基于农业大棚智能控管系统设计论文

基于农业大棚智能控管系统设计论文
基于农业大棚智能控管系统设计论文

1 引言

隨著控制技術、Internet和移動通信技術的飛速發展,農業生產的自動化、資訊化水準不斷提高,“可控環境農業”的研究已經越來越為人們所重視。如何方便有效地對溫室環境進行監測和控制,如何提高農業生產的資訊化水準是目前可控環境農業研究的重點。本章簡要說明了課題的研究背景和現實意義,並綜述了溫室環境監控技術的研究現狀和發展趨勢,在此基礎上提出了本文的研究內容。

1.1 遠程溫室監測系統的應用現狀及發展前景

自20世紀80年代以來,我國工程科技人員在吸收發達國家高科技溫室生產技術的基礎上,進行了溫室中溫度、濕度和二氧化碳等單項環境因數控制技術的研究,希望通過改變植物生長的自然環境、創造適合植物最佳的生長條件、避免外界惡劣的氣候,達到調節產期、促進生長發育、防治病蟲害等目的。由此而引發的各種溫室測控技術的實際應用與研究也取得了長足發展。發達國家已經向高層次的自動化、智能化方向發展,形成了現代化水準高,比較完善的技術體系[1]。我國溫室測控技術應用研究雖然也取得了一定的進展,但是與發達國家相比依舊存在較大差距。隨著世界設施農業栽培技術發展迅速,溫室面積和產量大幅增加,對各種溫室測控技術以及與之緊密相關的通信技術的研究,已經引起該領域內的專家學者的廣泛關注。

1.2 國內外溫室測控技術

1.2.1 國外溫室測控技術研究狀況

發達國家如荷蘭、美國、英國等都大力發展集約化的溫室產業,溫室內溫度、濕度、光照、CO2濃度、水、氣、營養液等實現電腦調控。荷蘭在1974年首次研製出電腦控制系統CECS。l978年日本東京大學的學者研製出微型電腦溫室綜合環境控制系統。目前,日本、荷蘭、美國等發達國家可以根據溫室作物的特點和要求,對溫室內的諸多環境因數進行環境控制。

在日本,作為設施農業主要內容的設施園藝相當發達,塑膠溫室和其他人工栽培設施達到普遍應用,設施栽培面積位居世界前列。蔬菜、花卉、水果等普遍實行設施栽培生產。針對種苗生產設施的高溫、多濕等不良環境。日本有關部門進行了如下幾種設施專案的研究。主要有設施內播種裝置、苗灌水裝置、換氣扇的旋轉和遮光裝置的開閉裝

置(溫度、濕度及光照控制)、缺苗不良苗的檢測及去除和補栽裝置、CO2施肥裝置等方面的自動化研究[2]。而在韓國,從l992年以來,政府就把設施園藝作為重點事業來推進發展,到1992年底,設施栽培面積為5.3萬mm2,其中帶環境控制的現代化設施的設置面積占10%左右[3]。

由於溫室能完全控制作物生長的各種條件,近年來溫室農業在以色列得到了飛速發展。以色列溫室結構非常先進:它裝有幕簾、天窗及遮陽網,可根據光線強度的不同自動調節和移動,並裝有空氣溫度和濕度調控等溫室電腦環境控制系統。以色列科學家成功地開發了一系列電腦軟體、硬體,實現了溫室中供水、施肥和環境自動化控制。最新的彌霧氣候控制技術,使溫室降溫所需的能量非常小[4]。以色列的溫室從80年代到90年代更新了三代,利用電腦控制水、肥和溫室小氣候,自動調溫、調濕、調光,而且結構非常先進,促進了工廠化農業的大發展。

荷蘭園藝溫室發展較早,由於地處高緯度地區,日照短,全年平均氣溫較低,因此,集中較大力量發展經濟價值高的鮮花和蔬菜,大規模地發展玻璃溫室和配套的工程設施,全部採用電腦控制。荷蘭的全自動化溫室成套設備在世界市場上享有很高的技術聲譽,但荷蘭的溫室業是一種高能耗的產業,全國每年溫室消耗天然氣達42億立方米[5]。

英國農業部對溫室的設計和建造也很重視,在英國西爾索農業工程研究院,科學家們進行了溫室環境(溫度、濕度、光照、通風及CO2及施肥等)與作物生理、溫室環境因數的電腦優化、溫室節能、溫室自動控制、溫室作物栽培與產後處理、無土栽培的研究。目前,英國的溫室大量採用電腦管理,主要控制溫度、濕度、通風、CO2濃度、施肥、營養液供給及pH值等。倫敦大學農學院研製的電腦遙控技術,可以觀測50km 以外溫室內的溫度、濕度等環境狀況,並進行遙控[6]。

另外,國外溫室業正致力於高科技發展遙測技術、網路技術、控制局域網已逐漸應用於溫室的管理與控制中,Alves-Serodio,C.M.J等在ISIE’98國際會議中提出一體化的溫室網路管理體系模型,可將氣候的調節、灌溉系統與營養液的供給系統作為一個整體,並可以實現遠程控制。

1.2.2 國內溫室測控技術研究狀況

a)集散控制系統(DCS)

