差动放大电路

合集下载

差动放大电路与集成运算放大器

差动放大电路与集成运算放大器

优缺点的比较
差动放大电路
差动放大电路具有结构简单、性能稳定 、噪声抑制能力强等优点,适用于对信 号质量要求较高的场合。但相对于集成 运算放大器,其增益较低,且对元件参 数对称性要求较高。
VS
集成运算放大器
集成运算放大器具有高精度、低噪声、低 失真等特点,适用于需要进行复杂运算和 处理的场合。但其电路结构较为复杂,且 对电源电压和温度稳定性要求较高。
差动放大电路的性能指标
• 差动放大电路的性能指标包括电压增益、输入电阻、输出电阻、 共模抑制比等。电压增益是指差动放大电路对差分信号的放大 倍数;输入电阻是指差动放大电路对输入信号的阻碍作用;输 出电阻是指差动放大电路的输出端的内阻;共模抑制比是指差 动放大电路对共模信号的抑制能力。
03 集成运算放大器
响应的重要参数。
04 差动放大电路与集成运算 放大器的两个输入信号进行差分输入,通过电路的对称性,将差分信号放大并转换为单端信号输出 的电路。其工作原理主要基于晶体管的共射输入输出特性,通过调整电路参数,实现差分信号的放大。
集成运算放大器
集成运算放大器是一种将多个晶体管、电阻、电容等元件集成在一块芯片上的模拟电路,具有高放大倍数、高输 入电阻、低输出电阻等特点。其工作原理基于负反馈和开环增益,通过反馈网络对输入信号进行比例放大,实现 信号的运算功能。
差动放大电路与集成运算放大器
目录
• 引言 • 差动放大电路 • 集成运算放大器 • 差动放大电路与集成运算放大器的比较 • 差动放大电路与集成运算放大器的应用实
例 • 结论
01 引言
主题简介
差动放大电路
差动放大电路是一种将差分信号转换 为单端信号的电路,具有抑制共模干 扰、提高信号动态范围等优点。

第13讲--差动放大电路课件

第13讲--差动放大电路课件

+ T1 RC1 uBE1
- iE1
RS2 -
+ uod -
+
+
uo1
uo2


RE iE
iC2
iB2 T2
RC2
+
uBE2 -
iE2
❖ 由三极管e极电流与e极电压指数关系,电流方程:
iC1
iE1=I ES
exp( u BE1 UT
)
iE iE1 iE2 iC1 iC2
iC 2
iE2=I ES
2024/10/10
电子电路基础
第十三讲 差动放大电路 (1)
1
主要内容
7.1 基本电路及特征分析 7.2 双端输入、单端输出差动放大电路旳特征 7.3 单端输入、双端输出差动放大电路旳特征 7.4 单端输入、单端输出差动放大电路旳特征 7.5 有源偏置差动放大电路
2
零点漂移
❖ 放大电路无输入时,还有缓慢变化旳电压 输出旳现象为零点漂移
(2)先求rbe,再用前述公式
rbe
rbb
UT ICQ
134 100 26 1.1
2.5(k)
ASD
RC1 //( RL / 2)
RS1 rbe1
100 5 // 5 71
1 2.5
VCC
iC1
iC2
RC1
RL
RC2
Ri 2(RS1 rbe1)
2 (1 2.5) 7(k)
❖ 增大发射极电阻RE旳阻值,线性范围增大
uo1, uo2
uo2
uodm
uo1
RE 小
RE 大
uid
0
电压传输特性

