数学建模简介PPT课件

合集下载

数学建模课堂PPT(部分例题分析)

数学建模课堂PPT(部分例题分析)
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
市场需求等。
概率论中的随机过程和数理统计 中的回归分析在金融、保险等领
域有广泛应用。
概率论与数理统计
概率论与数理统计是研究随机现 象的数学分支,用于对不确定性
和风险进行量化分析。
在解决实际问题时,概率论与数 理统计可以帮助我们描述和预测 随机事件,例如股票价格波动、
例题三:股票价格预测模型
要点一
总结词
要点二
详细描述
描述如何预测股票价格的走势
股票价格预测模型旨在通过分析历史数据和市场信息,来 预测股票价格的走势。该模型通常采用时间序列分析、回 归分析、机器学习等方法,来建立股票价格与相关因素之 间的数学关系。例如,可以使用ARIMA模型或神经网络模 型来预测股票价格的走势。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
详细描述
在选择数学模型时,需要考虑模型的适用范围。例如,逻 辑回归模型适用于二分类问题,而K均值聚类模型则适用 于无监督学习中的聚类问题。
总结词
模型的复杂度
详细描述
在选择数学模型时,需要考虑模型的复杂度。如果数据量 较小,应选择简单模型以避免过拟合;如果数据量较大, 可以选择复杂模型以提高预测精度。
例题三:股票价格预测模型
总结词
分析模型的假设条件和局限性
详细描述
股票价格预测模型通常基于一些假设条件,如假设股票 价格是随机的或遵循一定的规律。然而,在实际情况下 ,股票价格受到多种因素的影响,如公司业绩、宏观经 济状况、市场情绪等。因此,这些模型可能存在局限性 ,不能完全准确地预测股票价格的走势。

数学建模培训精品课件ppt

数学建模培训精品课件ppt
提高解决问题的能力
学员们认为,通过案例分析和实践操作,他们能够更好地解决实 际问题,提高了工作效率。
结识优秀的同行
学员们结识了很多优秀的同行,通过互相学习和交流,彼此的能 力都得到了提升。
未来发展趋势预测
数学建模与大数据结合
随着大数据时代的到来,数学建模将会与大数据更加紧密 结合,利用数据挖掘和分析技术,更好地解决实际问题。
数学建模培训精品课 件
汇报人:可编辑 2023-12-22
目 录
• 数学建模概述 • 数学建模基础知识 • 数学建模方法与技巧 • 数学建模应用领域 • 数学建模实践项目 • 数学建模培训总结与展望
01
数学建模概述
定义与特点
定义
数学建模是指用数学语言描述实 际现象、解释自然规律、解决实 际问题的过程。
Python
一款开源的编程语言,具有丰富的数 学库和工具包,适用于各种数学建模 任务。
03
数学建模方法与技巧
建模方法分类
初等模型
利用初等数学知识建立 模型,如代数方程、不
等式、几何图形等。
微分方程模型
利用微积分知识,通过 建立微分方程来描述实
际问题。
概率统计模型
利用概率论和统计学知 识,通过随机变量和随 机过程来描述实际问题
求解与分析
指导学生运用数学软件或编程语言对模型 进行求解和分析,得出结论。
建立模型
指导学生根据问题特点,选择合适的数学 方法和工具,建立数学模型。
项目成果展示与评价
成果展示
组织学生进行项目成果展示, 包括项目报告、论文、PPT演示
等。
评价标准
制定评价标准,包括问题的难 度、模型的合理性、求解的准 确性、论文的规范性等方面。

