0 定时器/计数器0溢出 外部中断1 定时器/计数器1溢出 串行口中断
6.3 外部中断应用示例
• 51单片机提供了2个外部中断源 : • 外部中断0请求,占用P3.2引脚,其中断请求号为0 • 外部中断1请求,占用P3.3引脚,其中断请求号为2 • 外部中断源的初始化时通过设置相应的特殊功能寄
注意:
和例题5-6的区别
修改:
(1)按3下S0,P1口的发光状态发生反转 (2)按一下,灯变为闪烁,按一下,灯全亮。
【例6-2】当S0动作时,P1.0端口的电平反向,当外S1 动作,P1.7端口的电平反向
• 修改:
• (1)S0控制P1.0—P1.3的灯,S1控制P1.4—P1.7的灯 。
• (2)按下S0后,点亮8只LED;按下S1后,变为闪烁状 态。
(3)IE寄存器中的EA、EX0、EX1位
• EA为中断允许总控制位;EX0、EX1为外 部中断0中断和外部中断1中断的中断允 许位。如:
• SETB EA;开放总的中断控制 • SETB EX0;允许外部中断0中断 • CLR EX1;禁止外部中断1中断
【例6-1】初始状态时低4位灯亮,高4位的灯灭,编程 实现按一下S0,P1口的发光状态发生反转。

单片机系统的扩展技术

单片机系统的扩展技术

INC R0
INC DPTR
; 修改数据指针
DJNZ R7, AG
END
4.2.3 MCS-51对外部存储器的扩展
下 图 所 示 的 8031 扩 展 系 统 中 , 外 扩 了 16KB 程 序 存 储 器 ( 使 用 两 片 2764芯片)和8KB数据存储器(使用一片6264芯片)。采用全地址译码方 式,用于控制2―4译码器的工作,参加译码,且无悬空地址线,无地址重 叠现象。1# 2764, 2# 2764, 3# 6264的地址范围分别为:0000H~1FFFH, 2000H~3FFFH, 4000~5FFFH。
4.2 存储器的扩展
存储器是计算机系统中的记忆装置,用来存放要运行的程序和程序 运行所需要的数据。单片机系统扩展的存储器通常使用半导体存储器, 根据用途可以分为程序存储器(一般用ROM)和数据存储器(一般用 RAM)两种类型。
MCS-51单片机对外部存储器的扩展应考虑的问题:
(1)选择合适类型的存储器芯片
引脚符号的含义和功能如下:
D7~D0:三态数据总线; A0~Ai:地址输入线,i=12~15。2764的地址线为13位,i=12; 27512的地址线为16位,i=15; CE :片选信号输入线; OE :输出允许输入线;
CE
VPP:编程电源输入线; PGM :编程脉冲输入线; VCC:电源; GND:接地; NC:空引脚。
8051扩展2764的电路连接方法:
数据线:P0口接EPROM的D0~D7 ;
地址线: 2764容量为8KB,213=8KB,需要A0~A12共13根地址线。P0口
经地址锁存器后接EPROM的A0~A7 ; 为了与片内存储器的空间地址衔 接,~接EPROM的A8~A11 , 经非门后与A12连接。

MCS51单片机总线系统与IO口扩展

MCS51单片机总线系统与IO口扩展

6.2.2 单片机总线扩展的编址技术
OE
LE
Dn
Qn
L
H
H
H
L
H
L
L
L
L
L
Qn-1
L
L
H
Qn-1
H
×
×
Z
地址锁存器74LS373
CLR D0-D7Q0-Q7 4 6 2 6 74LS24474LS273 E 0123456789E GG 12Q0-Q7CLKD0-D7AAAAAAAAAAA10A11A12I/O0I/O1I/O2I/O3I/O4I/O5I/O6I/O7OWCE1CE2 56? UUU P0.0-P0.7P0.0-P0.7 +5V 11 01234567 E >> QQQQQQQQ O 01234567 E DDDDDDDDL 2 U74LS373 012 YYY ABC 3 U74LS138 R AD E R P20P07P21P06P22P05P23P04P24P03P25P02P26P01P27P00 W ALE 89C51 1 U
MOV
DPTR,#0FEFFH ;确定扩展芯片地址
MOVX
A,@DPTR
;将扩展输入口内容读入累加器A
当与74LS244相连的按键都没有按下时,输入全为1,若按下某键,则所在线 输入为0。
6.2.1 单片机I/O口扩展
输出控制信号由P2.0和相“或”后形成。当二者都为0后,74LS273的控制端 有效,选通74LS273, P0上的数据锁存到74LS273的输出端,控制发光二极管 LED , 芯 片 地 址 与 74LS244 的 选 通 地 址 相 同 ( 都 是 ×××× ×××0 ×××× ××××B,通常取为FEFFH)。当某线输出为0时,相应的LED发 光。