智能溫室的自動控制系統一般是由控制電腦、感測器、執行機構及驅動部件組成的多輸入、多輸出的閉環控制系統。在現代溫室測控系統中,運用最多,技術最成熟的是

集散控制系統,匯流排結構一般採用RS485.溫室群集散控制系統一般以PC機或工控機為上位機,單片機作為下位機組成。

下位機的任務是完成現場與作物有關的環境參量及作物生理參量的資訊採集、分析處理和存儲顯示,並通過RS485匯流排同上位機相連;上位機則主要實現環境的調控策略、集中操作管理、通信控制等功能,協調各從機之間的數據傳送工作,從而實現對整個系統的有效管理。隨著單片機及微機技術、網路技術的發展和應用,採用微機與多臺單片機構成小型集散控制系統在現代溫室測控領域的運用非常普遍。它利用單片機價格低、功能強、抗干擾能力好、溫限寬和麵向控制等優點,結合微機的軟硬體支撐,是一般規模溫室測控系統的常用選擇方案。但是這類溫室集散控制系統存在著固有的缺陷:控制系統的物理層採用上下位機主從集散控制結構,一旦上位機出現故障,將會導致整個控制系統癱瘓,危險過於集中,系統的可靠性和穩定性不佳;同時該測控系統採用RS485匯流排,有效傳輸範圍不超過1200m。這將成為現代溫室集群化方向發展的瓶頸,系統的拓展性不好,佈線複雜,成本較高。但是作為主流的溫室測控系統架構方案,集散控制系統採用基於RS485、RS422等匯流排結構的通信方式在國內外溫室測控領域仍然佔據主導地位。

b)國內溫室測控技術

我國農業電腦的應用開始於20世紀70年代,20世紀80年代中期開始應用於溫室控制與管理領域。從1979至1987年陸續從6個國家(荷蘭、日本、美國、義大利、羅馬尼亞、保加利亞)等引進24套溫室,總而積19萬平方米。這些溫室系統的引進,總計投資960萬美元,人民幣2570萬元。每平方米面積投資80-100美元,還不包括修建鍋爐房、水塔等輔助建築的投資和國內運費、關稅等開支[7]。從國外引進的現代化溫室,雖然在國外經過多年的發展和完善,技術上也比較成熟和先進,但是在使用中卻出現了一些問題,如體積大、能耗大、濕簾降溫較差;從經濟效益上看,因為設備投資大,運行費用高,產值較低,普遍虧損等,所以並末得到普及。實踐證明,如果既要符合我國自己的氣候特點,又可降低投資費用,根本出路在於吸收國外溫室設施的有益經驗和技術,建設我國自己的溫室產業,設計生產符合我國經濟水準和各種氣候特點的溫室系列[8]。

從80年代開始,我國的農業工程科技人員在吸收發達國家高科技溫室生產技術的基礎上,進行了溫室中溫度、濕度和CO2等單項環境因數控制技術的研究,並逐步推出

適宜我國經濟發展水準又能滿足不同生態氣候條件需要的溫室產品。

20世紀90年代初期,中國農業科學院農業氣象研究所和蔬菜花卉研究所,研製開發了溫室控制與管理系統,並採用Visual Basic開發了基於windows操作系統的控制軟體。90年代中後期,江蘇理工大學毛罕平等研製開發了溫室軟硬體控制系統,能對營養液系統、溫度、光照、CO2,施肥等進行綜合控制,是目前國產化溫室電腦控制系統較為典型的研究成果。在此期間,中國科學院石家莊現代化研究所、中國農業大學,中國科學院上海植物生理研究所等單位也都側重不同領域,研究溫室設施電腦控制與管理技術,“九五”期間,國家科技攻關專案和國家自然科學基金委,均首次增設了工廠化農業(設施農業)研究專案,並且在專案中加大了計一算機應用研究的力度。90年代末河北職業技術師範學院的目忠文研製了蔬菜大棚溫濕度測量系統,能對大棚內的溫濕度進行即時測量與控制。吉林工業大學於海業、馬成林等人(1999)研製的溫室環境(溫度、濕度)自動檢測系統是以一臺IBM/PC及其相容機作為主控機,模/數轉換採用插入式數據採集板卡來實現的。還有許多高等院校、科研所都在進行溫室控制系統的相關研究,並且許多單位都己建起或將要建起溫室控制系統的總體框架,並形成了一些控制理論,如王宇欣的《高寒地區充氣膜溫室局部環境調控分析》等[9]。可以看出我國溫室設施電腦應用與研究,在總體上正從消化吸收、簡單應用階段向實用化、綜合性應用階段過渡和發展。這些無疑對我國的溫室發展起了積極的作用,但是與國外先進水準相比仍有一定的差距。

2 系統組成

2.1 系統總體結構

目前國內外研究開發的溫室控制系統,大致可分為以下三種:

1) 單獨式多單元溫室系統。這種控制系統主要利用專門的溫室氣候控制電腦來檢測多個感測器的輸入信號及輸出控制信號,這種控制電腦的外形與PC機相似,所有的感測器和繼電器由電纜與它直接相連,通過顯示幕以畫面的形式生動地顯示溫室運行情衫之,並可以存儲、列印、統計分析、曲線說明等。但這種控制系統的價格比較昂貴。

2) 單片機控制一個溫室單元系統。這是隨單片機的發展而出現的,現已經廣泛應用於國內外許多溫室中。它充分利用了單片機的數據傳輸方便快捷、介面通道配置靈活、性能穩定可靠、價格低廉等優點。但這種控制結構由於單片機存儲容量小,不能保存大盤的數據,不利於分析,且人力消耗大。

3) 分佈式多單元系統。該系統主要針對由多個溫室構成的溫室群地區而提出的,它將PC機與前面兩種系統的優點融為一體,每個溫室由前沿機(氣候控制電腦或單片機控制系統)進行分散控制。主控室中的PC機對溫室群集中管理。這種系統在提高工作效率、安全、舒適性方面有著不可比擬的優越性,是現代溫室監控系統的典型模式。

