第六章钢筋混凝土受弯构件斜截面承载力计算_图文(精)
受弯构件斜截面承载力

第六章 受弯构件斜截面承载力
受力特点 ★斜裂缝出现后,受剪面积的减小 使受压区混凝土剪力增大(剪压区)
Va Vd Vc
6.2 斜截面受剪的破坏形态和破坏机理
第六章 受弯构件斜截面承载力
受力特点 ★斜裂缝出现后,受剪面积的减小 使受压区混凝土剪力增大(剪压区)
Va Vd Vc
★斜裂缝出现前,支座附近截面 a-a的钢筋应力s与Ma成正比;
Ma Mb
6.2 斜截面受剪的破坏形态和破坏机理
第六章 受弯构件斜截面承载力
受力特点 ★斜裂缝出现后,受剪面积的减小 使受压区混凝土剪力增大(剪压区) ★斜裂缝出现前,支座附近截面 a-a的钢筋应力s与Ma成正比 ★斜裂缝出现后,截面a-a 的钢筋 应力s取决于临界斜裂缝顶点截面 b-b处的Mb,即与Mb成正比。 ★因此,斜裂缝出现使支座附近的 s与跨中截面的s相近,这对纵筋 的锚固提出更高的要求。 ★同时,销栓作用Vd使纵筋周围的 混凝土产生撕裂裂缝,削弱混凝土 对纵筋的锚固作用。
②
① ③
弯剪斜裂缝
腹剪斜裂缝
③
箍筋
弯起钢筋
① 腹筋
②
6.1 概述
第六章 受弯构件斜截面承载力
§6.2 受弯构件斜截面受剪的破坏形态和破坏机理 6.2.1 无腹筋梁的受剪性能 受剪承载力的组成
Va Vc
CC
a
斜裂缝顶部截面处
外剪力:V 外弯矩:M=Va 抗力:Vc、Cc、Ts、Vd、Va
Vd
TS
V
6.2 斜截面受剪的破坏形态和破坏机理
6.2 斜截面受剪的破坏形态和破坏机理
Vd¬ £ TaÖ ¡ Tb
Tb
Ma Mb
第六章 受弯构件斜截面承载力
受弯构件斜截面承载力计算

第一排弯起钢筋截面面积Asb
Asb≥(V1-Vcs)/(0.8fysinαs)= 472.91mm2 将纵向钢筋中间部位一根弯起(1 25), Asb=490.9mm2>472.91mm2,故满足要求。
【例4.10】钢筋混凝土矩形截面简支梁,两端支承在砖墙 上,净跨度ln=4660mm(图4.41);截面尺寸b×h=250mm ×550mm。该梁承受均布荷载,其中恒荷载标准值 gk=25kN/m(包括自重),荷载分项系数γG=1.2,活荷 载标准值qk=42kN/m,荷载分项系数γQ=1.4;混凝土强 度等级为C20(fc=9.6N/mm2, ft=1.1N/mm2),箍筋采用 HPB235级钢筋(fyv=210N/mm2),按正截面承载力已 配HRB335级钢筋4 25为纵向受力钢筋(fy=300N/mm2)。 试求腹筋数量。 【解】(1) 计算剪力设计值。支座边缘处剪力设计值为 V1=1/2(γGgk+γQqk)ln=206.9kN
对于承受以集中荷载为主的矩形截面独立梁,应改用
V Vcs 0.8 f y Asb Sin s Asv 1.75 ft bh0 1.25 f yv h0 0.8 f y Asb Sin s 1 s
图4.38
抗剪计算模式
(a) 仅配有箍筋;(b) 同时配置箍筋和弯起筋
4.4.3.2 公式适用条件
应按公式(4.38)复核,得 0.25βcfcbh0=223200N>V=200000N 截面尺寸满足要求。 (3) 确定是否需要按计算配置腹筋。 由公式(4.41) 0.7ftbh0=71610N<V=200000N 需进行斜截面受剪承载力计算,按计算配置腹筋。 (4) 箍筋计算。由公式(4.34)得 Asv/s≥(V-0.7ftbh0)/(1.25fyvh0) =1.05mm2/mm
受弯构件斜截面承载力的计算