差动放大电路原理及应用

差动放大电路原理及应用

差动放大电路原理及应用差动放大电路是一种电子电路,其基本原理是利用两个输入之间的电压差来放大信号。

它由一个差分放大器和一个输出级组成,常用于放大微弱信号。

下面将详细介绍差动放大电路的工作原理及应用。

差动放大器采用了差动放大方式,即两个输入信号相互作用,电压差通过放大后得到放大输出信号。

差分放大器由两个晶体管组成,一个是NPN型,一个是PNP 型。

在工作过程中,两个输入信号通过耦合电容C1和C2加在晶体管基极上,导通两个晶体管,使得两个晶体管工作在放大状态。

输出信号通过输出电容C3耦合到负载电阻上,最后形成放大的输出信号。

差动放大电路的主要优点是具有高增益、低失真和良好的共模抑制比。

其增益由输入电阻、反馈电阻和负载电阻决定。

利用差动放大电路,可以实现对微弱信号的放大,提高信号的强度,同时还能减小噪声干扰,提高信号的质量。

差动放大电路在实际应用中有着广泛的应用。

其中最常见的应用是在音频放大器中。

差分放大器能够将音频信号放大到合适的水平,驱动扬声器,使得声音更加清晰、响亮。

此外,在通信系统中,差动放大电路也被广泛使用。

它可以放大发送方的信号,并通过差分放大来抑制噪声干扰,保证接收方得到清晰的信号。

另外,差动放大电路还被应用于测量系统中。

例如,在温度测量中,可以使用差动放大器将微弱的温度信号放大到适合测量的范围。

差动放大器还经常被用作传感器信号的接收电路,能够提高信号的精确度和稳定性。

此外,差动放大器还具有良好的共模抑制比,可以抑制输入信号和共模信号之间的干扰。

因此,差动放大器也被广泛应用于抑制环境噪声的电路中。

例如,在汽车音响系统中,差分放大器可以有效地抑制来自发动机的噪声,使得音乐更加清晰。

总之,差动放大电路是一种广泛应用的电子电路,其原理是通过放大两个输入信号之间的电压差来实现信号放大。

它具有高增益、低失真和良好的共模抑制比等优点,被广泛应用于音频放大器、通信系统、测量系统以及噪声抑制等领域。

通过差动放大电路的应用,可以提高信号的强度和质量,使得各种电子设备的性能得到提升。

差动放大电路

差动放大电路

设ui1>0,
则ui2<0
IC2<0, VC2>0
IC1>0, VC1<0; uo=VC1VC2 设VC!=-1V,
VC2=1V
则uo=-2V
(3)比较输入
ui1与ui2是任意
则设ui1为给定信号,ui2为反馈信号 uo=Au(ui1-ui2)
为了便于分析与处理,可以将这种即非共模、又 非差模的信号,分解为共模分量和差模分量。 ui1 uod1
RB
uod2
ui
ui1
RE
T2 T2
RB
ui2
-EE
当T1管输入信号电压ui且极性如图所示,T1的集电流 增大,其增大量为IC(正值),流过RE的电流也增大,因 而发射极电位升高,使T2基—射极电压减小UBE2,T2的 集电极电流也就减小,其减小量为IC2(负值)。IC1和 IC2的相对大小,取决于RE的大小,RE大,T1的输入信号 耦合(传送)到T2管的作用也强。
VE=RE(IC1+IC2)
是一有限值
当RE足够大时, IC1+IC20对信号讲,RE电路可 认为是开路的,如图所示。 rbe rbe RB R
B
ui
ui11/2ui
ui2-1/2ui
在单端输入的差动放大电路中,只要共模反馈电阻RE 足够大时,两管所取得的信号就可以认为是一对差模 从这一点来看,单端输入和双端输入是一样的 信号。

EE 2 R
E
U CE U CC R C I C U CC
EER C 2R E
3. 动态分析: 1) 双端输入——双端输出
RC
RB
T1
uo
T2 RE

差动放大电路

差动放大电路

uic = (ui1+ ui2 ) / 2
ui1 = 1.01 = 1.00 + 0.01 (V) ui2 = 0.99 = 1.00 – 0.01 (V) = 1.01 – 0.99 = 0.02 (V) u = u + 1 u
i1 = ic + 2 id
3 差动放大电路的计算
RC RC
uo ui1
例1
RC
(1)求差模输入电压 uid 、共模输入电压 uic ) +VCC (2) 若 Aud = – 50、 Auc = – 0.05 ) 、
RC
uo 求输出电压 uo,及 KCMR 1.01 V uC2 0.99 V uC1 [解](1) 可将任意输入信号分解为 ui2 ) ui1 V V2 1 共模信号和差模信号之和 共模信号 差模信号 R
(1)求静态工作点; )求静态工作点; +V RC +6CC V 7.5 k ui2 V2 IREF
Hale Waihona Puke K CMRAud = Auc
实际中还常用对数的形式表示共模抑制比, 实际中还常用对数的形式表示共模抑制比,即 常用对数的形式表示共模抑制比
Aud K CMR (dB ) = 20 lg Auc
值越大, 若Auc=0,则KCMR→∞,这是理想情况。这个值越大,表 , ,这是理想情况。这个值越大 示电路对共模信号的抑制能力越好 抑制能力越好。 示电路对共模信号的抑制能力越好。一般差动放大电路的 KCMR约为 约为60dB,较好的可达 ,较好的可达120dB。 。
EE
VEE
uid = u i1 – u i2
= 1 (V) ui2 = uic 1 uid 2 uod = Auduid = – 50 × 0.02 = – 1 (V) (2) ) uoc = Aucuic = – 0.05 × 1 = – 0.05 (V) uo = Auduid + Aucuic = –1.05 (V) 50 Aud = 20 lg K CMR (dB ) = 20 lg = 60 (dB) 0.05 Auc