單片機結構簡單、物美價廉、設計與使用方便、抗干擾性及適應環境的能力強。因而常被用作自動化系統的前端處理器(下位機),深入到現場,採集各種數據及資訊,進行簡單的處理後送至上位機。同時它也是一種控制器,接收上位機下達的命令,對現場實行有關的控制。微機功能強大、人機介面友好,能處理很複雜的問題。在自動化系統中,通常用作中央處理器(上位機),接收來自下位機的資訊和數據,經處理後在微機介面上顯示,並向下位機下達命令,通過下位機對現場實施控制[10]。

本課題兼顧單片機和微機的特點,採用分佈式監控系統。系統總體結構如圖2.1所示。

圖2.1 系統結構圖 本系統由許多分佈在各溫室中的控制器 (下位機)和主控電腦 (上位機)組成,每個控制器連接到主控電腦上,處理各種感測器所採集的數據並對控制驅動器進行即時控制:主控電腦存儲、顯示控制器傳送來的數據,並可以向每個控制器發送控制設定值和其他控制參數,對溫室進行監測與控制。該模式不僅適用於溫室群的集中管理,而且能夠根據用戶需要通過方便、靈活的系統配置及功能重組,實現多個溫室的控制管理。 由於溫室下位機具有非同步串行通信介面,通過設計TTL/RS485電平轉換電路,就可以與上位機聯網。從上位機串口出來的 RS-232信號,通過RS232/RS485轉換器轉換成RS485信號,經RS-485通信線與各下位機連接,就可實現上位機與各下位機的聯網,而且由於 RS485的通信距離可以達到1200米,本系統可以進行遠距離的通信。通信線路如圖2.2所示。

圖2.2系統通信線路圖 主控電腦(上位機) 串行通信介面

數據採集/控制器2 數據採集/控制器3

數據採集/控制器1 光照感測器 濕度感測器 溫度

感測

器 光控驅動器

濕控驅動器 溫控驅動器 上位機 下位機 下位機 下位機 轉換器 RS232口 RS232/RS485 RS485匯流排

大棚温室自动控制系统毕业设计(精)

本设计为一闭环控制系统,由89C51单片机,A/D转换电路,温度检测电路,湿度检测电路、控制系统组成。温度检测电路将检测到的温度转换成电压,该模拟电压经ADC0809转换后,进入89C51单片机,单片机通过比较输入温度与设定温度来控制风扇或电炉驱动电路,当棚内温度在设定范围内时,单片机不对风扇或电炉发出动作。实现了对大棚里植物生长温度及土壤和空气湿度的检测,监控,并能对超过正常温度、湿度范围的状况进行实时处理,使大棚环境得到了良好的控制。 该设计还具有对温度的实时显示功能,对棚内环境温度的预设功能。 第一章概述 大棚、中棚及日光温室为我国主要的设施结构类型。其主要功能是采用电路来自动控制室内的温度,以利于植物的生长。温室的性能指标: 1.温室的透光性能 温室是采光建筑,因而透光率是评价温室透光性能的一项最基本指标。透光率是指透进温室内的光照量与室外光照量的百分比。温室透光率受温室透光覆盖材料透光性能和温室骨架阴影率的影响,而且随着不同季节太阳辐射角度的不同,温室的透光率也在随时变化。温室透光率的高低就成为作物生长和选择种植作物品种的直接影响因素。一般,连栋塑料温室在 50%~60%,玻璃温室的透光率在60%~70%,日光温室可达到70%以上。 2.温室的保温性能 加温耗能是温室冬季运行的主要障碍。提高温室的保温性能,降低能耗,是提高温室生产效益的最直接手段。温室的保温比是衡量温室保温性能的一项基本指标。温室保温比是指热阻较小的温室透光材料覆盖面积与热阻较大的温室围护结构覆盖面积同地面积之和的比。保温比越大,说明温室的保温性能越好。 3.温室的耐久性

温室建设必须要考虑其耐久性。温室耐久性受温室材料耐老化性能、温室主体结构的承载能力等因素的影响。透光材料的耐久性除了自身的强度外,还表现在材料透光率随着时间的延长而不断衰减,而透光率的衰减程度是影响透光材料使用寿命的决定性因素。一般钢结构温室使用寿命在15年以上。要求设计风、雪荷载用25年一遇最大荷载;竹木结构简易温室使用寿命5~10年,设计风、雪荷载用15年一遇最大荷载。 由于温室运行长期处于高温、高湿环境下,构件的表面防腐就成为影响温室使用寿命的重要因素之一。钢结构温室,受力主体结构一般采用薄壁型钢,自身抗腐蚀能力较差,在温室中采用必须用热浸镀锌表面防腐处 理,镀层厚度达到150~200微米以上,可保证15年的使用寿命。对于木结构或钢筋焊接桁架结构温室,必须保证每年作一次表面防腐处理。 第二章比例微积分控制原理 3.1 比例积分调节器(PD 比例调节器具有误差,为解决此问题,可引入积分(Inte6raI环节,其方块图见图4—33l 比例微分调节器对误差的任何变化,都产生一个控制作用比,阻止误差的变化。c变化越快,pd越大,输出校正量也越大。它有助于减少超调,克服振荡,使系统趋于稳定;同时加快系统的响应速度,减小调整时间,从而改善了系统的动态特性。它的缺点是抗干扰能力变差。 3.2 PID调节器 积分器能消除镕差,提高精度,但使系统的响应速度变慢、稳定性变环。微分器能增加稳定性,加快响应速度。比例器为基本环节。三者合用,选择适当的参数,可实现稳定的控制。 图4—37为PID调节器的方块图。 第三章自动控制系统的设计