对称集中荷载作用下简支梁的主应力轨迹线(图中,实线为主拉应力轨迹线;虚线为主压应力轨迹线。
)My VS tp 2σσ=cp 2σσ=梁内任一点的应力主应力剪跨比P aP202lh ββ⋅lβl()22222qll ql M l q l βββββ=⋅−=−()1222ql ql V q l ββ=−=−x tp 12σσ=+xcp 2σσ=−1arctan 2α=στ斜截面破坏形态◆斜压破坏为受压脆性破坏;◆剪压破坏界于受拉和受压脆◆斜拉破坏为受拉脆性破坏,无腹筋梁的受剪破坏都是脆性的无腹筋梁的弯剪承载力有限,若不足以抵抗荷载产生的1. 剪跨比¾集中荷载作用下2. 腹筋的数量在一定的范围内,腹筋配筋率增大,抗剪承载力提高。
3. 混凝土强度斜截面破坏是因土强度对梁的抗剪承载力影响很大。
当剪跨比一定时,梁的抗剪承载力随混凝土强度提高而增大4. 纵筋配筋率随着纵筋的配筋率的提高,梁的抗剪承载力也增大。
1、直接作用:纵筋截面承受一定剪力(2、纵筋抑制斜裂缝的发展,增大斜裂缝间交互面的剪力传递,增加纵筋量能加大混凝土剪压区高度,从而间接提高梁的抗剪能力。
纵筋的销栓力ρ大于1.5%时,纵向受拉钢筋的配筋率()ρ0.720βρ=+5. 其他因素(1)截面形状这主要是指斜截面抗剪承载力有一定作用。
适当增加翼缘宽度,可提高抗剪承载力,但翼缘过大,增大作用逐渐减小。
另外,增大梁的宽度也可提高抗剪承载力。
与矩形截面梁相比,形截面梁的斜截面承载力一般要高我国《混凝土结构设计规范》钢筋混凝土梁斜截面抗u c ix d s sbV V V V V V =++++sb b V V =⋅为简化计算,主要考虑未开裂混凝土的抗剪作用和腹筋V u ——梁斜截面破坏时所承受的总剪力V c ——V s ——与斜裂缝相交的箍筋所承受的剪力V sb ——与斜裂缝相交的弯起钢筋所承受的剪力如令Vcs 为箍筋和混凝土共同承受的剪力,则无腹筋梁有腹筋梁若腹筋既有箍筋又有弯起钢筋,则对于有腹筋梁,由于箍筋的存在抑制了斜裂缝的开展,使得梁剪压区面积增大,致使强度和配箍率有关。
钢筋混凝土受弯构件斜截面承载力

正由于有纵筋的弯起或截断,梁的抵抗弯矩的能力
可以因需要合理调整。
第
混凝土结构设计原理
五 章
3.5.1 抵抗弯矩图及绘制方法
1 抵抗弯矩图: 抵抗弯矩图就是以各截面实际纵向受拉钢
筋所能承受的弯矩为纵坐标,以相应的截面位 置为横坐标,所作出的弯矩图(或称材料图), 简称Mu图。
当梁的截面尺寸,材料强度及钢筋截面面 积确定后,其抵抗弯矩值,可由下式确定
的弯起、锚固、截断以及箍筋的间距,
有何构造要求?
第
混凝土结构设计原理
五 章
锚固长度不应小于0.7 la ,也可以伸过节点或支座范
围,并在梁中弯矩较小处设置搭接接头,如图所示。
第
混凝土结构设计原理
五 章
第
混凝土结构设计原理
五 章
3.6.2 箍筋
1、箍筋的形式和肢数
箍筋的形式有封闭式和开口式两种,一般均应采用封 闭式,特别是当梁中配置有受压钢筋时。
箍筋有单肢、双肢和复合箍等形式。一般按以下情况 选用: ➢当梁宽≤400mm时,可采用双肢箍; ➢当梁宽>400mm且一层内的纵向受压钢筋多于3根时, 或梁宽≤400mm,但一层内的纵向受压钢筋多于4根时, 应设置复合箍筋。 ➢当梁宽<100mm时,可采用单肢箍
…5-23
第
混凝土结构设计原理
五 章
斜截面受弯承载力不进行计算而通过构造措施 来保证。措施要求:
◆沿梁纵轴方向钢筋的布置,应结合正截面 承载力,斜截面受剪和受弯承载力综合考虑。
◆以简支梁在均布荷载作用下为例。跨中弯