差动放大电路工作原理

差动放大电路工作原理

差动放大电路工作原理差动放大电路是一种常见的电路,它常常被用于放大微小信号。

本文将介绍差动放大电路的工作原理、应用场景以及常见问题解决方法。

一、差动放大电路的工作原理差动放大电路由两个输入端和一个输出端组成。

当两个输入端的电压不同时,输出端就会输出一个差分电压。

差分电压的大小与两个输入端的电压差有关,电压差越大,则差分电压也越大。

差动放大电路的主要作用是将微小信号放大到可以被其他电路处理的程度。

差动放大电路通常由两个晶体管组成。

其中,一个晶体管的发射极连接到一个恒流源,另一个晶体管的发射极连接到另一个恒流源。

两个晶体管的集电极通过一个电阻连接在一起,形成一个共射放大电路。

两个输入端的信号分别连接到两个晶体管的基极上,输出端连接到两个晶体管的集电极上。

差动放大电路的工作原理可以用以下公式表示:Vout = (V1-V2) * (Rc / Re)其中,V1和V2分别是两个输入端的电压,Vout是输出端的电压,Rc是两个晶体管的集电极电阻,Re是两个晶体管的发射极电阻。

二、差动放大电路的应用场景差动放大电路广泛应用于音频放大器、电视机、电脑等电子产品中。

它可以将微弱的音频信号放大到可以被扬声器播放的程度。

此外,差动放大电路还可以用于测量仪器中,例如电压表、电流表等。

三、差动放大电路的常见问题解决方法1. 电路失真:差动放大电路有时会出现电路失真的情况,这可能是由于电容电压过高或者晶体管的工作状态不稳定造成的。

要解决这个问题,可以适当减小电容电压或者更换晶体管。

2. 电源噪声:电源噪声对差动放大电路的影响非常大,会导致输出信号的失真。

为了解决这个问题,可以采用滤波器来滤除电源噪声。

3. 温度漂移:温度漂移是指电路在不同温度下输出信号的变化。

要解决这个问题,可以采用温度补偿电路来进行调整。

总之,差动放大电路是一种常见的电路,它可以将微弱的信号放大到可以被其他电路处理的程度。

通过了解差动放大电路的工作原理和应用场景,我们可以更好地理解它的作用和意义。

差动放大电路与功率放大电路

差动放大电路与功率放大电路

差动放大电路与功率放大电路1. 差动放大电路简介差动放大电路是一种常见的放大电路,常用于信号放大和差分信号的增强。

差动放大电路通常由两个输入端口和一个输出端口组成,在输入端口上接入两个相同但相位相反的信号,通过放大电路增强这两个信号,并输出差分信号。

差动放大电路具有以下几个特点:•具有很高的共模抑制比。

因为在差动放大电路中,共模信号会被差动放大器进行抑制,只有差分信号能够被放大。

这使得差动放大电路在抵抗噪声和干扰方面有很好的表现。

•具有高增益。

差动放大电路能够对输入信号进行放大,从而增加信号的幅度。

这对于需要放大信号的应用非常重要。

2. 差动放大电路的结构和原理差动放大电路可以由多种电子元件实现,其中最常见的是使用差动放大器。

差动放大器一般由两个晶体管、两个电阻和一个负反馈网络组成。

其基本结构如下:差动放大电路结构示意图:![差动放大电路结构示意图](差动放大电路结构示意图.png)差动放大电路的工作原理如下:•两个输入端口分别接入相同但相位相反的信号,这样可以在两个输入端口形成差分信号。

