第四代核能系统——高温气冷堆技术介绍

合集下载

高温气冷堆的优势

高温气冷堆的优势

高温气冷堆的优势高温气冷堆(HTGR)是一种新型的核能技术,由于其与传统的水冷堆相比具有许多优势而备受关注。

本文将探讨高温气冷堆的优势,包括安全性、高效性和多功能性。

首先,高温气冷堆具有较高的安全性。

传统的水冷堆使用水作为冷却剂,存在着严重的安全隐患,如可能的水链断裂、蒸汽爆炸等。

而高温气冷堆则采用气体(如氦气)作为冷却剂,相比之下,气体不会导致爆炸和冲击波,从而减少了核事故的风险。

此外,高温气冷堆还具有更好的放射性废料处理能力,使其成为更安全的选择。

其次,高温气冷堆具有高效性。

高温气冷堆的工作温度可达到几百摄氏度,相比之下,传统的水冷堆只能达到几十摄氏度。

这意味着高温气冷堆能够更高效地转换核能为电能或热能,提高核能利用效率。

高温气冷堆还具有较高的热效应,可以广泛应用于工业生产中,如水制氢、化学反应(例如石墨化学气相沉积)等领域。

此外,高温气冷堆的热效应还可以用于供暖、干燥等民用生活领域,从而提高核能的多功能性。

第三,高温气冷堆具有多功能性。

高温气冷堆可以应用于半挂车、船舶等移动设备中,提供电力或热能供这些设备使用。

与此同时,高温气冷堆还可以应用于空间站等特殊环境,提供可靠的电力供应。

另外,高温气冷堆可以与可再生能源相结合,实现能源互补和能源转换。

例如,高温气冷堆可以与风能、太阳能等可再生能源相结合,使可再生能源在不稳定供电情况下仍能稳定运行。

除了上述优势,高温气冷堆还具有较短的建设周期和较小的占地面积。

高温气冷堆的建设周期较短,能够快速实现核能供应,从而满足能源需求。

与此同时,高温气冷堆占地面积相对较小,比传统的水冷堆更加灵活,可以灵活应用于城市、乡村或偏远地区,从而更好地满足各地的能源需求。

综上所述,高温气冷堆的优势在于安全性、高效性和多功能性。

它是一种更安全、更高效的核能技术,并且可以广泛应用于不同领域,满足各种能源需求。

高温气冷堆的发展将推动核能技术的进步,促进能源的可持续发展。

高温气冷堆技术特点包括

高温气冷堆技术特点包括

高温气冷堆技术特点包括高温气冷堆(High Temperature Gas-cooled Reactor,HTGR)是一种高效、安全、环保的新型核能技术,其技术特点包括以下几个方面。