矩最大,纵筋As最多,而支座处弯矩为零,剪力最 大,可以用正截面抗弯不需要的钢筋作抗剪腹筋。
第
混凝土结构设计原理
第6章 混凝土梁承载力计算原理

第6章 混凝土梁承载力计算原理6—1 熟记受弯构件常用截面形式和尺寸、保护层厚度、受力钢筋直径、间距和配筋率等构造要求。
6—2 适筋梁正截面受力全过程可划分为几个阶段?各阶段主要特点是什么?与计算有何联系?6—3 钢筋混凝土梁正截面受力全过程与匀质弹性材料梁有何区别?6—4 钢筋混凝土梁正截面有几种破坏形式?各有何特点?6—5 适筋梁当受拉钢筋屈服后能否再增加荷载?为什么?少筋梁能否这样,为什么? 6—6 截面尺寸如图所示。
根据配筋量不同的4中情况,回答下列问题:(1) 各截面破坏原因和破坏性质;(2) 破坏时钢筋和混凝土强度是否充分利用;(3) 破坏时钢筋应力大小;(4) 受压区高度大小;(5) 开裂弯矩大致相等吗?为什么?(6) 若混凝土强度等级为C20,HPB235级钢筋,各截面的破坏弯矩怎样?题6—6图6—7 受弯构件正截面承载力计算有哪些基本假定?6—8 影响钢筋混凝土受弯承载力的最主要因素是什么?当截面尺寸一定,若改变混凝土或钢筋强度等级时对受弯承载力影响的有效程度怎样?6—9 钢筋混凝土受弯构件正截面受弯承载力计算中的s α、s γ的物理意义是什么?又怎样确定最小及最大配筋率?6—10 在什么情况下采用双筋梁?为什么双筋梁一定要采用封闭式箍筋?受压钢筋的设计强度是如何确定的?6—11 两类T 形截面梁如何判别?为什么说第一类T 形梁可按h b f ⨯'的矩形截面计算? 6—12 为什么受弯构件在支座附近会出现斜裂缝?其出现和开展过程是怎样的?6—13 受弯构件沿斜截面破坏时的形态有几种?各在什么情况下发生?应分别如何防止? 6—14何谓剪跨比?为什么其大小会引起沿斜截面破坏形态的改变?6—15 连续梁与简支梁相比,受剪承载力有无差别?当为集中荷载时,为什么采用计算剪跨比?6—16 计算斜截面受剪承载力时,其位置应取在哪些部位?6—17 何谓梁的材料抵抗弯矩图?其意义和作用怎样?它与弯矩图的关系怎样? 6—18 对纵向钢筋的截断和锚固,应满足哪些构造要求?6—19 简述矩形截面素混凝土构件及钢筋混凝土构件在扭矩作用下的裂缝形成和破坏机理。
受弯构件斜截面受剪承载力计算

梁的斜截面承载力包括斜截面受剪承载力和斜截面受弯承载力。在实
际工程中,斜截面受剪承载力通过计算配置腹筋来保证,而斜截面受弯
承载力则通过构造措施来保证。
有腹筋梁斜截面破坏工程试验
1
剪跨比λ的定义
影响梁斜截面破坏形态有很多因素,其中最主要的两项是剪跨
比λ的大小和配置箍筋的多少
对于承受集中荷载的梁:第一个集中荷载作用点到支座边缘之
距a(剪跨跨长)与截面的有效高度ℎ0 之比称为剪跨比λ,即
λ=a/ℎ0 。
广义剪跨比λ=M/Vℎ0 (如果λ表示剪跨比,集中荷载作用下的
梁某一截面的剪跨比等于该截面的弯矩值与截面的剪力值和有效
高度乘积之比)。
有腹筋梁斜截面破坏工程试验
2
箍筋配筋率
箍筋配箍率是指箍筋截面面积与截面宽度和箍筋间距乘积的比值,
计算公式为:
1 =Βιβλιοθήκη =式中 ——配置在同一截面内箍筋各肢的全部截面面积(2 );
=1 ;
n——同一截面内箍筋肢数;
1 ——单支箍筋的截面面积(2 );
b——矩形截面宽度,T形、I字形截面的腹板宽度(mm);
1.75
≤ =
ℎ0 +
ℎ0
+1
式中 V——梁的剪力设计值(N/2 )
剪跨比λ<1.5时,取λ=1.5;当λ>3时,取λ=3.