智能温室大棚整体控制设计报告

智能温室大棚整体控制设计报告设计人员:

目录 一、智能温室大棚简介 (3) 二、智能温室大棚结构设计 (3) 一、温室结构设计 (3) 1.温室结构布局 (3) 2.温室覆盖材料 (3) 3.温室的通风 (4) 二、温室运行机构 (4) 1.电力系统 (4) 2.降温增湿系统 (4) 3.遮阳系统 (4) 4.增温系统 (4) 5.浇灌系统 (4) 三、智能温室大棚控制系统 (5) 一、控制系统的主要构成 (5) 1、传感器 (5) 2、控制器 (5) 3、执行器件 (6) 4、上位机 (6) 二、具体控制过程 (6)

一、智能温室大棚简介 智能温室也称作自动化温室,是指由计算机控制温室内的执行器件来改善温室内的环境,营造适合农作物生长的环境。温室内的主要系统主要有可移动天窗、遮阳系统、保温系统、升温系统、降温系统、浇灌系统、移动苗床等自动化设施系统。 智能温室的控制一般有信号采集系统、中心计算机和控制系统三大部分组成。 二、智能温室大棚结构设计 一、温室结构设计 首先应进行温室建筑布局、形式、尺寸等方面设计,应考虑结构、机械、覆盖与支撑材料、荷载、通风、保温、给排水以及环境调控设备等多种因素,同时还应该考虑本地的地理气候条件,充分利用自然资源,力图降低制造成本和运行费用。 其结构框架设计的基本特点 1.温室结构布局尽量采用南北栋方式建筑可使太阳直射光 平均日总量透过率最高。 2.温室覆盖材料温室材料透光率对温室的光照总量有着重 要影响,可采用浮法玻璃其透光率可达90%以上。亦可采用超 长塑料薄膜(阳光穿透率85%)为覆盖材料。但其耐用性不高。 PC塑料板在造价、使用年限、透光率等方面是一个不错的选

智慧农业物联网系统设计

毕业设计(报告)课题:智慧农业物联网系统设计 学生: 夏培元系部: 物联网学院 班级: 物联网1404班学号: 2014270307 指导教师: 杨昌义 装订交卷日期: 2017年01 月日 I / 20

摘要 随着经济社会的发展,农业已经越发智能化智慧农业是农业生产的高级阶段是集新兴的互联网、移动互联、云计算和物联网技术为一体,依托部署在农业生产现场的各种传感节点(环境温湿度、土壤水分、二氧化碳、图像等)和无线通信网络实现农业生产环境的智能感知、智能预警、智能决策、智能分析、专家在线指导,为农业生产提供精准化种植、可视化管理、智能化决策。 基于ZigBee技术的智慧农业解决方案,成本低廉,是一般人都能负担的价格;控制更简单,让每一位刚接触的人都能轻松使用;功耗更低、组网更方便、网络更健壮,给您带来高科技的全新感受。您的温室大棚规模越大,基于ZigBee 技术的智慧农业解决方案在使用中,要准确及时地操控所有设备,最值得关注的应该就是网络信号的稳定性。鉴于温室大棚的网络覆盖区域比较广泛,我们贴心为您呈现物联无线组网!智慧农业能有效连接物联Internet通信网关和超出物联Internet通信网关有效控制区域的其它ZigBee网络设备,实现中继组网,扩大覆盖区域,并传输网关的控制命令到相关网络设备,达到预期传输和控制的效果。基于先进的ZigBee技术,物联无线中继器无需接入网线,就可自行中继组网,扩散网络信号,让网络灵活顺畅运行,保障您的所有设备正常运行。主要采集温湿度,从而控制农植物的水分和光照。 关键词:物联网;智慧农业;云计算;物联网架构;ZigBee II / 20

物联网温室大棚智能化系统解决方案

物联网温室大棚智能化系统
解决方案

目录
1、设计原则.............................................................................................................................................. 3 2、设计依据.............................................................................................................................................. 3 3、系统简介.............................................................................................................................................. 4 3、系统架构.............................................................................................................................................. 5 4、系统组成.............................................................................................................................................. 6
结构图................................................................................................................................................ 6 现场的监测设备: ........................................................................................................................ 7 智慧大棚系统结构: .................................................................................................................... 7 智慧农业大棚系统介绍 ................................................................................................................ 8 温度控制系统 ............................................................................................................................ 8 通风控制系统 ............................................................................................................................ 8 光照控制系统 ............................................................................................................................ 9 水分控制系统 ............................................................................................................................ 9 湿度控制系统 .......................................................................................................................... 10 视频监控系统 .......................................................................................................................... 10 控制系统平台: .......................................................................................................................... 10 应用软件平台:.......................................................................................................................... 11 视频监控系统:.......................................................................................................................... 11 农业溯源系统.............................................................................................................................. 12 种植环节: .............................................................................................................................. 12 物流环节: .............................................................................................................................. 12 其他:...................................................................................................................................... 12 室外气象观测站.......................................................................................................................... 13
5、系统特点............................................................................................................................................ 14 预测性:...................................................................................................................................... 14 强大的扩展功能:...................................................................................................................... 14 完善的资料处理功能:.............................................................................................................. 14 远程监控功能:.......................................................................................................................... 14 数据联网功能:.......................................................................................................................... 14
6、项目定位............................................................................................................................................ 14 7、控制逻辑............................................................................................................................................ 16
温度控制...................................................................................................................................... 16 控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 16 控制方式: .............................................................................................................................. 16
降温控制过程:.......................................................................................................................... 16 在软件中可以设定温度默认正常的上下限的值 .................................................................. 16 温度超过设定上限时 .............................................................................................................. 16
增温控制过程:.......................................................................................................................... 16 空气湿度控制.............................................................................................................................. 16
控制要素: .............................................................................................................................. 16 控制设备: .............................................................................................................................. 17 控制方式: .............................................................................................................................. 17 增湿控制过程:.......................................................................................................................... 17 在软件可设定湿度默认正常的上下限的值; ...................................................................... 17 湿度低于设定下限时: .......................................................................................................... 17 除湿控制过程:.......................................................................................................................... 17