首先,高温气冷堆具有高效能的特点。

传统的压水堆和沸水堆采用的是低温冷却剂,限制了核反应堆的热效率。

而高温气冷堆采用氦气作为冷却剂,使得工作温度可以达到800℃以上,相对于传统堆芯的温度提高了几倍。

高温气冷堆可以利用高温热能,提高热效率,提供更多的电力输出,实现核能的高效利用。

其次,高温气冷堆具有更高的安全性。

高温气冷堆采用了三次裂变转变概念,核反应堆芯与冷却循环系统之间的辐射屏蔽层完全隔离,有效避免了裂变产品的泄漏,降低了放射性污染的风险。

此外,高温气冷堆还采用了几何具有安全特性的芯块形状,使其具有良好的自稳定性和应对冲击负荷的能力。

同时,高温气冷堆采用了固体燃料,避免了液体燃料在高温下破裂的可能性,大大降低了核反应堆事故的风险。

另外,高温气冷堆还具有较强的灵活性和适应性。

高温气冷堆采用了球堆的设计形式,模块化程度高,堆芯单节点可拆卸,堆芯构件可根据实际需求进行灵活调整,方便维护和更新。

高温气冷堆还可以根据实际需求提供多种不同形式的热能输出,如发电、煤炭转化、水化制氢等,具有多功能的适用性。

此外,高温气冷堆具有较低的燃料消耗和核废料产生。

高温气冷堆采用了高浓缩程度的燃料球形颗粒,可实现燃料的长周期使用,燃料利用率高达90%以上。

同时,由于反应堆芯温度高于传统堆芯,核废料的销售期相对较长,对于核废料的处理和排放也相对较少,减少了对环境的负面影响。

最后,高温气冷堆具有经济性和可持续性。

高温气冷堆具有较长的寿命和高可靠性,核电经济性指标较高。

由于核反应堆芯温度高,可以与多种工业生产过程进行热耦合,实现齐氏动力系统。

同时,高温气冷堆还具有低碳排放的特点,与新能源和智能电网相结合,能够提供带有较少温室气体排放的能源需求。

综上所述,高温气冷堆具有高效能、高安全性、较强的灵活性和适应性、低燃料消耗和核废料产生、经济性和可持续性等一系列技术特点。

高温气冷堆

高温气冷堆

高温气冷堆2000年12月,国家863计划重大项目——10兆瓦高温气冷实验反应堆在北京建成,并成功达到临界。

我国高温气冷堆技术的研究发展工作始于七十年代中期,主要研究单位是清华大学核能技术设计研究院。

1986年国家863计划启动后,高温气冷堆被列为能源领域的一个研究专题,在国内有关单位的协作下,完成了一些重大的创新,既确保了安全可靠,又简化了系统,达到了世界领先的水平。

那么,高温气冷堆究竟是什么呢?这要从反应堆说起。

通俗地说,反应堆就是“原子锅炉”,是通过控制核燃料的反应来产生原子能的装置。

通常,反应堆的核燃料是铀235,在中子的作用下能够产生核裂变。

一个铀235原子核吸收一个中子以后,会分裂成两个较轻的原子核,以热的形式释放出能量,并产生两个或者三个新的中子。

在一定的条件下,新产生的中子会引发其它的铀235原子核裂变,这种反应延续下去,就是“链式裂变反应”。

要形成“链式裂变反应”,不仅铀235要达到一定数量,还必须用慢化剂把高能量的中子减慢为“热”中子。

控制反应堆中核燃料的反应使核能缓慢释放,并用载热剂从反应堆中导出热量,就能对核能加以利用。

现在世界上大部分反应堆用的是金属管棒状燃料元件,载热剂是水,不耐高温。

即使是压水堆,最高温度也只能达到328摄氏度。

而高温气冷堆的载热剂是氦气,用石墨作为慢化剂和结构材料,通过高科技工艺制造球形包覆燃料元件。

它的堆芯温度可达1600摄氏度,氦气出口的温度高达900摄氏度,这是其它任何类型的反应堆都达不到的。

与一般的反应堆不同,清华大学核研院设计建造的10兆瓦高温气冷堆是一种新型的反应堆,不仅保证了先进性和安全性,经济效益也很突出。

首先,高温气冷堆具有固有的安全性。

它的反应控制和压力调节简单,安全系统大为简化。

即使失去冷却,全陶瓷的燃料元件也会逐渐降温,任何时候都不会发生烧毁的事故。

其次,高温气冷堆是按照模块化概念和准则设计建造的,避免了施工现场的大量焊接和检验工作,建造周期仅为2到3年;还可以连续装卸燃料,发电效率从压水堆的35%左右提高到了45%左右,在经济上可以和普通的热电厂一争高下。