《数学建模培训》PPT课件

《数学建模培训》PPT课件

数学建模案例解析
04
经济学案例:供需平衡模型
供需平衡理论
通过数学语言描述市场需求与供给之间的平衡关 系,涉及价格、数量等关键变量。
建模过程
收集相关数据,建立需求函数和供给函数,通过 求解方程组找到均衡价格和均衡数量。
模型应用
预测市场趋势,分析政策对市场的影响,为企业 决策提供支持。
物理学案例:热传导模型
Lingo在数学建模中的应 用案例
展示Lingo在数学建模中的实 际应用,如线性规划、整数规 划、非线性规划等优化问题的 求解。
其他数学建模相关软件与工具简介
Mathematica软件
简要介绍Mathematica的特点和功能,以及其 在数学建模中的应用。
SAS软件
简要介绍SAS的特点和功能,以及其在数学建模 中的应用。
数据预处理
包括数据清洗、缺失值处 理、异常值检测等,保证 数据质量。
数据可视化
利用图表、图像等手段展 示数据,便于理解和分析 。
数据分析方法
如回归分析、时间序列分 析、聚类分析等,用于挖 掘数据中的信息和规律。
数学建模常用方法
03
回归分析
线性回归
通过最小二乘法拟合自变量和因 变量之间的线性关系,得到最佳
模型应用
预测舆论走向,分析社会热点问题,为政府和企业提供决策支持。
数学建模软件与工
05
具介绍
MATLAB软件介绍及使用技巧
MATLAB概述
简要介绍MATLAB的历史、功能和应用领域 。
MATLAB常用函数
列举并解释MATLAB中常用的数学函数、绘 图函数、数据处理函数等。
MATLAB基础操作
详细讲解MATLAB的安装、启动、界面介绍 、基本语法和数据类型等。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

《中学数学建模》课件

《中学数学建模》课件

中学数学建模的教学案例
人口增长模型
通过研究人口增长规律,建立人 口增长模型,预测未来人口数量

投资收益模型
通过研究投资收益规律,建立投资 收益模型,预测未来的投资收益。
交通流量模型
通过研究交通流量规律,建立交通 流量模型,优化城市交通规划。
03
中学数学建模的常见问题与解决方法
建模过程中的常见问题
加强实践环节
中学数学建模教学应加强实践环节,组织学生进行实际问题的建模 和解决,提高学生的实践能力和创新性。
引入现代技术
中学数学建模教学应引入现代技术,如计算机编程、数学软件等, 以提高教学效率和学生的技术应用能力。
提高中学数学建模水平的建议
加强教师培训
中学应加强对数学建模教师的培训,提高教师的教学水平和指导 能力。
特点
数学建模具有抽象性、系统性、 创造性等特点,能够将实际问题 转化为数学问题,便于分析和解 决。
数学建模的重要性
01
02
03
解决实际问题
数学建模是解决实际问题 的有效手段,能够帮助我 们理解和解决生产、生活 中的各种问题。
培养数学应用能力
通过数学建模,学生能够 更好地应用数学知识解决 实际问题,提高数学应用 能力。
04
中学数学建模的实际应用
数学建模在生活中的应用
购物预算
通过建立数学模型,学生可以预测和 规划个人或家庭的购物预算,以便合 理分配资金。
时间管理
健康生活
学生可以使用数学模型来分析健康饮 食和运动习惯,以促进健康生活方式 。
通过数学模型,学生可以分析时间分 配的合理性,优化学习或工作计划。
数学建模在科学实验中的应用
01

数学建模介绍PPT课件

数学建模介绍PPT课件

•对任意的,有f()、 g()
•至少有一个为0,
16
本问题归为证明如下数学命题: 数学命题:(本问题的数学模型)
已知f()、 g()都是的非负连续函数,对任意的 ,有f() g()=0,且f(0) >0、 g(0)=0 ,则有存在0, 使f(0)= g(0)=0
模型求解 证明:将椅子旋转90°,对角线AC与BD互换,由 f(0)>0、 g(0)=0 变为f(/2) =0、 g(/2) >0
的解答


数学模型 的解答
12
实践
理论
实践
表述 求解 解释 验证
根据建模目的和信息将实际问题“翻译”成 数学问题 选择适当的数学方法求得数学模型的解答
将数学语言表述的解答“翻译”回实际对 象 用现实对象的信息检验得到的解答
13
4、建模实例:
例1、椅子能在不平的地面上放稳吗?
• 模型假设 • 1、椅子的四条腿一样长,椅子脚与地面
• 要学习数学建模,应该了解如下与数学建模 有关的概念:
3
• 原型(Prototype)
• 人们在现实世界里关心、研究、或从事生产、 管理的实际对象称为原形。原型有研究对象、 实际问题等。
• 模型(Model)
• 为某个目的将原型的某一部分信息进行简缩、 提炼而构成的原型替代物称为模型。模型有 直观模型、物理模型、思维模型、计算模型、 数学模型等。
• 一个原型可以有多个不同的模型。
4
数学模型:
由数字、字母、或其他数学符号组成、描 述实际对象数量规律的数学公式、图形或算 法称为数学模型
数学建模:
建立数学模型的全过程 (包括表述、求解、解释、检验等)
5