谢 谢 观 看
s——箍筋间距;
仅配箍筋时梁的斜截面受剪承载力计算基本公式
对于矩形、T型、I字形截面的一般受弯构件:
≤ = 0.7 ℎ0 +
ℎ0
对承受集中荷载作用为主的独立梁或对集中荷载作用下(包括作用
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
剪跨比反映了截面上正应力和剪应力的相对比值,在 一定程度上也反映了截面上弯矩与剪力的相对比值。 它对无腹筋梁的斜截面受剪破坏形态有着决定性的影 响,对斜截面受剪承载力也有着极为重要的影响。
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
无腹筋梁的斜截面受剪破坏形态
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
试验也表明,无腹筋梁的斜截面受剪破坏形态与剪跨 比有决定性的关系,主要有斜压破坏、剪压破坏和斜 拉破坏三种破坏形态。
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
(1)斜压破坏
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
第六章受弯构件斜截面承载力
2 斜裂缝、剪跨比及斜截面受剪破坏形态
在中和轴附近,正应力小,剪应力大,主拉应力方向 大致为45°。当荷载增大,拉应变达到混凝土的极限 拉应变值时,混凝土开裂,沿主压应力迹线产生腹部 的斜裂缝,称为腹剪斜裂缝。 腹剪斜裂缝中间宽两头细,呈枣核形,常见于I形截 面薄腹梁中。
第六章受弯构件斜截面承载力
1 概述
按理说,箍筋也应像弯起钢筋那样做成斜的,以便于 主拉应力方向一致,更有效地抑制斜裂缝的开展,但 斜箍筋不便绑扎,与纵向钢筋难以形成牢固的钢筋骨 架,故一般都采用竖向箍筋。
第六章受弯构件斜截面承载力
1 概述
试验研究表明,箍筋对抑制斜裂缝开展的效果比起弯 起钢筋要好,所以工程设计中,应优先选用箍筋,然 后再考虑采用弯起钢筋。由于弯起钢筋承受的拉力比 较大,且集中,有可能引起弯起处混凝土的劈裂裂缝。 因此放置在梁侧边缘的钢筋不宜弯起,梁底层钢筋中 的角部钢筋不应弯起,顶层钢筋中的角部钢筋不应弯 下。弯起钢筋的弯起角宜取45°或60°。
第6章钢筋混凝土受扭构件承载力计算-文档资料
式中β 值为与截面长边和短边h/b比值有关的系数,当比 值h/b=1~10时,β =0.208~0.313。 若将混凝土视为理想的弹塑性材料,当截面上最大 切应力值达到材料强度时,结构材料进人塑性阶段 由于 材料的塑性截面上切应力重新分布,如图5-3b。当截面 上切应力全截面达到混凝上抗拉强度时,结构达到混凝 上即将出现裂缝极限状态.根据塑性力学理论,可将截 面上切应力划分为四个部分,各部分切应力的合力,如 图5-3c。
根据极限平衡条件,结构受扭开裂扭矩值为
(6-3)
实际上,混凝上既非弹性材料 又非理想的塑性材 料。而是介于二者之间的弹塑性材料、对于低强度等 级混凝土。具有一定的塑性性质;对于高强度等级混 凝土,其脆性显著增大,截面上混凝土切应力不会象 理想塑性材料那样完全的应力重分布,而且混凝土应 力也不会全截面达到抗拉强度ft因此投式(6-2)计算的受 扭开裂扭矩值比试验值低,按式(6-3)计算的受扭开裂 扭矩值比试验值偏高。 为实用计算方便,纯扭构件受扭开裂扭矩设计时 采用理想塑性材料截面的应力分布计算模式,但结构 受扭开裂扭矩值要适当降低。试验表明,对于低强度 等级混凝上降低系数为0.8,对于高强度等级混凝上降 低系数近似为0.8。为统一开裂扭矩值的计算公式,并 满足一定的可靠度要求其计算公式为
考虑到设计应用上的方便《规范》采用一根略为偏低 的直线表达式,即与图中直线A′C′相应的表达式。在式(67)。取α1=0.35,α2=1.2。如进一步写成极限状态表达式, 则矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式为
(6-8)
式中 T——扭矩设计值; ft——混凝土的抗拉强度设计值; Wt——截面的抗扭塑性抵抗矩; fyv——箍筋的抗拉强度设计值;