智能农业灌溉系统方案设计

智能农业灌溉系统方案设计 托普物联网认为所谓智能农业灌溉系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的0.6提高到0.9。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业灌溉系统涉及到传感器技术、自动控制技术、计算机技术、无线通信技术等多种高新技术,这些新技术的应用使我国的农业由传统的劳动密集型向技术密集型转变奠定了重要的基础。 智能农业灌溉系统可以根据植物和土壤种类,光照数量来优化用水量,还可以在雨後监控土壤的湿度。有研究现实,和传统灌溉系统相比,智能农业灌溉系统的成本差不多,却可节水16%到30%。加州出台的新法案要求2012年起新公司必须使用智能农业灌溉系统。 智能农业灌溉系统 背景

灌溉造成水资源浪费 美国每年浪费掉的水资源高达8,520亿升,而若安装一种智能农业灌溉系统则可有效地控制水流量,达到节水目的。 HydroPoint公司负责可持续领域业务的Chris Spain援引美国用水工程协会的报告称,美国住宅区和商业区的草坪、植物灌溉用水浪费了30%到300%。 水资源被浪费的原因是技术不行,美国有4,500万个仅是安有简易计时器的灌溉系统,它们在时间控制上还可以,但精准度不高。Spain称,城市灌溉系统占城市用水的58%,这些被浪费的水资源每年生产54.4万吨温室气体。 在中国农业用水量约占总用水量的80%左右,由于农业灌溉效率普遍低下,水的利用率仅为45%,而水资源利用率高的国家已达70%~80%,因而,解决农业灌溉用水的问题,对于缓解水资源的紧缺是非常重要的。我们的智能农业灌溉系统在这种背景下应运而生了。 不仅美国,英国也开始关注节水问题。英国节能信托基金会和能源部警告,随着越来越多的家庭开始节约能源,使用热水可能会超过取暖成为制造二氧化碳的主要途径。 智能农业灌溉系统整体方案图 结构 系统结构

温室大棚智能化控制系统毕业设计外文翻译

畢業設計論文外文資料翻譯 學院:電氣學院 專業:電氣工程及其自動化 姓名:鄭能文 學號: 080801332 外文出處:Agricultural greenhouses greenhouse intelligent automatic control 附件: 1.外文資料翻譯譯文;2.外文原文。 指導教師評語: 簽名: 年月日附件1:外文資料翻譯譯文

農業溫室大棚智能自動化控制 摘要: 歷來確定的軌跡到controlgreenhouse農作物生長的問題解決了用約束優化或應用人工智慧技術。已被用作經濟利潤的最優化研究的主要標準,以獲得充足的氣候控制設定值,為作物生長。本文討論了通過分層控制體系結構由一個高層次的多目標優化方法,要解決這個問題是要找到白天和夜間溫度(氣候相關的設定值)和電導率的參考軌跡管轄的溫室作物生長的問題( fertirrigation的相關設定值)。的目標是利潤最大化,果實品質,水分利用效率,這些目前正在培育的國際規則。在過去8年來,獲得在工業溫室的選擇說明結果顯示和描述關鍵字 分層農業;系統,過程控制,優化方法;產量優化 1。介紹 現代農業是時下在品質和環境影響方面的規定,因此,它是一個自動控制技術的應用已在過去幾年增加了很多([法卡斯,2005和Sigrimis,2000] [Sigrimis 等。,2001],[Sigrimis和國王,1999]和Straten等。,2010])。溫室生產agrosystem的是一個複雜的物理,化學和生物過程,同時發生,反應不同的回應時間和環境因素的模式,特點是許多相互作用(Challa及Straten,1993年),必須以控制種植者獲得最好的結果。作物生長過程是最重要的,主要是由周圍環境的氣候變數(光合有效輻射PAR - ,溫度,濕度,和內空氣中的二氧化碳濃度)的影響,水和化肥,灌溉,蟲害和疾病提供的金額,如修剪和處理他人之間的農藥和文化的勞動力。溫室是理想的增長,因為它構成一個封閉的環境,氣候和fertirrigation變數在可控制的作物。氣候和fertirrigation是兩個獨立的系統不同的控制問題和目標。經驗,不同的作物品種的水分和養分的要求是已知的,事實上,自動化系統控制這些變數。另一方面,市場價格波動的影響和環境的規則,以提高水的利用效率,減少化肥殘留在土壤中(如硝酸鹽含量)是考慮到其他方面。因此,最優在溫室agrosystem的生產過程可概括為達到以下目標的問題:優化作物生長(與品質更好,更大的生產),減少成本(主要是燃料,電力,化肥)副減少殘留(主要是農藥和土壤中的離子),水分利用效率的提高。許多方法已經被應用到這個問題,例如,與溫室氣候管理中的最優控制領域,如處理(1993)challa和麵包車Straten的Seginer和謝爾(1993年),凡Straten 等。(2010),Tantau(1993),或基於人工智慧技術([法卡斯,2003],[雷羅等,2008],[馬丁 - Clouaire等。,1996]和[森本和橋本龍太郎,2000年] )。溫室生產agrosystem的處理採用分層控制結構(Challa [和麵包車Straten的,1993年,Rodriguez等人,2003年,羅德裏格斯等人,2008年已被普遍]和[1993])Tantau,該系統應該被劃分成不同的時間尺度和控制系統被劃分成不同的層次,

