2018年全国2卷高考数学试题文科

合集下载

2018全国ii卷高考压轴卷+文科数学

2018全国ii卷高考压轴卷+文科数学

2018全国卷II 高考压轴卷文科数学本试卷共23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}0,1,2,3,4A =---,{}210B x x =<,则A B =I ( ) A .{}4 B .{}1,2,3--C .{}0,1,2,3--D .{}3,2,1,0,1,2,3---2. 已知复数()z a i a R =+∈,若4z z +=,则复数z 的共轭复数z = A .2i + B .2i - C .2i -+ D .2i --3. 设等差数列{}n a 的前n 项和为n S ,若81126a a =+,则9S =( ) A .27 B .36 C.45 D .544. 已知命题p :“a b >”是“22ab>”的充要条件;q :x R ∃∈,ln x e x <,则A .¬p ∨q 为真命题B .p ∧¬q 为假命题C .p ∧q 为真命题D .p ∨q 为真命题5. 若命题:0,,sin 2p x x x p π⎛⎫∀∈<⌝ ⎪⎝⎭,则为 A .0,,sin 2x x x π⎛⎫∀∈≥ ⎪⎝⎭B .0,,sin 2x x x π⎛⎫∀∉≥ ⎪⎝⎭C .0000,,sin 2x x x π⎛⎫∃∈≥ ⎪⎝⎭D .0000,,sin 2x x x π⎛⎫∃∈≤ ⎪⎝⎭6. 将函数cos 2y x =的图象向左平移2π个单位,得到函数()y f x =的图象,则下列说法正确的是( )A .()y f x =是奇函数B .()y f x =的周期为2πC .()y f x =的图象关于直线2x π=对称 D .()y f x =的图象关于点(,0)2π-的对称7. 执行如图的程序框图,则输出的S 值为A.1B.23 C.12-D.0 8. 函数2()(3)ln f x x x =-⋅的大致图象为( )A B C D9. 多面体MN ABCD -的底面ABCD 为矩形,其正(主)视图和侧(左)视图如图,其中正(主)视图为等腰梯形,侧(左)视图为等腰三角形,则AM 的长为( )A BCD .10. 已知向量()()2,1,1,1m n =-=.若()()2m n am n -⊥+,则实数a =( )A .57-B .57C .12-D .1211. 已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y ﹣4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( ) A.B.C.D.12. 已知()f x 是定义在R 上的偶函数,且x R ∈时,均有()()32f x f x +=-,()28f x ≤≤,则满足条件的()f x 可以是( )A .()263cos5x f x π=+ B .()53cos 5xf x π=+ C .()2,8,R x Q f x x C Q ∈⎧=⎨∈⎩ D .()2,08,0x f x x ≤⎧=⎨>⎩二、填空题:本题共4小题,每小题5分,共20分。

2018全国高考新课标2卷文科数学试题(解析版)

2018全国高考新课标2卷文科数学试题(解析版)

2018年普通高等学校招生全国统一考试新课标2卷文科数学注意事项:1.答卷前,考生务必将自己得姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷与答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出得四个选项中,只有一项就是符合题目要求得。

1.i(2+3i)=( )A.3-2iB.3+2iC.-3-2iD.-3+2i解析:选D2.已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}解析:选C3.函数f(x)= e x-e-xx2得图像大致为 ( )解析:选B f(x)为奇函数,排除A,x>0,f(x)>0,排除D,取x=2,f(2)=e2-e-24>1,故选B4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)= ( )A.4B.3C.2D.0解析:选B a·(2a-b)=2a2-a·b=2+1=35.从2名男同学与3名女同学中任选2人参加社区服务,则选中得2人都就是女同学得概率为A.0、6B.0、5C.0、4D.0、3解析:选D 5人选2人有10种选法,3人选2人有3中选法。