《单片机应用系统设计》教学大纲及知识点

《单片机应用系统设计》教学大纲及知识点

《单片机应用系统设计》课程教学大纲一、本课程的地位、作用和任务本课程是在学生学完电子技术类基础课程和微机应用类基础课程之后,为加强对学生技术应用能力的培养而开设的体现电子技术、计算机技术综合应用的综合性课程。

本课程的任务是使学生获得单片机应用系统设计的基本理论、基本知识与基本技能,掌握单片机应用系统各主要环节的设计、调试方法,并了解单片机在测量、控制等电子技术应用领域的应用。

初步具备应用单片机进行设备技术改造、产品开发的能力。

二、理论教学内容绪论单片机概述0.1 引言0.2 单片机的特点0.3 单片机的发展0.4 MCS-51单片机系列简介第一章MCS–51单片机的结构和原理1. 1 单片机的内部结构1. 2 MCS–51的外部引脚及功能1. 3 MCS–51的存储器配置1. 4 并行输入/输出接口电路1. 5 时钟电路与时序1. 6 MCS –51最小系统设计第二章MCS-51的指令系统2.1 MCS-51指令系统概述2.2 数据传送类指令2.3 算术运算类指令2.4逻辑运算及移位类指令2.5 控制转移类指令2.6 布尔变量操作类指令第三章汇编语言程序设计3.1 汇编语言源程序的格式3.2 伪指令3.3 汇编语言程序举例第四章MCS—51的中断与定时4.1 MCS—51单片机的中断系统4.2 MCS–51的定时/计数器第五章存储器扩展技术5.1 概述5.2 程序存储器的扩展5.3 数据存储器的扩展5.4 PROME2及其扩展第六章I/O扩展技术6.1 I/O接口概述6.2 MCS-51并行I/O口的直接使用6.3 简单I/O扩展6.4 8255并行I/O口6.5 8155简介第七章键盘/显示器扩展技术7.1 单片机应用系统中的人机通道7.2 键盘及其接口7. 3 显示器及接口7.4 专用的8279键盘/显示器接口第八章模拟量输入/输出通道8.1 模拟量输入通道8.2 模拟量输出通道第九章MCS-51的串行通信9.1 串行通信基础9.2 串行接口的构成与工作方式9.3 串行口的典型应用9.4 单片机的多机通信9.5 RS-232C串行总线第十章应用程序设计技术10.1 智能仪表的一般结构10.2 单片机应用系统设计举例第十一章高性能单片机PIC16F8XX介绍11.1 PIC16F87X的特点11.2 PIC16F87X的结构与配置11.3 PIC16F87X的功能部件11.4 PIC16F87X的应用举例三、实践教学的内容和要求实验一联机仿真操作练习实验目的:进一步掌握开发工具的应用实验内容:学习PC机与开发机联机仿真的操作方法实验二指令系统和编程练习实验目的:掌握8051单片机常用指令的使用和编程实验内容:用8051单片机的常见指令编写简单的多字节加减法程序。