差分信号可以通过晶体管进行放大。

•信号经过晶体管放大后,输出端口将输出放大后的差分信号。

在差动放大电路中,负反馈网络起到了平衡差分信号、提升共模抑制比以及调整放大倍数的作用。

负反馈网络一般由电阻和电容组成,并与晶体管的集电极或基极相连。

3. 功率放大电路简介功率放大电路是一种专门用于放大低功率信号至高功率信号的电路。

功率放大电路常用于音频放大、射频放大等应用中。

与差动放大电路不同,功率放大电路主要注重放大高功率信号,并且在电路设计上对功率放大的稳定性和效率有更高的要求。

4. 功率放大电路的结构和原理功率放大电路也可以由多种电子元件实现,常见的有晶体管功率放大电路和集成功率放大电路。

其中晶体管功率放大电路是最常见的一种,它根据不同的输入信号形式可以分为A、B、AB、C类等不同类型。

晶体管功率放大电路的基本结构如下:晶体管功率放大电路结构示意图:![晶体管功率放大电路结构示意图](晶体管功率放大电路结构示意图.png)晶体管功率放大电路的工作原理如下:•输入信号经过预放大电路进行初步放大,然后输入到功放电路中。

音频功放电路的分析与制作—差动放大电路

音频功放电路的分析与制作—差动放大电路
T1、T2在任何温度下特性均相同。
零输入零输出
若V与UC的变
化一样,则输 出电压就没有
漂移
信号特点?能 否放大?
5
差动放大电路
• 添加相关标题文字 • 添加相关标题文字
• 添加相关标题文字 • 添加相关标题文字
一、典型差动放大电路
1.电路特征
(1)电路理想对称

u
R
C
O
B1
VT1 RP
R
C
VT2
12
5. 主要特点
R
u
R
C
O
B1
VT1 RP
R
C
VT2
u
i1
R-UE EE
+UCC R
B1
u i2
差动放大电路放大差模信号,抑制差模信号, 两输入端中一个为同相输入端(输出与输入同相位),
一个为反相输入端(输出与输入反相位) 。
13
6. 工作方式
双入双出:Ad大;AC 0;KCMRR ∞ 双入单出:Ad约为双出的一半;;AC 小,KCMRR 大
uod ( uc1 ) ( uc2 ) 2uc1 11
4. 主要性能指标
(1)差模电压放大倍数:
Ad
u od ud
大!
(2)共模电压放大倍数:
Ac
u oc uc
0!
两边完全对称
(3)共模抑制比:
K CMRR
=
Ad Ac

(Common - Mode Rejection Ratio)
差放放大的是两输入端的差:uo=Aud(ui1-ui2)
ui1 = -ui2= ud
(2)共模输入:( common mode)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验五 差动放大电路
一、实验目的
1. 熟悉差动放大电路工作原理。

2. 掌握差动放大电路的基本测试方法。

二、实验仪器
1. 模拟电路实验箱
2. 示波器
3. 信号发生器
三、预习要求
1. 差动放大电路的工作原理。

-12V v
2. 差动放大电路的工作特性:
a) 零点漂移的抑制
b) 放大电路对共模信号没有放大作用:0≈c A c) 放大电路对差模信号具有放大作用:111i o d v v A =
,i
o d v v A =
d) 共模抑制比c
d
CMR A A K =
表明放大器对共模信号的抑制能力
四、实验内容
1. 测量静态工作点
按图接线,两输入端接地(输入信号为零)。

反复调整R P ,使放大器两输出端的对地电压相等,即V o = 0。

测量放大电路的静态工作点。

2. 测量差模电压放大倍数
先将DC 信号源OUT 1和OUT 2分别接入差动放大电路的两输入端,然后调节DC 信号源,使其输出为+0.1V 和-0.1V 。

3. 测量共模电压放大倍数
将差动放大电路的两输入端同时与DC 信号源OUT 1或OUT 2连接,使放大电路引入共模信号。

4. 单端输入差动放大电路
按图接线,组成单端输入差动放大电路。

在输入端分别接入
1±=i V V 或v i = 50mV 、f = 1kHz 的正弦波信号,测量放大器的电压放大倍数。

并与双端输入时的单端及双端差模电压放大倍数进行比较。

输入正弦信号时,用示波器监视v c 1和v c 2的波形,若有失真现象可减小输入信号。

v
-12V
五、实验报告
1.整理实验数据,计算各种接法的电压放大倍数,并与理论估算结
果相比较。

2.总结差放电路的性能和特点。

相关文档
最新文档