第四代核反应堆系统说明介绍

第四代核反应堆系统说明介绍

第四代核反应堆系统简介绪言第四代核反应堆系统(Gen IV)是当前正在被研究的一组理论上的核反应堆,其概念最先是在1999年6月召开的美国核学会年会上提出的。

美国、法国、日本、英国等核电发达国家在2000年组建了Gen-IV国际论坛(GIF),并完成制定Gen IV研发目标计划。

预期在2030年之前,这些设计方案一般不可能投入商业运行。

核工业界普遍认同将,目前世界上在运行中的反应堆为第二代或第三代反应堆系统,以区别已于不久前退役的第一代反应堆系统。

在八项技术指标上,第四代核能系统国际论坛已开始正式研究这些反应堆类型。

这项计划主要目标是改善核能安全,加强防止核扩散问题,减少核燃料浪费和自然资源的利用,并降低建造和运行这些核电站的成本。

并在2030年左右,向商业市场提供能够很好解决核能经济性、安全性、废物处理和防止核扩散问题的第四代核反应堆。

图1 从第一代到第四代核能系统的时间跨越第一代核反应堆产生于上个世纪70 年代前,其主要目的是生产用于军事目的的铀;第二代核反应堆出现于70 年代,是目前大部分核电站使用的堆型,其目的是降低对石油国家的能源供应依赖;第三代核反应堆是在1979 年美国长岛和1986 年乌克兰切尔诺贝利核电站事故后出现的,主要是增加了安全性,但它并不能很好地解决核废料问题;第四代核反应堆则可以同时很好地解决安全和废料问题。

对于第四代核能系统标准且可靠的经济评价,一个完整的核能模式显得十分重要。

对于采用新型核能系统的第四代核电站的经济评估,人们需要采用新的评价手段,因为它们的特性大大不同于目前的第二代和第三代核电站。

目前的经济模式不适合于比较不同的核技术或核电站,而是用于比较核能和化石能源。

第四代核反应堆的堆型最初,人们设想过多种反应堆类型。

但是经过筛选后,重点选定了几个技术上很有前途且最有可能符合Gen IV的初衷目标的反应堆。

它们为几个热中子核反应堆和三种快中子反应堆。

有关VHTR潜在的可供应高温工艺热以用于制氢的设想也正在研究中。

第四代核能系统的特点及其热力循环

第四代核能系统的特点及其热力循环

第四代核能系统的特点及其热力循环第四代核能系统的特点第四代核反应堆技术有别于第三代先进反应堆。

它在拓宽核能和平利用空间,提高核安全性、经济性等方面提出了一系列更加新颖的规划设想,包括更合理的核燃料循环、减少核废物、防止核扩散以及消除严重事故、避免厂外应急等。

2002年第四代核能系统国际论坛选择了以下6种技术方案作为第四代核反应堆重点开发对象。

1.超临界水冷堆(SCWR)SCWR是在水的热力学临界点以上运行的高温、高压水冷堆。

SCWR效率比目前轻水堆高1/3,采用沸水堆的直接循环,简化了系统。

在相同输出功率下,由于采用稠密栅格布置以及超临界水的热容大,因此SCWR只有一般轻水堆的一半大小。

超临界水冷堆及其系统因为反应堆的冷却剂不发生想变,而且采用直接循环,可以大大简化系统。

SCWR参考堆热功率1700MWt,运行压力25MPa,堆芯出口温度510℃,使用氧化铀燃料。

SCWR的非能动安全特性与简化沸水堆相似。

SCWR结合了轻水反应堆和超临界燃煤电厂两种成熟技术。

由于系统简化和热效率高(近效率达44%),发电成本可望降低30%,SCWR在经济上有很大竞争力。

日本提出的热中子谱超临界水堆系统是较为典型的压力容器式反应堆。

该方案取消了蒸汽发生器、稳压器和二回路相关系统,整个装置是一个简单的闭式直接循环系统。

超临界压力水通过反应堆堆芯加热直接引入汽轮机发电,实现了直接循环,使系统大大简化。

系统压力约25.0MPa,反应堆的冷却剂入口温度为280℃,出口温度为530℃。

装置热功率为2740MW,净效率高达44.4%,可输出1217MW 电功率SCWR待解决的技术问题:材料和结构要耐极高的温度、压力以及堆芯的辐射,这就带来了很多相关问题,涉及腐蚀问题、辐射分解作用和水化学作用以及强度和脆变等问题;SCWR的安全性,涉及非能动安全系统的设计,要克服堆芯再淹没时出现的正反应性;理论上有可能出现密度波以及热工水力学和自然循环相耦合的不稳定性。