6.双曲线x2a2-y2b2=1(a>0,b>0)得离心率为3,则其渐近线方程为( )A.y=±2xB.y=±3xC.y=±22x D.y=±32x解析:选A e= 3 c2=3a2 b=2a7.在ΔABC中,cos C2=55,BC=1,AC=5,则AB= ( )A.4 2B.30C.29D.2 5解析:选A cosC=2cos2C2 -1= -35AB2=AC2+BC2-2AB·BC·cosC=32 AB=4 28.为计算S=1- 12 + 13 - 14 +……+ 199 - 1100,设计了右侧得程序框图,则在空白框中应填入( )A.i=i+1B.i=i+2C.i=i+3D.i=i+4 解析:选B9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1得中点,则异面直线AE 与CD 所成角得正切值为( ) A.22B.32C.52D.72解析:选C 即AE 与AB 所成角,设AB=2,则BE=5,故选C10.若f(x)=cosx-sinx 在[0,a]就是减函数,则a 得最大值就是( ) A.π4B.π2C.3π4D.π解析:选C f(x)= 2cos(x+π4),依据f(x)=cosx 与f(x)= 2cos(x+π4)得图象关系知a 得最大值为3π4。

2018年数学高考真题

2018年数学高考真题

对应学生用书P105剖析解读高考全国Ⅰ、Ⅱ、Ⅲ卷都是教育部按照普通高考考试大纲统一命题,适用于不同省份的考生.在难度上会有一些差异,在试卷结构,命题方向上基本都是相同的.“稳定是高考的主旋律”.在今年的高考试卷中,试题分布和考核内容没有太大的变动,三角、数列、立体几何、圆锥曲线、函数与导数等都是历年考查的重点.每套试卷都注重了对数学通性通法的考查,淡化特殊技巧,都是运用基本概念分析问题,基本公式运算求解、基本定理推理论证、基本数学思想方法分析和解决问题,这有利于引导中学数学教学回归基础.试卷难度结构合理,由易到难,循序渐进,具有一定的梯度.今年数学试题与去年相比整体难度有所降低.“创新是高考的生命线”.与历年试卷对比,Ⅰ、Ⅱ卷解答题顺序有变,这也体现了对于套路性解题的变革,单纯地通过模仿老师的解题步骤而不用心理解归纳,是难以拿到高分的.在对数据处理能力以及应用意识和创新意识上的考查有所提升,也符合当前社会的大数据处理热潮和青少年创新性的趋势.全国Ⅰ、Ⅱ、Ⅲ卷对必修4三角函数、三角恒等变换的考查,相对来说难度不大,综合性较低,但比去年难度有所提高,位置有所移后,其中,全国Ⅰ卷文科把三角函数放到第11题,略微有一点难度,是一个很明显的例子;但是对于平面向量的考查,全国Ⅰ、Ⅱ、Ⅲ卷通常放在填空题第1题或选择题中间的位置,难度相对于去年有所降低,2017年把基本平面向量放到第12题的位置,综合性较强.其他自主命题省市高考题对于三角函数、三角恒等变换的考查,难度都不大,而平面向量的考查难度各省市有较大区别,比如:天津卷、江苏卷、北京卷、浙江卷等较难,要求学生有较强的分析问题、转化问题的能力以及运算能力.下面列出了2018年全国Ⅰ、Ⅱ、Ⅲ卷及各地区必修4所考查全部试题,请同学们根据所学必修4的知识,测试自己的能力,寻找自己的差距,把握高考的方向,认清命题的趋势!(说明:有些试题带有综合性,是与以后要学的内容的小综合试题,同学们可根据目前所学习的内容,有选择性的试做!)穿越自测一、选择题1.(2018·全国卷Ⅲ,文4)若sinα=13,则cos2α=()A.89B.79C.-79D.-89答案B解析cos2α=1-2sin2α=1-29=79.故选B.2.(2018·全国卷Ⅱ,文4理4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a。

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(文科)(全国新课标ⅲ)

2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.76.(5.00分)函数f(x)=的最小正周期为()A.B.C.πD.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x)C.y=ln(1+x) D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.10.(5.00分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