第1讲 数学建模简介 PPT课件

第1讲 数学建模简介 PPT课件

什么是数学建模 数学建模步骤及分类 建模竞赛及其意义 建模实例讲解
什么是数学建模
什么是数学模型 一般意义上的“模型”
为了一定目的,对客观事物的一部分进行简缩、抽象、提 炼出来的原型的替代物。
水箱中的舰艇; 风洞中的飞机等;
实物模型
符号模型
物理模型
什么是数学建模
数学模型(mathematical model)
引例
第二块钢板的故事,来自一位将军。 诺曼底登陆时,美军101空降师副师长唐·普拉特准将
乘坐的是滑翔机。起飞前,有人自作聪明,在副师长的座 位下,装上厚厚的钢板,用来防弹。由于滑翔机自身没有 动力,与牵引的运输机脱钩后,必须保持平衡滑翔降落, 沉重的钢板却让滑翔机头重脚轻,一头扎向地面,普拉特 准将成为美军在当天阵亡的唯一将领。
什么是数学建模
数学建模(mathematical modeling)
“新”名词 你是什么时候开始知道有这个名词的?
历史悠久 •《九章算术》— 最早的数学建模专著、 收集了246个应用题 • 以问题集形式出现: 一“问” —提出问题 二“答” —给出问题的数值答案 三“术” —讨论同类问题的普遍方法或算法 四“注” —说明“术”的理由,实质指证明或佐证
飞行员们一看就明白了,如果座舱中弹,飞行 员就完了;尾翼中弹,飞机失去平衡,就会坠落— ——这两处中弹,轰炸机多半回不来,难怪统计数 据是一片空白。
因此,结论很简单:只给这两个部位焊上钢板。
引例
• 第一块钢板是机智的飞行员用它挽救了自己 的生命。 • 第二块钢板则是教训,它是用宝贵的生命换 来的。 • 第三块钢板是升华,用科学的方法,从实战 经验中提炼出规律,这块讲科学的钢板,挽救 了众多飞行员的生命。

