核磁共振测井

合集下载

核磁共振测井不止用于井下测量_还可在地面测量岩芯

核磁共振测井不止用于井下测量_还可在地面测量岩芯

82023年4月上 第07期 总第403期能源科技| TECHNOLOGY ENERGY3月4日至13日,中国石油集团测井有限公司(简称中油测井)使用该企业自主知识产权的移动式全直径岩心核磁共振设备,在大港油田张巨河某重点评价井完成现场应用和全部解释评价任务,标志着该企业车载快速岩石物理实验室在大港油田首战告捷。

核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。

其中核磁测井(核磁共振测井),是测量地层中的氢核在地磁场中自由旋进的测井方法。

在传统的核磁测井中,现场作业人员需要将核磁仪器使用电缆下入井筒中。

中油测井天津分公司解释评价工程师宋宏业介绍传统核磁测井方法时表示,在地磁场的作用下,地层中那些自旋轴与地磁场不完全重合的氢核绕地磁场旋进。

如果在下井仪器中用极化线圈产生与地磁场垂直的强脉冲磁场(与地磁场比较而言),迫使氢核的自旋轴离开地磁场的方向,当极化磁场去掉后,它们绕地核磁共振测井不止用于井下测量 还可在地面测量岩芯通讯员 常洁芮磁场旋进并逐渐恢复到原有状态。

氢核的旋进在感应线圈中产生逐渐衰减的射频信号,其幅度取决于地层中自由流体的氢核数,称自由流体指数,而束缚水或死油对核磁测井不起明显作用。

井眼产生的信号衰减很快,可以通过延迟测量时间将其影响减至最小。

根据自由流体指数可获得岩石的自由流体孔隙度,配合其他资料可计算渗透率。

如果进而测量热弛豫时间,则可以区别油和水。

较传统的核磁测井方法相比,移动式全直径岩心核磁共振测井是车载岩石物理实验室搭载的移动式全直径岩心核磁共振测井仪器,能够实现在现场对刚出筒的岩心进行快速、连续、无损、高精度的一维T2与二维T1-T2核磁共振测量与资料快速处理解释,并获取可靠的地层孔隙度、孔隙结构、流体性质、含油饱和度等信息。

打个最恰当的比喻,在医院是把患者推进医疗核磁检测仪进行检测,而在井场,是把从地层取得的岩芯有序排入核磁共振测井仪进行检测。

在此次施工中,技术人员对钻井取心所获得的岩芯进行核磁共振测量,细化岩性综合分析,并结合显示情况,优化后续测量模式和井段,对于进一步系统掌握该区域产层岩性特点、分析储层物性主控因素有着重要意义。

《核磁共振测井全》课件

《核磁共振测井全》课件

储层表征
核磁共振测井提供了详细的储 层性质描述,包括孔隙结构、 孔隙度分布和岩石类型,有助 于优化开发和生产侵入性测量
核磁共振测井是一种非 侵入性测量技术,不需 要采集样品,可以在井 内直接获取地层信息。
2 高分辨率
核磁共振测井具有高分 辨率,可以获取细微的 地质和储层参数变化, 提供精确的地质解释。
3 仪器限制
核磁共振测井仪器的尺 寸和功耗限制了其在特 定井眼中的应用,需要 克服相关的工程和技术 问题。
核磁共振测井的案例研究
1
海上油气勘探
核磁共振测井在海上油气勘探中的应用,帮助发现油气藏和优化产能,提高勘探 和开发效率。
2
储层评估
核磁共振测井在储层评估方面的应用,提供可靠的地质参数和流体信息,指导油 气勘探和开发决策。
3
井间连通性
核磁共振测井用于评估油井间的连通性,检测压力变化和流体移动,帮助优化油 藏生产。
核磁共振测井的未来发展
先进测井技术
未来的核磁共振测井技术将更 加先进,实时、高分辨率、多 参数测量等特性将得到进一步 增强。
人工智能应用
结合人工智能技术,核磁共振 测井可以进行更精确的数据处 理和解释,提高解释的速度和 准确性。
环境友好型
未来的核磁共振测井技术将更 加环境友好,减少对地下水资 源和环境的影响。
《核磁共振测井全》PPT 课件
核磁共振测井是一种用于获取地下岩石和流体性质的非侵入性测量技术。通 过应用核磁共振原理,可以获得有关地下油气储层的重要信息。
什么是核磁共振测井?
1 原理解释
2 数据获取
核磁共振测井利用原子核的自旋和磁矩之 间的相互作用来研究储层的性质。它基于 核磁共振现象,通过识别和分析样品中的 核自旋状态来获取相关信息。