智能农业系统详细设计文档——第二版

智能农业系统详细设计文档 1 需求分析 1.1设计背景 随着信息科技的发展,信息化已经深入到普通人的生活当中,许多人对当前的生活方式提出了更高的要求。如今也随着城市化的发展,农民也越来越少,对于农场的种植管理,保证粮食的生产率上面越来越显紧迫。在需求上需要,在技术上信息科技时代的到来,为需求提供足够的技术支持,智能农场孕育而生。 1.2设计目标 为了方便用户进行农场管理,通过智能农场,用户可通过手机或者平板实施进行监控农田的光照、CO2、湿度、温度的情况,并且以图形化的方式直观呈现。如果农场上面出现异常的情况,用户可对应出现的状况在手机或平板上面进行处理,从而保障农作物的生产和增产。 因此,本系统需要具备以下功能: (1)用户注册; (2)用户登录; (3)系统实时环境指标动态显示; (4)传感器数据呈现; (5)历史数据查询功能; (6)手动控制; (7)系统设置; (8)传感器与控制器的联动功能; 2设计方案 2.1系统的整体设计 由于系统不管是在整体架构上,还是在具体的模块化实现上都比较复杂,逻辑性非常强,因此,为了保证系统各组成部分之间的互相协调以及整体目标的顺利实现,在智能农场系统中,运用了软件工程的理论和方法进行统一指导,为了使该系统具有方便推广使用,以及在行业内有推广应用的价值,采用了标准的代码体系。规范的图示图例,统一的软件接口,并且开发出了友好的用户界面。智能化农场系统的总体结构图如图示1-1所示。

图示1-1 (1)数据采集模块和服务器 数据采集模块:该模块主要由一个无线传感器和客户端组成。 无线传感网络:该网络由ZigBee无线收发模块构成,ZigBee发送模块通过携带相应的传感器(CO2传感器、空气温湿度传感器、土壤温湿度传感器),将传感器采集到的模拟信号转化后发送给ZigBee无线接收模块。 服务器收集存储来自ZigBee手机的各个传感器的信息,同时用户可请求服务器来下达操作指令,从而实现用户远程操控农场设备。 (2)功能应用模块 用户权限、远程监控和数据展示三个方面。 用户权限:基本功能,分管理员角色和普通用户角色。管理员:登录能进 行查看并且执行操作。普通用户:只能查看不能操作。 远程监控: 数据展示:以绘图方式呈现数据,对于数据异常时做出智能判断,并且通知用户异常的情况,数据保持实时同步,对于收到ZigBee数据进行动态呈现,保证数据的及时性。 2.2处理流程 在Android客户端的模块中,Android手机客户端能够实现用户登录注册的功能。登录后可以查看农场的CO2,土壤温度、土壤湿度、光照、空气温度、空气温度的详细情况。可以查看历史数据,传感器受到数据,传给ZigBee无线节点,通过服务器存储到数据库中,用户通过服务器就能查看到农场的数据信息。用户

智能温室大棚系统需求分析说明书

智能温室大棚系统软件需求分析说明书 小组成员:物联网12001 梁树强 物联网12001 于吉满 物联网12001 卜浩圻

目录 1.软件介绍3 2. 软件面向的用户群体 (3) 3. 软件应当遵循的规或规 (3) 4.软件围3 5. 软件中的角色3 6.软件的功能性需求4 6.0功能性需求分析4 6.0.1经管员功能性需求分类4 6.0.2用户功能性需求分类4 6.1 系统经管员功能细化5 6.2 用户功能细化6 7.系统功能模块用例图10 7.1系统经管员功能模块用例图10 7.2用户功能模块用例图11 8.软件的非功能性需求13 8.1 用户界面需求13 8.2 软硬件环境需求13 8.3 软件质量需求13 9.参考文献13

1.软件介绍 (1)该软件是智能温室大棚系统 (2)软件开发背景:随着社会和经济的发展,人们对物质生活的需求越来越高。中国人口众多,人均耕地面积很少,如何提高农作物产量,实行耕地面积利用率的最大化十分重要。为了提高单位面积上农作物的产量,国外纷纷提出了自己的智能温室大棚系统设计方案。所谓的智能温室大棚系统设计就是通过现代科学技术手段,调节农作物生长所需的各种环境条件,主要有光照、温度、土壤湿度、二氧化碳浓度这4个环境参数,从而使农作物处于最佳的生长环境中,进而最大幅度地提高农作物的产量。而开发此系统正是利用现代科技,来科学有序的发展农业,让人们从繁重的体力劳动中解放出来,体验到科技带来的快乐。 2.软件面向的用户群体 适应群体:以农作物为主要经济来源的企业或者个体劳动者,特别适合拥有多个温室大棚用来种植作物的用户。 该系统的开发,最大的好处是更加科学的经管温室大棚,细致化的从温度,湿度,二氧化碳浓度等可靠数据来分析和制定作物的更加适宜的环境。智能化的使用方法让用户对温室大棚的经管更加省时,省力,使使用者最终获得更大的收益。 3.软件应当遵循的规或规 1.数据库要求规完整,有系统崩溃手动恢复的功能 2.要求该软件的可扩展性好。 3.要求该软件整体的安全性强 4.要求该软件采集的数据准确性要高。 5.要求该软件组建的无线传感网稳定,安全性高。 4.软件围 本系统用C/S架构,安全性能和维护性高,并且用java语言对此系统进行的开发,移植性好。适合用户在不同的平台运行,灵活可靠,更加符合在温室大棚不同的设备硬件上进行移植。 5.软件中的角色 5.1经管员