高温气冷堆—第四代核电技术的重要途径

高温气冷堆—第四代核电技术的重要途径
Temperature
gas
cooled Reactor—Pebble—bed
Module。HTR.PM)项目。该核电厂采用2 X 250MWuh双
模块球床反应堆,连接一台常规高温高压过热蒸汽透平发电机组.发电效率4296。作为配套设施,将建设大型氦气 实验回路和一条年产30万个球型燃料元件的生产线。其安全目标是在技术上不需要场外应急。经济目标是揭示模块 式高温气冷堆的潜在经济性。 关键词:核电(Nuclear Power) 高温气冷堆(HTGR)
1引言
核能发展战略
在三哩岛和切尔诺贝利事故后,世界核能界积极研究开发新一代具有更好安全性的核电技术。在轻水堆技术 方面,发展了以增加安全系统冗余度为主要特征的先进轻水堆核电站女flEPR,ABWR以及System 80+,和以采用 非能动安全系统为主要特征的APl000和ESBWR,它们后来被统称为第三代核电技术。具有更高安全性能轻水堆 核电站,例如西屋公司的IRIS,原ABB公司的PlUS也得到一定程度的发展。在气冷堆领域,于1980年代初,德国 SIEMENSfInteratom公司的H.Reutler和G.Lohnen等提出模块式高温气冷堆概念,这种反应堆在丧失冷却剂事故下, 不采取任何应急冷却措施.燃料元件的最高温度不会超过其设计损坏限值。此后,气冷堆进入模块式高温气冷堆技 术发展阶段。这种反应堆具有固有安全特性。按照1992年IAEA关于先进核电系统的会议的说法.这类反应堆被称为 。超越下一代的核电厂。。其安全目标是:所有现实可设想的严重事故的后果都不得有显著的场外辐射影响…。 自2000年以后提出的第四代核能系统的安全目标是在技术上排除场外应急的需要。模块式高温气冷堆成为第四代核 能系统技术的6个候选堆型之一拉)。 高温气冷堆采用氦气作冷却剂.石墨作慢化剂和结构材料。由许多微小的。包覆颗粒”核燃料弥散在石墨中组 成燃料元件。堆芯出口氦气温度可达到700.950℃。因此.高温气冷堆能够充分利用常规化石能源电厂高效成熟的技 术成果。例如,采用高温高压过热蒸汽或者超临界蒸汽透平发电,发电效率可以达到40-45%,采用类似燃气轮机的 氦气透平发电技术可进一步提高发电效率。此外,高温热源可以用于稠油热采、水热化学裂解制氢、煤的气化和液 化、炼钢及化工过程,替代石油和天然气。 从20世纪60年代开始,英国、美国和德国开始研发高温气冷堆。1962年,英国与欧共体合作开始建造世界第一 座高温气冷堆龙堆(Dragon),其热功率20兆瓦,该堆于1964年建成临界。其后,德国建成了电功率15MW的实验 高温气冷堆AVR堆和电功率300MW的高温气冷堆核电站THTR.300,美国建成了电功率40兆瓦的实验高温气冷堆桃 花谷(Peach.Bottom)堆和电功率330MW的圣符伦堡(Fort.St.Vrain)高温气冷堆核电站,这些电站大多采用钍.铀 燃料。日本于1991年开始建造热功率为30兆瓦的高温气冷工程试验堆ITITR,1998年建成临界n’。

高温气冷堆的工作原理

高温气冷堆的工作原理

高温气冷堆的工作原理高温气冷堆的工作原理高温气冷堆(High-Temperature Gas-Cooled Reactor,简称HTGR)是一种基于气冷技术的新型核反应堆。