核磁共振测井原理

核磁共振测井原理

核磁共振测井原理
核磁共振测井(NMR)是一种地球物理测井技术,利用磁共振现象分析电磁信号来获取地下岩石中的孔隙结构和流体含量信息。

NMR测井原理基于核磁共振现象,即在强磁场中放置原子核会产生共振吸收现象。

在NMR测井中,沿井壁发射一系列短脉冲电磁信号,这些信号会激发旋转相干磁矩,进而引起共振吸收现象,并使得磁共振信号能够被测量。

这些信号可以表征岩石中的孔隙结构和流体含量。

NMR测井技术常见的参数包括自由液体体积(FFV),有效孔隙度、孔隙尺度和流体饱和度。

其中最重要的参数为FFV,它表征了岩石中的自由水体积。

知道FFV,可以确定孔隙中不同类型液体的含量,如水、油、混合物等。

有效孔隙度和孔隙尺度表征了岩石中的孔隙结构,可用于评估岩石的渗透性和储层质量。

流体饱和度则表征了岩石中所含流体的百分比,用于确定油田储层中可采储量和开发方案。

核磁共振测井的基本原理

核磁共振测井的基本原理

核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。

当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。

核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。

核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。

感应线圈的作用是把发射出去的核磁共振信号接收下来。

一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。

这些铁屑和颗粒对核磁共振信号会产生很大的干扰。

当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。

在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。

—— 1 —1 —。

核磁共振测井技术

核磁共振测井技术

MBMW m
TMA X T 2cutoff
S(T2 )dT2
有效孔隙体积
MPHE e
TMA X 4
S (T2
)dT2
总孔隙体积
MSIG t
TMA X T min
S
(T2
)dT2
渗透率
k c4 NMR ( FFI )2 BVI
目录
一、核磁共振测井简介 二、核磁共振测井测量及提供的信息 三、核磁共振测井提供的成果图件 四、核磁共振测井技术的应用
核磁共振测井技术的应用
储层识别及储层物性参数计算——划分常规测井曲线无法识别的储层
核磁共振测井技术的应用
储层识别及储层物性参数计算——直接区分可动流体和束缚流体
幅度 孔吼分布频率
各部分孔隙体积分布位置
孔吼半径(um)
1
1.6
2.5
4
6.3
10
16
25
10
岩样号:NP1-X
8
孔径分布
T2谱分布
6
毛管束 缚体积
T2很长且幅度大,短T2很少或没有
驱替和渗吸都已起到作用,大、小孔隙都已排油, 它吸水能力强,含水率高,已成了注入水凸进优势 通道,即“大孔道”,对于这样的层应控制注水速 度,以防注入水的低效和无效循环。
中水淹 弱水淹
T2很长但幅度变低,短T2多
这样的储层其大孔道中的油在水驱过程中驱动力的 作用下已经排出,而小孔道中仍存在残余油,这些 油要靠毛管力吸水排油的渗吸作用排出,注水时应 降低水驱速度,在低渗流速度下,发挥毛管力的吸 水排油作用,取得最佳驱油效果。
有效孔隙度
总孔隙度
核磁共振测井提供的成果
流体性质评价成果

核磁共振测井简介

核磁共振测井简介

引言核磁共振测井是一种适用于裸眼井的测井新技术,是目前唯一可以直接测量任意岩性储集层自由流体(油、气、水)渗流体积特性的测井方法,有明显的优越性。

本文主要讲解了核磁共振测井的发展历史、基本原理、基本应用、若干问题及展望。

发展历史核磁共振作为一种物理现象,最初是由Bloch和Purcell于1946年发现的,从而揭开了核磁共振研究和应用的序幕。

1952 年,Varian 发明了测量地磁场强度的核磁共振磁力计,随后他利用磁力计技术进行油井测量。

1956 年,Brown 和Fatt研究发现,当流体处于岩石孔隙中时,其核磁共振弛豫时间比自由状态相比显著减小。

1960年,Brown 和Gamson研制出利用地磁场的核磁共振测井仪器样机并开始油田服务。

但是,地磁场核磁测井方案受到三个限制,即:井眼中钻井液信号无法消除,致使地层信号被淹没;“死时间”太长,使小孔隙信号无法观测;无法使用脉冲核磁共振技术。

因此,这种类型的核磁共振测井仪器难以推广。

1978 年,Jasper Jackson 突破地磁场,提出一种新的方案,即“Inside-out”设计,把一个永久磁体放到井眼中(Inside),在井眼之外的地层中(Outside)建立一个远高于地磁场、且在一定区域内均匀的静磁场,从而实现对地层信号的观测。