单片机系统扩展技术

单片机系统扩展技术

单片机系统扩展技术1. 引言单片机是一种集成了处理器、存储器和各种输入输出接口的微型计算机系统。

单片机系统的应用范围广泛,涵盖了从工业自动化到家电控制等多个领域。

然而,随着应用需求的不断增加,单片机系统的功能往往面临着限制。

为了满足更高的要求,需要使用扩展技术来增强单片机系统的功能。

本文将介绍一些常见的单片机系统扩展技术。

2. 外部存储器扩展技术在某些应用场景中,单片机的内部存储器容量可能不足以存储所有的数据和程序。

这时可以通过外部存储器扩展技术来扩大系统的存储容量。

常见的外部存储器包括SD卡、EEPROM和闪存等。

2.1 SD卡扩展SD卡是一种常用的便携式存储介质,具有容量大、速度快和易于移植的特点。

通过使用SD卡模块,可以将SD卡连接到单片机系统中,并使用相应的驱动程序实现对SD卡的读写操作。

这样可以使单片机系统具备更大的存储容量,以便存储更多的数据和程序。

2.2 EEPROM扩展EEPROM(Electrically Erasable Programmable Read-Only Memory)是一种可擦写的非易失性存储器。

通过使用外部连接的EEPROM芯片,可以在单片机系统中实现额外的存储容量。

EEPROM的读写速度相对较慢,但具有较高的可擦写次数和较低的功耗,适合存储一些需要长期保存的数据。

2.3 闪存扩展闪存是一种常见的存储介质,具有容量大、读写速度快和抗震动的特点。

通过使用外部连接的闪存芯片,可以在单片机系统中实现更大的存储容量。

闪存的读写速度相对较快,适合存储需要频繁读写的数据和程序。

3. 通信接口扩展技术在一些应用中,单片机系统需要与外部设备进行通信,例如传感器、执行器和其他单片机等。

为了实现与这些外部设备的通信,可以通过扩展通信接口来满足需求。

3.1 UART扩展UART(Universal Asynchronous Receiver/Transmitter)是一种常见的串行通信接口。

单片机课后题答案

单片机课后题答案

第三章习题解答4.在8051片内RAM中,已知(30H)=38H,(38H)=40H,(40H)=48H,(48H)=90H,试分析下段程序中各条指令的作用,说出按顺序执行完指令后的结果:MOV A.40H ;(A)=48HMOV R1,A ;(R1)=48HMOV P1,#0FOH ;(P1)=F0HM0V @R1,30H ;(48H)=38HMOV DPTR,#1234H ;(DPTR)=1234HMOV 40H,38H ;(40H)=40HMOV R1,30H ;(R1)= 38HMOV 90H,R1 ;(90H)= 38H ,P1的地址为90HMOV 48H,#30H ;(48H)= 30HMOV A,@R1 ; (A)= 40HMOV P2,P1 ; (P2)= 38H F0H错误8.试编程将片外数据存储器80H单元的内容送到片内RAM的2BH单元。

MOV DPTR, #0080H 或:MOV R0, #80HMOVX A, @DPTR MOV P2,#00HMOV 2BH, A MOVX A, @R0MOV 2BH, A10.试编程将片内RAM20H单元中的两个BCD数拆开,并变成相应的ASCII码存入片内RAM 21H和22H单元。

MOV A, 20H ;20H的内容不变ANL A,#0F0HSWAP A ;4次移位 RR A 也可以ADD A,#30HMOV 21H, AMOV A, 20HANL A,#0FHADD A,#30HMOV 22H, A12.试分析以下两段程序中各条指令的作用,程序执行完后转向何处?(1) MOV P1,#0CAH ;(P1)= 11001010MOV A,#56H ;(A)= 01010110JB P1.2,L1JNB ACC.3,L2 ;转向L2L1:…L2:…(2)MOV A,#43H ;(A)=01000011JBC ACC.2,L2JBC ACC.6,L2 ;转向L2L1:…L2:…18.分析下列程序执行后,(SP)的值。

n第6章80C51单片机的系统扩展


第六章80C51单片机的系统扩展
系统扩展是指单片机内部各功能部件不 能满足应用系统要求时,在片外连接相应的外 围芯片以满足应用系统要求。80C5l系列单片 机有很强的外部扩展能力,外围扩展电路芯片 大多是一些常规芯片,扩展电路及扩展方法较 典型、规范。用户很容易通过标准扩展电路来 构成较大规模的应用系统。 80C51系列单片机的系统扩展有程序存 储器(ROM)扩展、数据存储器(RAM)扩展、I/O 口扩展、中断系统扩展以及其它特殊功能扩展
第六章80C51单片机的系统扩展
6.1.2外部串行扩展性能 1 80C51系列单片机的串行总线结构 80C51系列单片机的串行总线包括: SPI(Serial Peripheral Interface)三线总线 和I2C公用双总线两种。 • (1) SPI三线总线结构 SPI三线总线结构是一个同步外围接口,允 许MCU与各种外围设备以串行方式进行通信。 一个完整的SPI系统有如下的特性:
第六章80C51单片机的系统扩展
(2) I2C公用二总线结构
在器件(IC为集成电路芯片)之间, 使用两根信号线(SDA和SCL)串行的 方法进行信息传送的并允许若干兼容器 件共享的二线总线,称为I2C总线。I2C 总线系统的示意图见图6-4。SDA线称 为串行数据线,其上传输双向的数据; SCL线称为串行时钟线,其上传输时钟 信号,用来同步串行数据线上的数据。
第六章80C51单片机的系统扩展
通常情况下,采用80C51/87C51的 最小应用系统最能发挥单片机体积小、 成本低的优点。但在许多情况下,构成 一个工业测控系统时,考虑到传感器接 口、伺服控制接口以及人机对话接口等 的需要,最小应用系统常常不能满足要 求,因此,系统扩展是单片机应用系统 硬件设计中最常遇到的问题。