相比传统的水冷堆,高温气冷堆具有更高的温度和更高的燃烧效率,同时还具备较高的安全性和可靠性。

本文将详细介绍高温气冷堆的工作原理。

高温气冷堆的核燃料是以富集铀或钚等核材料制成的小型球体,被称为“球形颗粒堆”,这些颗粒由包层材料包围,形成可在高温下工作的燃料元件。

燃料元件堆叠在一起形成一个燃料堆芯。

在堆芯外部,布置有气体冷却剂,通常使用大气中常见的氦气作为冷却剂。

由于氦气无毒、无腐蚀性、低密度等特点,使得高温气冷堆具备了较高的安全性和可靠性。

高温气冷堆的工作过程包括燃料核裂变产生热能、热能转化为动能、动能转化为电能等多个步骤。

首先,燃料堆芯中的核燃料颗粒发生裂变反应,产生大量的热能。

这些裂变反应会持续引发新的核裂变反应,使得燃料堆芯内的温度升高。

然后,燃料堆芯内的热能会传导到燃料元件表面的包层材料中。

包层材料具有较低的热导率,能够有效地阻止热能向外传递,使得燃料堆芯温度不断上升。

接下来,燃料堆芯外的氦气冷却剂会通过管道进入堆芯内,吸收燃料元件表面的热能。

在这个过程中,氦气会被加热,温度逐渐升高。

随后,加热后的氦气会流出堆芯,通过热交换器与其他工质进行热交换。

热交换器中的工质(通常是水)会受热变成蒸汽,然后推动涡轮发电机转动,将热能转化为动能。

最后,动能通过涡轮发电机转化为电能。

这样,从核裂变产生的热能最终转化为了实用的电能。

高温气冷堆的这一工作过程具备多重安全性措施。

首先,堆芯材料和冷却剂均为无毒无腐蚀性材料,避免了放射性物质泄漏和腐蚀问题。

其次,高温气冷堆具有自动关闭和冷却功能,一旦超温或故障发生,系统会自动停止工作并冷却下来。

此外,高温气冷堆还具备较高的热效率,能够更好地利用燃料资源,减少对环境的影响。

综上所述,高温气冷堆是一种基于气冷技术的新型核反应堆。

高温气冷堆的技术及装备

高温气冷堆的技术及装备

高温气冷堆的技术及装备随着经济社会发展,人类对能源需求日渐增多。

但传统化石能源有着污染大,不可再生的缺陷,并且储量日益减少。

核能为人类提供了一个清洁,取之不尽用之不竭的能源宝库,到现在为止已有四代核电技术的历史,人们通常把五、六十年代建造的验证性核电站称为第一代;70、80年代标准化、系列化、批量建设的核电站称为第二代;第三代是指90年代开发研究成熟的先进轻水堆;第四代核电技术是指待开发的核电技术,其主要特征是防止核扩散,具有更好的经济性,安全性高和废物产生量少。

第四代核反应堆的六个构型中,就有高温气冷堆,高温气冷堆是国际公认的具有先进技术的新型核反应堆,我国的高温气冷堆研究技术处于国际领先地位。

其主要特点是固有安全性能好、热效率高、系统简单。

目前已成功地建设了10MW实验电站,并完成了多项安全性实验工作,在向商业化转化的过程中,得到国家有关部门的大力扶持。

项目已经列入《国家中长期科学和技术发展规划纲要》和《中华人民共和国国民经济和社会发展第十一个五年规划纲要》。

传统核反应堆存在建造周期长,相对效率较低,安全性不高成本高的不足。

自从前苏联切尔诺贝利电站发生核泄漏事故以后,人类更希望有更安全的利用核能的方式。

高温气冷堆是在以天然铀为燃料、石墨为慢化剂、CO2为冷却剂的低温气冷堆的基础上发展起来的,具有固有的安全性,使得反应堆辅助系统减少,有效降低了成本并且拥有很高的效率。

高温气冷堆是现有堆型中工作温度最高的堆型,可以广泛应用于需要高温高热的工业部门。

高温气冷堆作为第四代核反应堆具有广阔的应用前景。

1.高温气冷堆的组成结构及其工作原理通俗地说,反应堆就是“原子锅炉”,是通过控制核燃料的反应来产生原子能的装置。

通常,反应堆的核燃料是铀235,在中子的作用下能够产生核裂变。

一个铀235原子核吸收一个中子以后,会分裂成两个较轻的原子核,以热的形式释放出能量,并产生两个或者三个新的中子。

在一定的条件下,新产生的中子会引发其它的铀235原子核裂变,这种反应延续下去,就是“链式裂变反应”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