高考数学真题2011年—2018年新课标全国卷(1卷、2卷、3卷)文科数学试题分类汇编—9.数列

2011年—2018年新课标全国卷文科数学分类汇编9.数列一、选择题(2015·新课标Ⅰ,文7)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=()A .172B .192C .10D .12(2015·新课标Ⅱ,文5)设n S 是等差数列}{n a 的前n 项和,若3531=++a a a ,则=5S ()A.5B.7C.9D.11(2015·新课标Ⅱ,文9)已知等比数列}{n a 满足411=a ,)1(4453-=a a a ,则=2a ()A.2B.1C.21 D.81(2014·新课标Ⅱ,文5)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项S n =()A .(1)n n +B .(1)n n -C .(1)2n n +D .(1)2n n -(2013·新课标Ⅰ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则().A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n(2012·新课标Ⅰ,文12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为()A .3690B .3660C .1845D .1830二、填空题(2015·新课标Ⅰ,文13)数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n =.(2014·新课标Ⅱ,文16)数列}{n a 满足nn a a -=+111,2a =2,则1a =_________.(2012·新课标Ⅰ,文14)等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____.三、解答题(2018·新课标Ⅰ,文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.(2018·新课标Ⅱ,文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.(2018·新课标Ⅲ,文17)等比数列{}n a 中,15314a a a ==,.(1){}n a 的通项公式;⑵记n S 为{}n a 的前n 项和.若63m S =,求m .(2017·新课标Ⅰ,文17)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.(2017·新课标Ⅱ,文17)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式;(2)若T 3=21,求S 3.(2017·新课标Ⅲ,文17)设数列{}n a 满足()123212n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.(2016·新课标Ⅰ,文17)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.(2016·新课标Ⅱ,文17)等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =[lg a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.(2016·新课标Ⅲ,文17)已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.(2014·新课标Ⅰ,文17)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2018年黑龙江省高考数学试卷(文科)(全国新课标ⅱ)

2018年黑龙江省高考数学试卷(文科)(全国新课标ⅱ)

2018年黑龙江省高考数学试卷(文科)(全国新课标ⅱ)2018年高中数学真题各版本打包以下是2018年黑龙江省高考数学试卷(文科)(全国新课标Ⅱ)的真题:一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)计算i(2+3i)得到3-2i,因此选项A正确。

2.(5分)集合A和B的交集为{3,5},因此选项C正确。

3.(5分)函数f(x)=的图象大致为正弦函数的图象,因此选项B正确。

4.(5分)向量的模长为1,因此可以得出a²+b²=1.同时,向量与向量的点积等于它们模长的积与它们夹角的余弦,即a×2+b×(-1)=1×cos(π/3),化简得到2a-b=1/2.解这个方程组可以得到a=1/4,b=√(15)/4.因此选项A正确。

5.(5分)从2名男同学和3名女同学中任选2人参加社区服务,选中的2人都是女同学的情况有C(3,2)=3种,总共的情况有C(5,2)=10种,因此概率为3/10.因此选项B正确。

6.(5分)双曲线的离心率为,因此可以得到a²-b²=1.根据定义可知,双曲线的渐近线方程为y=±(b/a)x。

因此选项A正确。

7.(5分)根据余弦定理可知,cosA=(BC²+AC²-AB²)/(2×BC×AC)=4/5.根据正弦定理可知,sinA=√(1-cos²A)=3/5.因此可以得到sinA/cosA=3/4.因此选项A正确。

8.(5分)根据等差数列求和公式可知,S=(50/2)(2×1-49×(-1))=50.因此选项D正确。

9.(5分)由于AE和CD异面,因此可以得到角AEC和角CED的正弦值相等,即1/√2.因此可以得到角AEC和角CED的大小分别为π/4和π/2-π/4=π/4.因此可以得到角AED的正切值为tan(π/4-π/4)=1.因此选项A正确。

2018年高考真题北京卷文科数学Word版含解析

2018年高考真题北京卷文科数学Word版含解析

2018年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合A={(|||<2)},B={−2,0,1,2},则A. {0,1}B. {−1,0,1}C. {−2,0,1,2}D. {−1,0,1,2}【答案】A【解析】分析:将集合化成最简形式,再进行求交集运算.详解:故选A.点睛:此题考查集合的运算,属于送分题.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限. 详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. 设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】分析:证明“”“成等比数列”只需举出反例即可,论证“成等比数列”“”可利用等比数列的性质.详解:当时,不成等比数列,所以不是充分条件;当成等比数列时,则,所以是必要条件.综上所述,“”是“成等比数列”的必要不充分条件故选B.点睛:此题主要考查充分必要条件,实质是判断命题“”以及“”的真假.判断一个命题为真命题,要给出理论依据、推理证明;判断一个命题为假命题,只需举出反例即可,或者当一个命题正面很难判断真假时,可利用原命题与逆否命题同真同假的特点转化问题.5. “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.6. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.7. 在平面坐标系中,是圆上的四段弧(如图),点P在其中一段上,角以O为始边,OP为终边,若,则P所在的圆弧是(A)AB(B)CD(C)EF(D)GH【答案】C【解析】分析:逐个分析A、B、C、D四个选项,利用三角函数的三角函数线可得正确结论.详解:由下图可得:有向线段为余弦线,有向线段为正弦线,有向线段为正切线.A选项:当点在上时,,,故A选项错误;B选项:当点在上时,,,,故B选项错误;C选项:当点在上时,,,,故C选项正确;D选项:点在上且在第三象限,,故D选项错误.综上,故选C.点睛:此题考查三角函数的定义,解题的关键是能够利用数形结合思想,作出图形,找到所对应的三角函数线进行比较.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(完整版)2018年高考文科数学试题及答案,推荐文档