这个方案后来成为核磁共振测井大规模商业化应用的基础。

但是由于均匀静磁场确定的观测区域太小,观测信号信噪比很低,该方案很难作为商业测井仪而被接受。

1985 年,ZviTaicher和Schmuel提出一种新的磁体天线结构,使核磁共振测井的信噪比问题得到根本性突破。

1988 年,一种综合了“Inside-out”概念和MRI 技术,以人工梯度磁场和自旋回波方法为基础的全新的核磁共振成像测井(MRIL)问世,使核磁共振测井达到实用化要求。

此后,核磁共振测井仪器不断改进,目前,投入商业应用的核磁共振测井仪器的世界知名测井服务公司分别为:斯仑贝谢、哈利伯顿和贝克休斯。

核磁测井

核磁测井
解释方法考虑了砂泥岩地层泥质附加导电 的影响。
计算有效孔隙系统下的含水饱和度Sw 核需要常规电阻率、中子、密度测井曲线 磁测井直接提供了束缚水饱和度Swir 油层: Sw= Swir
无可动水 或 可动水含量少
识别高束缚水饱和度的低阻油层和泥质含 量高、物性差的低阻油层十分有效
赵71井 10号层
30 30
20 20
R=10.4396μ m
10 双组孔径发育 10
以大孔径为主
00
25 2.5
0.16 0.063
Shg(%)
核 磁 测 井 成 果 与 压 汞 资 料 R(μm)
赵61井 7号层
40 40 20 20 00
Shg(%)
2.5
6.3 2.5
0.16
1.0
00.4.063
1200
T 2,log
0.9
五、估计流体粘度
CMR对储层 的综合评价
六、其他应用
•低阻油层的评价 •中低孔、低渗储层的评价 •薄层评价
赵 低阻油层 113 井
典型油层
赵113井 32、33层 合试累计
产油51.9t 气3340m3
赵80井核磁解释成功实例
油61.2 气107207
3. 体积弛豫
–邻近分子的自旋运动产生的局部磁场 波动造成的。
孔隙尺寸与T2的关系
颗粒表面弛豫示意图
六、核磁共振资料的处理
由回波串得到如下信息:
–T2分布谱 –孔隙度MPHI、可动流体体积MBVM
、不动流体体积MBVI等
测量的是NMR 信号幅度, 需要的是T2分 布曲线
总衰减是所有孔径中流体衰减之和
侯 101 井 25

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范

核磁共振成像测井作业技术规范1 引言核磁共振成像测井是在自然界物质间中引入一个强磁场,利用磁场和静态磁场引起核磁共振现象,来对几何异常结构进行成像,探测出围绕不同类型油气藏的空间结构信息,以指导油田勘探开发工作。

本文意在就核磁共振成像测井作业技术规范,提出相关详细资料,供大家参考。

2 技术规范要求(1)核磁共振成像测井规划阶段应付地球物理勘探的任务、具体的实施方法、地质问题的解决、技术风险分析等,并做好项目技术报告和施工组织方案;(2)测井仪器设备应符合国家质量标准及其安全法规的要求,设备安装和测试应符合国家相关规定;(3)对水泥环封承受力应符合国家规定,水泥环筒材质和尺寸应符合国家质量标准;(4)布井方式应符合国家标准,埋设区域采用专人负责,应按测井仪器的要求进行布井,质量应符合国家标准的要求;(5)测井作业应按照相关国家标准及行业规范要求进行,保证测井仪器测数据准确;同时,应配备安全装置,保证作业安全;(6)作业完成后,应对测井结果进行专业审查和重判,确保数据的准确性和质量;3 安全措施(1)作业前,应明确工作人员和项目负责人的职责,并制订好安全卫生操作规程。

(2)应根据区域的地质情况,把握安全防范的措施;(3)应严格按照国家的法律法规,把握安全防范的措施;(4)干涉测井应采用安全健康的手段,配备充足的安全防护服以及完善的管理措施,保障工作人员的安全;(5)应对作业周边地区进行密切监察,及时发现和纠正安全隐患;(6)在作业完成后,应保证现场整洁,应及时进行清理,也应当按要求拆除测井用的管道、仪器及环境处理,关闭口径大小,恢复原有状态。