温室控制系统设计开题报告

毕业设计开题报告 一.选题的依据、意义和理论或实际应用方面的价值 随着农业现代化的发展,设施园艺工程因其涉及学科广、科技含量高、与人民生活关系密切,己越来越受到世界各国的重视。这也为我国大型现代化植物大棚的发展提供了极好的机遇,并产生巨大的推动作用。我国的现代化植物大棚是在引进与自我开发并进的过程中发展起来的。温室大棚是一种可以改变植物生长环境、为植物生长创造最佳条件、避免外界四季变化和恶劣气候对其影响的理想场所。实现温室大棚环境智能控制的目的是主动地调节温度、湿度、光照和二氧化碳气体浓度等环境因素,以满足作物最佳生长环境的要求。其中,温湿度是最重要的环境因数。目前,我国绝大多数温室大棚设备都比较简陋,温室大棚环境仍然靠人工根据经验来管理。环境因素的自动调节和控制的研究正处于起步阶段,已严重影响了设施农业的大力发展。特别是北方地区因其纬度高,寒冷季节长,四季温差和昼夜温差较大,不利于作物生长,目前应用于温室大棚的温湿度检测系统大多采用传统的温湿度检测。这种温湿度采集系统需要在温室大棚内布置大量的测温电缆和湿度传感器,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大,不利于控制者根据温度变化及时做出决定。在这样的形式下,开发一种实时性高、精度高,能够综合处理多点温度信息的测控系统就很有必要。 二.本课题在国内外的研究现状 我国的现代化温室是在引进与自我开发并进的过程中发展起来的。国外对温室环境控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温室控制技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。目前,一些经济发达的国家和地区已经研制并实现计算机自动控制的现代化高科技温室,并且形成了令人惊羡的植物土厂。而我国的温室系统属于半开放系统,温室内环境控制水平比较低,仍靠人工根据经验来管理。而且,国内的控制系统主要用于单因子控制,因而设施现代化水平低,对温室环境的调控能力差,产品的质量和产量难以得到保证。正是这些塑料大棚和日光温室对于解决城乡人民的蔬菜供应发挥着主力军的作用。 三.课题研究的内容及拟采取的方法 本设计以AT89C51 单片机的温度、湿度测量和控制系统为核心来对温湿度进行实时巡检。单片机能独立完成各自功能,同时能根据主控机的指令对温度

毕业论文_智能温室控制系统设计说明

图书分类号: 密级: 毕业设计(论文) 智能温室控制系统设计 THE DESIGN OF INTELLIGENT GREENHOUSE CONTROL SYSTEM 学生学号 学生 学院名称 专业名称 指导教师 2012年5月29日

工程学院学位论文原创性声明 本人重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用或参考的容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。 本人完全意识到本声明的法律结果由本人承担。 论文作者签名:日期:年月日 工程学院学位论文协议书 本人完全了解工程学院关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归工程学院所拥有。工程学院有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。工程学院可以公布学位论文的全部或部分容,可以将本学位论文的全部或部分容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 论文作者签名:导师签名: 日期:年月日日期:年月日 摘要

本文提出了一种以51单片机为主控器和射频nRF905为无线收发模块的智能温室控制系统的总体设计方案和实现方法。系统设置了一个主机和两个从机,通过无线通信方式,实现了两个节点的温湿度数据采集。主机通过从机预设的不同地址来实现区分两个节点发送来的温湿度数据。本设计采用nRF905射频模块为无线传输模块,DS18B20为温度传感器模块,DHT11为湿度采集模块从而实现温室的温湿度监测与控制。51单片机和nRF905之间通过模拟高速串口SPI实现双向通信, SPI支持高速数据传输,从而满足了温室温湿度数据的实时传输。用VB6.0中的MScomm控件编写了温湿度接收界面,通过串口将采集到的温湿度数据显示在PC机上。 关键词 STC89C51;nRF905;DS18B20;DHT11