Tcr=0. 7ftWt
钢筋混凝土受弯构件斜截面承载力设计
§5.5 受弯构件斜截面承载力计算公式
5.5.1 一般受弯构件斜截面设计 建筑工程中,一般受弯构件斜截面的抗剪需要通过计算 加以控制,而斜截面抗弯则一般不用计算而是用构造措施来 控制。 1. 受弯构件斜截面受剪承载力的计算 ⑴不配置箍筋和弯起钢筋的一般板类受弯构件 板类构件通常承受的荷载不大,剪力较小,因此,一般 不必进行斜截面承载力的计算,也不配箍筋和弯起钢筋。但 是,当板上承受的荷载较大时,需要对其斜截面承载力进行 计算。
位于受拉区的微元体3,由于拉应力的存在,主拉应力 σ tp增大,主压应力σ cp减小主拉应力与梁轴线成夹角小于 45o。 对于均质弹性体来说,当主拉应力或主压应力达到材 料的抗拉或抗压强度时,将引起构件截面的开裂和破坏。
对于钢筋混凝土梁,当主拉应力应力值超过混凝土抗 拉强度时,其裂缝走向与主拉应力的方向垂直,故是斜裂 缝。
随着荷载增加,梁在支座附近出现斜裂缝,现以图44中的斜裂缝CB为界取出隔离体,其中C为斜裂缝起点 ,B为斜裂缝端点,斜裂缝上端截面AB称为剪压区。
与剪力平衡的力有:AB 面上的混凝土切应力合力 Vc;由于开裂面BC两侧 凹凸不平产生的骨料咬合 力Vs的竖向分力;穿过 斜裂缝的纵向钢筋在斜裂 缝相交处的销栓力Vd。 与弯矩M平衡的力矩 主要是由纵向钢筋拉力T 和AB面上混凝上压应力 合力D组成的内力矩。
在通常情况下,斜裂缝往往是由梁底的弯曲裂缝发展 而成的,称为弯剪型斜裂缝; 当梁的腹板很薄或集中荷载置支座距离很小时,斜裂缝 可能首先在梁腹部出现,称为腹剪型斜裂缝(图4-2c,d)。 斜裂缝的出现和发展使梁内应力的分布和数值发生变 化,最终导致在剪力较大的近支座内不同部位的混凝土被 压碎或混凝土拉坏而丧失承载能力,即发生斜截面破坏。
由于斜裂缝的出现,梁在剪弯段内的应力状态将发生很 大变化 主要表现在: ①开裂前的剪力是全截面承担的,开裂后则主要由剪压 区承担,混凝土切应力大大增加(随着荷载的增大,斜裂缝宽 度增加,骨料咬合力也迅速减小),应力的分布规律不同于斜 裂缝出现前的情况。 ②混凝土剪压区面积因斜裂缝的出现和发展而减小,剪 压区内的混凝土压应力将大大增加。 ③斜裂缝相交处的纵向钢筋应力,由于斜裂缝的出现而 突然增大。因为该处的纵向钢筋拉力T在斜裂缝出现前是由 截面C处弯矩Mc决定的(见图 4-4)。而在斜裂缝出现后,根据 力矩平衡的概念.纵向钢筋的拉力T则是由斜裂缝端点处截面 AB的弯矩MB所决定 MB比Mc要大很多。
钢筋混凝土受弯构件斜截面抗剪承载力计算ppt课件
腹剪斜裂缝
沿主压应力迹线 产生腹部的斜裂 缝 土建工程系
1 2 1 3 1
τ σ σ σ τ
1>45°源自弯剪型2σ τ1 1 3
45°
1
<45°
(d) 腹剪型
土建工程系
三. 两个名词
剪跨比
a a
h0
M V
a
a-剪跨(剪力跨度)
土建工程系
M V h0
对 图 示 集 中 荷 载 作 用 的 简 支 梁 ,: 则 有 MV a a = = 剪 跨 a 与 截 面 有 效 高 度 h 之 比 。 0 V h h 0 V 0 h 0
◆ 但配置箍筋对斜裂缝开裂荷载没有影响,也不能提高斜压破坏的承载 力,即对小剪跨比情况,箍筋的上述作用很小;
对较大剪跨比情况,箍筋配置如果超过某一限值,则产生斜压破坏, 继续增加箍筋没有作用。
土建工程系
P
Vc
Va Vd
V 纵筋销栓作用 骨料咬合作用
土建工程系
二.破坏形态
影响有腹筋梁破坏形态的主要因素有剪跨比 和配箍率sv
P
斜拉破坏 f
土建工程系
二. 剪压破坏
剪跨比
1 3
时可能会发生。 P
剪压破坏
f
土建工程系
破坏特征
■ 弯剪斜裂缝不只一条,当荷载增加到某一值时,几条弯
剪裂缝形成一条主要的斜裂缝(临界斜裂缝) ■ 临界斜裂缝出现后,承载力没有很快丧失,荷载可以继 续增加,并出现其它斜裂缝。 ■ 最后,上端混凝土在剪应力和压应力的共同作用 下,达到混凝土的复合受力下的强度而破坏。 ■ 承载能力取决于混凝土的复合应力下(剪压)的强度。
钢筋混凝土受 弯构件斜截面 抗剪承载力计 算