4 总结核磁共振成像测井是一项重要的油气勘探技术,能够更加准确地对油气藏进行探测,对油气勘探行业有着重要的意义,必须要遵守相关技术规范要求,并落实安全措施,才能取得预期的效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11
Magnetization
N N S N S
S S
N
S N S
N S
S S
f
N S
S
M = N ×
N
N
S
N
N
Many spins
z
Bo
8
M
y
S t
x
S
N
S
g
2
h I ( I + 1) B 3 KT
2
o
12
Nuclear Magnetism
单个自旋
自旋I=1/2的氢核,在外加磁场中,能级分裂成两个
Why NMR Logging …?
Sensitive volumes are poorly defined
f Neutron
Bore hole fluids effects Mud cake effects Rugosity effects Depth of investigation mismatch Vertical resolution mismatch
核磁共振测井
1
Why NMR Logging
2
Why NMR Logging…?
Formation
What will the reservoir produce?
Porosity f
f Neutron
Saturation Sw
f Density
Rw Sw= 2 f Rt
Sw > 60% water oil oil +
7
NMR Physics
核磁共振是磁场中的原子核对电磁波的一种响应,原子 核由质子和中子组成,质子带正电,中子不带电。质子与中 子统称为核子。所有含奇数核子以及含偶数个核子但原子序 数为奇数的原子核,都具有内秉角动量(或叫“自旋”)。 这样的核,自身不停地旋转,犹如一个旋转的陀螺。由于原 子核带有电荷 ,它们的自旋将产生磁场,象一根磁棒,该磁 场的强度和方向可以用核磁矩矢量来表示,即: μ =γ p 式中 μ — 磁矩; p— 自旋角动量; γ — 比例因子,被称 做旋磁比,是磁性核的一个重要性质,每一个核都有一个特 定的值,由实验测定。γ 可以为正,亦可以为负,所以核磁 矩的方向可能与核自旋角动量的方向相同或相反。 当没有外加磁场时,单个核磁矩随机取向,因此, 8 包含大量等同核的系统在宏观上没有磁性。
++ + + + + +
,即高能态和低能态,对应于核自旋进动的不同取向
Gyromagnetic Ratio (g):
Quantum Mech. Classical View View (Energy) (Orientation)
high E
2p m g = h I
determines measurement frequency
h = Plank’s constant I = spin quantum number
DE
low E
Applied Magnetic Field, Bo
13
对于被磁化后的自旋系统,再施加一个与静磁场 垂直、以进动频率 ω 。振荡的交变磁场 B1。从量子 力学的角度说,此时交变场的能量等于质子两个能级 的能量差,会发生共振吸收现象,即处于低能态的核 磁矩吸收交变电磁场提供的能量,跃迁到高能态,磁 化强度相对于外磁场发生偏转,这种现象被称为核磁 共振, 交变电磁场既可以连续地施加,也可以以短脉冲 的形式施加。现代核磁共振仪大多采用脉冲方法。它 具有许多优越性,特别在提高信噪比方面。由于谱仪 的工作频率大多在射频段,故把这样的脉冲电磁波叫 14 做射频脉冲。
4
Why NMR Logging …?
Resistivity log responses Formation model
Water porosity
fw
Complex texture
1. No resolution to capillary bound water; 2. Difficulty to determine clay bound water; 5 3. No sensitive to hydrocarbon types
Rock Properties
Reservoir Understanding
Fluid Properties
The NMR logging provides answers for:
Log Analyst Where are the HC’s ? How much HC ? What type of HC ?
Magnetization
+ + + + + + +
N
S S N S N N N S
9
g
=
2 p h
m
I
S
The Origin of Magnetization
+
10
当核磁矩处于外加静磁场中时,它将受到一个力矩 的作用,从而会象倾倒的陀螺绕重力场进行一样, 绕外加磁场的方向进动,进动频率ω 。又叫Larmor 频率,是磁场强度与核旋磁比的乘积,即: ω o=γ Bo 式中,Bo为外加磁场的强度。由于不同的核 γ 值不 一样,因此,在相同的外加磁场强度中,不同原子 核的进动频率亦不相同。 在外加磁场中,整个自旋系统被磁化,宏观上将 产生一个净的磁矩矢量和。单位体积内,核磁矩的 和,叫做宏观磁化量(M),即: M=∑μ i 这个非零宏观磁化量与外加磁场Bo平行。
f Density
Resistivity Rt
6
Why NMR Logging …?
• Total Porosity • Effective Porosity •Pore Size Distribution • Permeability •CBW / BVI / FFI • Hydrocarbon detection • Hydrocarbon typing
3
Permeability K
Rt
Sw < 40% 40% < Sw < 60% water
Why NMR Logging …?
Neutron / Density log responses Formation model
Complex mineralogy Porosity
f
Solids
1. Less sensitivity to pore fluids than to solid matrix; 2. Radioactivity sources.
Petrophysicist What are the fluids ? What is the reservoir quality? What will flow ? Reservoir Engineer What will produce ? At what rate? Which recovery strategy ?
相关文档
最新文档