第6章 MCS-51单片机系统扩展技术


6.3 数据存储器扩展
6.3.1 静态RAM扩展电路
6.3.2 动态RAM扩展电路
返回本章首页
6.3.1 静态RAM扩展电路
常用的静态RAM芯片有6116,6264,62256等,其 管脚配置如图6-13所示。
1.6264静态RAM扩展 额定功耗200mW,典型存取时间200ns,28脚双列直插 式封装。表6-1给出了6264的操作方式,图6-14为6264静 态RAM扩展电路。
图 6 9
A EEPROM
28 17
扩 展 电 路
写入数据
不是指令
查询 中断 延时
2.2864A EEPROM 扩展
2864A有四种工作方式: (1)维持方式 (2)写入方式 (3)读出方式 (4)数据查询方式
图 6 12
28 64
返回本节
A EEPROM
扩 展 电 路
串行E2PROM简介 串行E2PROM占用引线少、接线简单,适用于作为数据存储 器且保存信息量不大的场合。 以AT93C46/56/57/66为例,它是三线串行接口E2PROM, 能提供128×8、256×8、512×8或64×16、128×16、256×16 位,具有高可靠性、能重复擦写100,000次、保存数据100年 不丢失的特点,采用8脚封装。
第6章 MCS-51单片机系统扩展技术
6.1 MCS-51单片机系统扩展的基本概念
6.2 程序存储器扩展技术
6.3 数据存储器扩展 6.4 输入/输出口扩展技术
T0 T1
时钟电路
ROM
RAM
定时计数器
CPU
并行接口 串行接口 中断系统
P0 P1 P2 P3
TXD RXD
INT0 INT1

单片机系统扩展总线

6.4 单片机系统扩展总线1. MCS-51单片机扩展结构特点扩展都是通过接口来扩展,需要注意I/O口的结构特点。

⑴ I/O口的复用和多用① I/O口的复用:由于受到引脚数限制,P0口复用,既作低8位地址线,又作数据线,但分时使用,用ALE信号锁存切换。

② I/O口的多用:P3口可作通用I/O口,在扩展时,具有“第二功能”。

P3.0 RXD P3.2 INT0 P3.4 T0 P3.6 WRP3.1 TXD P3.3 INT1 P3.5 T1 P3.7 RD⑵产生接口控制信号的指令MCS-51无I/O专用指令,把I/O寄存器看成存储器的一部分,所以对I/O 寄存器的操作都用数据传输指令。

①输入指令MOV A,P1MOV @Ri,P1 MOV Rn,P1 MOV direct,P1MOVX A,@RiMOVX A,@DPTR②输出指令MOV P1,AMOV P1,@Ri MOV P1,Rn MOV P1,directMOVX @Ri,AMOVX @DPTR,A2. 扩展总线由于数据线与低8位地址线复用P0口,为了把它们分离与片外芯片相连,通常要加锁存器才能构成总线结构。

6.5 存储器扩展1. EPROM扩展(1) 程序存储器有独立的地址空间(0000H~FFFFH),可寻址范围64 kB。

程序存储器与数据存储器共用地址总线和数据总线(2) 对片内有ROM/EPROM 的单片机,片内ROM 与片外ROM采用相同的操作指令,片内与片外程序存储器的选择靠硬件结构实现,即由EA的高低电平来选择。