(完整版)2018年高考文科数学试题及答案,推荐文档

9.某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 M 在 正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则 在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为
A. 2 17 C. 3 【答案】B
B. 2 5 D.2
-3-
【难度】容易 【点评】本题在高考数学(文)提高班讲座 第十一章《立体几何》中有详细讲解,在寒假特训班、百日
水量
频数
1
5Байду номын сангаас
13
10
16
(1)在答题卡上作出使用了节水龙头 50 天的日用水量数据的频率分布直方图:
0.5 ,0.6
5
(2)估计该家庭使用节水龙头后,日用水量小于 0.35 m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,同一组中的数据以这 组数据所在区间中点的值作代表.) 【答案】 (1)
(2)由已知可得,DC=CM=AB=3,DA= 3 2 .
又 BP DQ 2 DA ,所以 BP 2 2 . 3
作 QE⊥AC,垂足为 E,则 QE
A
1 DC . 3
由已知及(1)可得 DC⊥平面 ABC,所以 QE⊥平面 ABC,QE=1.
因此,三棱锥 Q ABP 的体积为
VQ ABP
1 QE 3
x2 4.已知椭圆 C : a2
y2 4
1
的一个焦点为
(2
,0)
,则
C
的离心率为
1 A. 3
1 B. 2
2 C. 2
22 D. 3
【答案】C 【难度】容易
【点评】本题考查椭圆的相关知识。在高一数学强化提高班下学期课程讲座 2,第三章《圆锥曲线与方程》
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密 ★ 启用前
2018年普通高等学校招生全国统一考试
文科数学
注意事项:
1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()23i i +=( ) A .32i -
B .32i +
C .32i --
D .32i -+
2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B =( )
A .{}3
B .{}5
C .{}3,5
D .{}1,2,3,4,5,7
3.函数()2
x x
e e
f x x --=的图象大致为( )
4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ) A .4
B .3
C .2
D .0
5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6
B .0.5
C .0.4
D .0.3
6.双曲线22
221(0,0)x y a b a b -=>> )
A .y =
B .y =
C .y =
D .y x =
7.在ABC △中,cos 2C =
1BC =,5AC =,则AB =( )
A .
B
C
D .
8.为计算111
11
1234
99100
S =-+-+
+
-
,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+
9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE
与CD 所成角的正切值为( )
A
B
C
D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )
A .
π4
B .
π2
C .
3π4
D .π
11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C
的离心
率为( ) A
.1-
B
.2C
D 1
12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,
则(1)(2)(3)(50)f f f f ++++=( )
A .50-
B .0
C .2
D .50
二、填空题:本题共4小题,每小题5分,共20分。

13.曲线2ln y x =在点(1,0)处的切线方程为__________.
14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪
-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.
15.已知51tan 45πα⎛
⎫-= ⎪⎝
⎭,则tan α=__________.
16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为
8,则该圆锥的体积为__________.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试
题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分) 记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.
18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根
据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5y
t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5y
t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.
20002001200220032004200520062007200820092010201120122013201420152016年份200
406080
19.(12分)
如图,在三棱锥P ABC -
中,AB BC ==
4PA PB PC AC ====,O 为AC 的中点.
(1)证明:PO ⊥平面ABC ;
(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面
POM 的距离.
20.(12分) 设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,
||8AB =. (1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程.
C
21.(12分)
已知函数()()
321
13
f x x a x x =-++.
(1)若3a =,求()f x 的单调区间; (2)证明:()f x 只有一个零点.
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2cos ,
4sin ,x θy θ=⎧⎨=⎩
(θ为参数),直线l 的参数方程为
1cos ,
2sin ,x t αy t α=+⎧⎨
=+⎩
(t 为参数). (1)求C 和l 的直角坐标方程;
(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.
23.[选修4-5:不等式选讲](10分) 设函数()5|||2|f x x a x =-+--.
(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.。

相关文档
最新文档