全国大学生数学建模竞赛简介PPT课件

全国大学生数学建模竞赛简介PPT课件

194
35
225
39
224
38
262
46
223
43
队数
总数
中国
211
4
235
6
260
21
292
26
259
40
315
84
320
84
393
115
409
107
472
138
479
155
美国大学生数学建模竞赛
• 1985年开始举办数学建模竞赛(MCM), 1989年我国 (我校)学生开始参加。
• 1999年开始增办交叉学科竞赛(ICM).
竞赛宗旨
竞赛事项
❖ 答卷按省(市、自治区)和全国两级评奖; ❖ 每年赛题、优秀答卷及获奖名单刊登于次年
“工程数学学报”第1期; ❖ 全国组委会网址:
竞赛的社会影响不断扩大
❖ 99年的竞赛命名为“99’创维杯全国大学生数学建 模竞赛”;
❖ 2000年的竞赛命名为“2000网易杯全国大学生数 学建模竞赛”;
❖ A,C 为连续型题目; B,D为离散型题目
评奖标准
❖ 假设的合理性、建模的创造性、结果的正确 性和文字表述的清晰程度。
竞赛意义
大学阶段难得的一次近似于“真刀真枪” 的训练,模拟了毕业后工作时的情况,既丰 富、活跃了广大同学的课外生活,也为优秀 学生脱颖而出创造了条件.
竞赛意义
❖ 数学建模竞赛培养学生创新精神,提高 学生综合素质;
年 2000 2001 2002 2003 2004 2005
参赛国数 9 11 11 8 9 9
参赛总队数 495 579 628 638 742 808
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:存在0,使f(0) = g(0) = 0.
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
如虎添翼
数学建模
计算机技术
知识经济
1.3 数学建模示例
1.3.1 椅子能在不平的地面上放稳吗
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
河 小船(至多2人)
但是乘船渡河的方案由商人决定.
商人们怎样才能安全过河?
问题分析
多步决策过程
3名商人 3名随从
决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员
要求~在安全的前提下(两岸的随从数不比商人多),经有限 步使全体人员过河.
模型构成
xk~第k次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 sk=(xk , yk)~过程的状态
• 1、培养创新意识和创造能力 • 2、训练快速获取信息和资料的能力 • 3、锻炼快速了解和掌握新知识的技能 • 4、培养团队合作意识和团队合作精神 • 5、增强写作技能和排版技术 • 6、更重要的是训练人的逻辑思维和开放性
思考方式
数学建模的具体应用
• 分析与设计
• 预报与决策
• 控制与优化
• 规划与管理
时间)列出数学式子(二元一次方程); • 求解得到数学解答(x=20, y=5);
• 其实我们也遇到很多类似的例子
数学模型 (Mathematical Model) 和 数学建模(Mathematical Modeling)
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型 水箱中的舰艇、风洞中的飞机… … ~ 物理模型 地图、电路图、分子结构图… … ~ 符号模型
模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征
你碰到过的数学模型——“航行问题”
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视。
• 在一般工程技术领域数学建模仍然大有用武之地; • 在高新技术领域数学建模几乎是必不可少的工具; • 数学进入一些新领域,为数学建模开辟了许多处女地。
xk, yk=0,1,2,3; k=1,2, S ~ 允许状态集合
S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
uk~第k次渡船上的商人数
uk, vk=0,1,2;
vk~第k次渡船上的随从数
k=1,2,
dk=(uk , vk)~决策 D={(u , v) u+v=1, 2} ~允许决策集合
sk+1=sk +(-1)k dk
~状态转移律
多步决策 求dkD(k=1,2, n), 使skS, 并按
问题
转移律由 s1=(3,3)到达 sn+1=(0,0).
模型求解
S={(x , y) x=0, y=0,1,2,3;
• 穷举法 ~ 编程上机
着地的关系表示出来
地面为连续曲面
f() , g()是连续函数
椅子在任意位置 至少三只脚着地
对任意, f(), g()
至少一个为0
数学 问题
已知: f() , g()是连续函数 ; 对任意, f() • g()=0 ;
且 g(0)=0, f(0) > 0.
只脚同时着地。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
用(对角线与x轴的夹角)表示椅子位置 B ´ B A ´
• 四只脚着地 椅脚与地面距离为零
距离是的函数
C
四个距离
两个距离
(四只脚) 正方形

对称性
A
O
x
D´ D
A,C 两脚与地面距离之和 ~ f() B,D 两脚与地面距离之和 ~ g()
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
(x y)30750
x =20
(x y)50750求解 y =5
答:船速每小时20千米/小时.
航行问题建立数学模型的基本步骤
• 作出简化假设(船速、水速为常数); • 用符号表示有关量(x, y表示船速和水速); • 用物理定律(匀速运动的距离等于速度乘以
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
数学建模的起源
• 数学建模是在20世纪60和70年代进入一 些西方国家大学的,我国的几所大学也在 80年代初将数学建模引入课堂。经过20多 年的发展现在绝大多数本科院校和许多专 科学校都开设了各种形式的数学建模课程 和讲座,为培养学生利用数学方法分析、 解决实际问题的能力开辟了一条有效的途 径。
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏)
随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货.
第一章 建立数学模型
1.1 从现实对象到数学模型 1.2 数学建模的重要意义 1.3 数学建模示例 1.4 数学建模的方法和步骤 1.5 数学模型的特点和分类 1.6 怎样学习数学建模
1.1 从现实对象到数学模型
在开始这门课之前,问大家几个问题:
1、有哪些专业不用数学? 2、你用数学解决过实际问题吗? 3、解决什么问题? 4、为什么没有解决过问题?
相关文档
最新文档