(3) 虽然程序存储器与数据存储器地址重叠,但不会发生冲突。

因为程序存储器使用单独的控制信号和指令,用PSEN作为读操作信号,读取数据用MOVC查表指令。

而读取数据存储器用RD信号和MOVX指令,(4) 随着大规模集成电路的发展,单片程序存储器的容量越来越大,构成系统时所使用的EPROM芯片数量越来越少,因此地址选择大多采用线选法,而不用地址译码法。

第6章 80C51单片机的系统扩展


80C51单片机的系统扩展 第6章 80C51单片机的系统扩展
6.1.2 常用程序存储器芯片
1、Flash(闪速 、 闪速)ROM 闪速
FlashROM是一种新型的电擦除式存储器,它是在EPROM工艺的基础上 增添了芯片整体电擦除和可再编程功能。它即可作数据存储器用,又可作程序 存储器用,其主要性能特点为: (1)电可擦除、可改写、数据保持时间长。 (2)可重复擦写/编程大于1万次。 (3)有些芯片具有在系统可编程ISP功能。 (4)读出时间为ns级,写入和擦除时间为ms级。 (5)低功耗、单一电源供电、价格低、可靠性高,性能比EEPROM优越。 FlashROM型号很多,常用的有29系列和28F系列。29系列有29C256 (32K×8)、29C512(64K×8)、29C010(128K×8)、29C020 (256K×8)、29040(512K×8)等,28F系列有28F512(64K×8)、 28F010(128K×8)、28F020(256K×8)、28F040(512K×8)等。
80C51单片机的系统扩展 第6章 80C51单片机的系统扩展
6.2.1 常用数据存储器芯片
静态存储器(SRAM)具有存取速度快、使用方便和价 格低等优点。但它的缺点是,一旦掉电,内部所有数据信 息都会丢失。常用的SRAM有6116(2KB×8)、6264 (8KB×8)、62128(16KB×8)、62256(32KB×8) 等芯片。常用SRAM芯片管脚和封装如图6-8所示,引脚功 能如下。 ① A0~A15:地址输入线。 ② D0~D7:双向三态数据总线,有时也用I/O0~I/O7表示。 ③CE:片选线,低电平有效。6264的26脚(CS)必须接高 电平,并且CE为低电平时才选中该芯片。 ④OE:读选通线,低电平有效。 ⑤WE:写选通线,低电平有效。 ⑥ VCC:电源线,接+5V电源。 ⑦ NC:空。 ⑧ GND:接地。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线进行系统扩展
3.单片机的三总线结构
当单片机最小系统不能满足系统设计的要求时, 就必需作扩展通常也是扩展成为一般微型计算机 的3总线模式。
地址总线:因为p0口是地址数据复用的所以为保 存地址信息要外加一个地址锁存器存放低8位地址 信息。一般都用ALE正脉冲信号的下降沿进行锁 存。
Hale Waihona Puke 数据总线:P0简单I/O口的扩展
利用373和273使用MOVX指令扩展I/O口 单芯片扩展 多芯片扩展
§6.3存储器扩展
6.3.1存储器扩展概述
MCS-51系列单片机具有64 KB的程序存储器空间, 其中8051、 8751型单片机含有4 KB 的片内程序 存储器, 而8031型单片机则无片内程序存储器。 当采用8051、 8751型单片机而程序超过4 KB, 或 采用8031型单片机时, 就需要进行程序存储器的 扩展。MCS-51系列单片机的数据存储器与程序 存储器的地址空间是互相独立的, 其片外数据存储 器的空间可达64 KB, 而片内的数据存储器空间只 有128 B。 如果片内的数据存储器不够用时, 则需 进行数据存储器的扩展。
.当输出允许端OE为高电 平时,不论使能端G为何 值,输出端Q总为高阻态。
. 74LS373锁存器主要用 于锁存地址信息、数据信 息
二、锁存器74LS273
真值表
D0~D7是输入端,Q0~Q7是输出端,CP接脉 冲信号。
是片选端(异步主复位输入端,低电平有效)。
三、缓冲器74LS244
说明: 对于相同编号(XXX),不同类型的芯片,其逻辑功 能完全一样。
二、锁存器74LS373
74LS373的功能:
.当使能端G为高电平时, 同时输出允许端OE为低电 平,则输出Q=输人D;
.当使能端G为低电平, 而输出允许端OE也为低电 平时,则输出Q=Qo(原状 态,即使能端G由高电平 变为低电平前,保持输出 端Q的状态,这就是“锁 存”的意义)。
一种三态输出的八路缓冲器(总线驱动器) 1A1~1A4,2A1~2A4为输入, 1Y1~1Y4,2Y1~2Y4为输出 当1G有效(低电平)时:1Y1~1Y4输出等于1A1~1A4; 当2G有效(低电平)时:2Y1~2Y4输出等于2A1~2A4;
而当1G(或2G)为高电平时,输出1Y1—1Y4(或 2Y1-2Y4)为高阻态。
经74LS244缓冲后,输入信号被驱动,输出信号 的驱动能力加大了。
74LS244缓冲器主要用于三态输出的存储地址驱 动器、时钟驱动器和总线定向接收器和定向发送 器等。
常用的缓冲器还有74LS240和74LS241等。
四、数据收发器74LS245
五、3-8 地址译码器:74LS138
6.3.1存储器扩展概述(2)
存储器扩展的核心问题是存储器的编址问 题。 所谓编址就是给存储单元分配地址。 由于存储器通常由多片芯片组成, 为此存储 器的编址分为两个层次: 即存储器芯片的选 择编址和存储器芯片内部存储单元的编址。
6.1.2 系统扩展的内容与方法
1.系统扩展的内容
外部程序存储器 外部数据存储器 输入输出接口 管理功能器件的扩展(如定时/计数器、键
盘/显示器、中断优先编码器等)
2.系统扩展的基本方法
并行扩展法 利用单片机的三组总线进行系统的扩展。 串行扩展法 利用UART双总线、SPI三线总线和I2C双总
一、74系列器件 74系列器件是TI(德州仪器)公司生产的中小规模TTL集成
电路芯片,这是一种低成本、工业民用产品,工作温度为 0℃—70 ℃ ,从功能和速度分类有如下几类:
74xxx——标准TTL 74Lxxx——低功耗TTL 74Sxxx——肖特基型TTL 74LSxxx——低功耗肖特基型TTL 74ALSxxx——高性能型TTL 74Fxxx——高速型TTL 74HCxxx—— HC是高速COMS
(2)内部存储器的容量有限,只有128B的RAM和 4KB的程序存储器。
(3)片内无程序存储器的芯片构成最小应用系统时, 必须在片外扩展程序存储器。由于一般用作程序存储 器的EPROM芯片不能锁存地址,故扩展时还应加上1 个锁存器,构成一个3片最小系统,由于8031和 EPROM芯片价格非常低廉,故3片最小系统是目前常 用的基本系统。
第六章 单片机系统的扩展
§6.1 系统扩展概述(了解) §6.2 常用扩展器件介绍(记忆) §6.3 存储器的扩展(掌握) §6.4 外部串行口的扩展(自学)
§6.1系统扩展概述
MCS-51系列单片极的功能较强,这就使得在智 能仪器、仪表、小型检测及控制系统、家用电器 中可直接应用单片机而不必再扩展外围芯片,使 用极为方便。但在由单片机构成的实际测控系统 中,单片机片内所具有的功能往往不能满足要求, 因此在系统设计时首先要解决系统扩展问题。单 片机的系统扩展主要有程序存储器(ROM)扩展, 数据存储器(RAM)扩展以及I/O口的扩展。 MCS-51单片机有很强的扩展功能,外围扩展电路、 扩展芯片和扩展方法都非常典型、规范。本章首 先初步了解扩展的方法及应用,然后详细讨论各 种扩展的常见电路、芯片以及使用方法。
控制总线:ALE,PSEN*,RD*,WR*,EA*。
8031的系统扩展就是属于这种三总线结构的。
三总线结构有关指令MOVX
MOVX @DPTR,A
MOVX A,@DPTR
§6.2 常用的扩展器件介绍
在外设接口电路中,经常需要对传输过程中的信息进行放 大、隔离以及锁存,能实现上述功能的接口芯片最简单的 就是缓冲器、数据收发器和锁存器。
6.1.1最小应用系统
一、单片机最小系统
使单片机能运行的最少器件构成的系统, 就是最小系统。
无ROM芯片:8031 必须扩展ROM,复位、 晶振电路
有ROM芯片:89c51等,不必扩展ROM, 只要有复位、晶振电路
8031最小系统
最小系统的特点
(1)系统有大量的I/O口供用户使用。
相关文档
最新文档