农业大棚温湿度智能控制系统设计-本科毕业论文

1 引言 1.1 課題背景及研究意義 中國農業的發展必須走現代化農業這條道路,隨著國民經濟的迅速增長,農業的研究和應用技術越來越受到重視,特別是溫室大棚已經成為高效農業的一個重要組成部分。現代化農業生產中的重要一環就是對農業生產環境的一些重要參數進行檢測和控制。例如:空氣的溫度、濕度、二氧化碳含量、土壤的含水量等。在農業種植問題中,溫室環境與生物的生長、發育、能量交換密切相關,進行環境測控是實現溫室生產管理自動化、科學化的基本保證,通過對監測數據的分析,結合作物生長發育規律,控制環境條件,使作物達到優質、高產、高效的栽培目的。以蔬菜大棚為代表的現代農業設施在現代化農業生產中發揮著巨大的作用。大棚內的溫度、濕度與二氧化碳含量等參數,直接關係到蔬菜和水果的生長。國外的溫室設施己經發展到比較完備的程度,並形成了一定的標準,但是價格非常昂貴,缺乏與我國氣候特點相適應的測控軟體。而當今大多數對大棚溫度、濕度、二氧化碳含量的檢測與控制都採用人工管理,這樣不可避免的有測控精度低、勞動強度大及由於測控不及時等弊端,容易造成不可彌補的損失,結果不但大大增加了成本,浪費了人力資源,而且很難達到預期的效果。因此,為了實現高效農業生產的科學化並提高農業研究的準確性,推動我國農業的發展,必須大力發展農業設施與相應的農業工程,科學合理地調節大棚內溫度、濕度以及二氧化碳的含量,使大棚內形成有利於蔬菜、水果生長的環境,是大棚蔬菜和水果早熟、優質高效益的重要環節。目前,隨著蔬菜大棚的迅速增多,人們對其性能要求也越來越高,特別是為了提高生產效率,對大棚的自動化程度要求也越來越高。由於單片機及各種電子器件性價比的迅速提高,使得這種要求變為可能。當前農業溫室大棚大多是中小規模,要在大棚內引

农业智能大棚控制溯源系统设计方案

农业智能大棚控制溯源系统设计方案

生态农业智能温室大棚监测、溯源及控制系统 设 计 方 案xxxxxxxx有限公司

目录 背景......................................................................错误!未定义书签。一:客户需求 ......................................................错误!未定义书签。二:系统结构及控制模式 ..................................错误!未定义书签。三:现场数据采集与控制功能...........................错误!未定义书签。四:监测软件数据平台 ......................................错误!未定义书签。五:功能应用 ......................................................错误!未定义书签。六:农产品溯源系统 ..........................................错误!未定义书签。 七、条码仓储管理系统(WMS) ...........................错误!未定义书签。 八、商品盘点 ......................................................错误!未定义书签。

背景 温室智能控制系统是利用环境数据与作物信息,指导用户进行正确的栽培管理。物联网温室环境监测系统可广泛应用于农业、园艺、畜牧业等领域,在需要特殊环境要求的场所实施监控和管理,为实现对生态作物的健康成长和及时调整栽培、管理等措施提供及时的科学的依据,同时实现监管自动化。 近年来,随着温室大棚化种植、工厂化育秧和设施栽培等农业生产技术的广泛应用,快速准确地环境参数的收集和分析就成为现实的需求,利用计算机技术对相应的农业气象参数进行采集,则一方面可及时了解作物生长的环境参数,另一方面也可根据采集的参数控制大棚环境的调节从而为农作物的生长提供适宜的生长环境。由于温室内的湿度、温度等环境条件不适合于普通PC 机工作,故这里选用单片机进行数据采集,而采集的数据可经过串口发射接收设备传送给上位PC 机进行分析处理。 一:客户需求 (1)智能温室大棚控制系统 随着国民经济的迅速发展,现代农业得到了长足的进步,全国各地根据需要普遍建设了日光温室、塑料大棚等为农作物创造出良好的生长环境。温室工程成为高效农业的重要组成。

基于物联网技术的智能农业喷灌系统方法设计

基于物联网技术的智能农业喷灌系统方案设计托普物联网认为所谓智能农业喷灌系统就是不需要人的控制,系统能自动感测到什么时候需要灌溉,灌溉多长时间;系统可以自动开启灌溉,也可以自动关闭灌溉;可以实现土壤太干时增大喷灌量,太湿时减少喷灌量。要实现此功能就要充分利用可编程控制器的控制作用。系统要实现自动感测土壤湿度的功能必须要有土壤湿度传感器。要实现灌溉水量的多与少的调节,必须要有变频器。在可编程控制器内预先设定50%—60%RH为标准湿度,传感器采集的湿度模拟信号经A/D模块转换成数字信号。 喷灌是将灌溉水通过喷灌系统(或喷灌机具),形成具有一定压力的水,由喷头喷射到空中,形成水滴状态,洒落在土壤表面,为作物生长提供必要的水分。喷灌比地面灌可提高产量15%一25%;灌水均匀度一般可达到80%一85%,水的有效利用率为80%以上,用水量比地面灌溉节省36%—50%;喷灌可用于各种类型的土壤和作物,受地形条件的限制小;可以提高工效20一30倍;可提高耕地利用率7%一15%。但喷灌受风的影响大,3一4级以上风力时应停止喷灌。喷灌的蒸发损失相对较大。喷灌系统组成:水源工程、首部装置、输配水管道系统和喷头等喷灌系统形式:管道式喷灌系统和机组式喷灌系统a:管道式喷灌系统:以输配水管网为主体,在我国使用比较广泛。b:机组式喷灌系统:结构紧凑,使用灵活,机械利用率高,单位喷灌面积的投资较低,在农业节水灌溉中具有广泛的使用前景。 针对灌溉水利用系数较低,文中提出一种基于嵌入式智能灌溉控制系统。依托无线传感器网络采集灌区作物需水信息,汇聚到网关节点发送给主控中心,中心主机根据信息确定灌溉状态并计算灌水量,控制灌溉设备工作实现智能灌溉;依托Internet管理员有权对系统远程管理,满足了规模化灌溉的需求。根据示范区观测,灌溉水利用系数由原来的提高到。系统结合了无线传感、计算和网络通信技术,解决了精确农业亟待解决的关键技术问题。 智能农业喷灌系统涉及到传感器技术、自动控制技术、计算机技术、无线

相关文档
最新文档