100.0
10 50.0 5
0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
0.0
Time(Month since January 2003)
Integrated power (MWD)
19
Days of operation
丧失冷却+不紧急停堆实验
燃料元件在俄罗斯的辐照燃耗已达 100000 MWd/t(U) ,受辐照的 4 个燃料元件中的 3 万多个包覆燃料颗粒没 有一个因为辐照破损
18
至2006年3月累计运行469天
35
Days of operation Integrated power
250.0
30 200.0 25
20
150.0
15

按照核安全局批准的程序,旁通反应堆紧急停堆系统。
关闭风机,关闭二回路隔离阀:丧失冷却。
控制棒不下落,反应堆堆芯温度缓慢上升由于堆芯燃料的负 温度系数(当温度升高,反应堆功率下降),反应堆功率自 动下降。。 最终堆芯剩余发热和通过反应堆压力壳表面散发的热量建立 平衡,反应堆温度开始下降。


11
10 MW 高温气冷堆外景
12
反应堆系统
反应堆热功率,MW 一回路压力, MPa
10 3
氦气入口温度, ℃
氦气出口温度,℃ 燃料球数目
250/300
700/900 27000
13
反应堆和蒸汽发生器舱室
14
10 MW 高温气冷堆实现满功率运行
2003 年 1 月 29 日主控制室仪表显示达到 10 MW 满功率 核裂变产生的热量经发电后通过 冷凝器排出
反应堆压力边界和堆内构件占核岛设备13%
32
NSSS内其余部件
核岛其它设备
高温气冷堆辅助系统少
轻水堆 系统数比较 南非高温堆
电厂系统数
安全系统数 现场材料比较 钢筋 (吨/MWe) 混凝土(立方码/MWe) 结构钢 (吨/MWe)
142
47
68
9
38 324 13
16 100 2
33
Source: Regis Matzie, HTR 2004
7
南非PBMR:热功率400MW,电功率165MW,氦气温度:500/900℃,直接氦气循环,主 设备已经订货
8
美国GA和俄罗斯OKBM的GT-MHR: 600MW热功率
9

美国2004年启动NGNP(Next Generation Nuclear Plant,下一代核电 站)项目,计划在美国爱达荷建设热功率400-600 MW超高温气冷堆, 50MW用于制氢,其余发电。西屋公司、AREVA公司和GA公司正在积 极准备竞标获得建造合同。 法国AREVA NP公司也在加快发展高温气冷堆,2004年已经投入超过 100人年,2600万美元的预算,2005年进一步增加人力。他们的反应堆 技术方案同GT-MHR类似,正在研究中间热交换器,以采用间接氦气轮 机循环发电。法国原子能委员会正在开展一系列有关高温气冷堆的研究。 日本在HTTR堆运行之后,已把高温气冷堆列入长期研发计划。韩国政府 计划发展高温气冷堆技术,韩国原子能研究院和清华大学于2004年成立 了中韩联合核能制氢研究中心。
高温气冷堆技术的发展历史
电功率 300 MWe 1000 MWe 固有安全 100 - 300 MWe
早期气冷堆
Magnox+AGR CO2 冷却剂 36+14 台机组
高温气冷堆
HTGR 陶瓷包覆燃料 元件 氦气冷却剂
模块式高温 气冷堆
MHTGR 陶瓷包覆燃料 元件
700-950个 ° C
3 台试验堆 1950 年代 2 台原型堆 1970 年代
36
核供热堆发展目标和技术特点
核供热堆是我国自主创新开发的先进型反应堆,具有如 下主要技术特点:

一体化技术和自稳压原理 全功率自然循环冷却
非能动安全系统
新型水力控制棒驱动 运行参数低,安全裕度大,运行可靠

系统简化,操作简便,无须操纵员干预,避免人因错误
37
核供热堆输热系统
余热排出
反应堆堆芯燃料最高温度始终低于安全限制 (1600 ℃) ,放 射性释放没有明显增加。
20
重要安全实验:功率和风机转速的变化过程
3500 3000 2500 2000 1500 1000 500 0 15:20 15:50 16:20 16:50 17:20 17:50 18:20
功率(kw) 风机转速(rpm)
30
高温气冷堆核电机组 和先进压水堆机组的比较
高温气冷堆核电机组
先进压水堆核电机组
31
压水堆核电机组的基本比例关系
0.300 0.250 0.200
核岛设备
0.150 0.100
工程其它投资
0.050 0.000
反应堆压力边界和堆内构件
反应堆辅助系统
核燃料装卸与贮存
电气与仪表控制
核岛设备投资占工程总投资23%
瘦长型堆芯有利于散热 限制反应堆功率
1.E-4
1.E-2 1.E+0 时间(小时)
1.E+2
1.E+4
高温堆:对付1000kW余热(约1/200)
2,简化系统
Reactor System
6
2个实验堆:中国的HTR-10;日本的HTTR。 3个商业示范电站:南非的PBMR,热功率 400MW,球床;中国的HTR-PM,热功率 458MW,球床;美俄的GT-MHR,热功率 600MW,棱柱。
(7) 为进一步研究与开发氦气直接循环发电、超临界发电和高温堆制氢等前 沿技术提供基础。
26
堆本体 示意图
27
德国双模块机组高温气冷堆
Source:HTR Module Safety Analysis Report, Siemens
28
29
南非PBMR和压水堆的比较
Source:HTR2004, 2004, Beijing
21
丧失热阱ATWS安全验证实验
3500.0 3000.0 2500.0
rpm
风机转速 (RPM) 风机转速(rpm) 反应堆功率 (kW) 核功率(kW)
12000.0 10000.0 8000.0 6000.0 4000.0 2000.0 0.0 60 120 180 240 300 360 420 480 540 600 660 time(s)
kW
22
2000.0 1500.0 1000.0 500.0 0.0 0
HTR-PM:战略意义和必要性
(1)不失时机在国际上抢占模块式高温气冷堆领域 竞争的制高点,掌握拥有自主知识产权的核心技术, 建立自主品牌,提高我国先进核能技术在国际上的竞 争力 (2)发展先进核能技术,为国家能源的可持续发展 做贡献 (3)以企业为创新主体,产学研结合,探索高科技 成果产业化的新途径和新机制
23
战略意义和必要性

清华大学核研院在国家“863“计划的支持下,经过20年的拼 搏,发展了高温气冷堆技术。实现产业化是科研人员的理想, 是对国家负有的责任。 中国核工业建设集团作为国家两大核工业集团之一,希望通过 核能技术的创新使企业获得长远的发展动力。 中国华能集团作为国内最大的电力公司之一,以促进国家技术 创新为己任,支持新技术的采用。 中国华能集团公司和中国核工业建设集团、清华大学共同投资, 组成示范电站的业主。 中国核工业建设集团和清华大学合资成立了中核能源科技公司, 作为示范电站的EPC 承包商和核岛设备的集成供货商,成为高 温气冷堆核电站技术创新的企业主体。
氦气冷却剂
700-950个 ° C 2 台试验堆 1980 年代
1
2
3
SIEMENS HTR-Module 功率:200MW 电功率:80MW 堆芯平均功率密度:3 MW/M3 主回路氦气压力: 6.0MPa 堆芯出口热氦气温度:700 ℃ 堆芯入口冷氦气温度:250 ℃
4
6厘米直径的“煤球形”核燃料
24
发展目标和成果
发展目标是:在我国已经建成的10MW高温气 冷实验堆的技术基础上,瞄准国际上新一代核 能技术的发展方向,借鉴国外高温气冷堆的经 验,通过自主研究与开发,力争2013年前后 建成电功率为20万千瓦级、具有自主知识产权 的高温气冷堆核电站示范工程。
25
发展目标和成果(续)
通过本项目的实施,预期将获得如下成果:
接热网
中 间 回 路
供 热 反 应 堆
38
核供热堆堆体结构
39
40
5MW低温核供热试验堆
41
5MW低温核供热试验堆
李岚清副总理于2000年2月2日 参观清华大学5MW低温核供热试验 堆的二回路(下图)和控制室(右图)
42
核供热堆推广应用前景
区域供热
大面积空调
应用领域
海水淡化 热电联供 工业供气 及其它应用
5
模块式高温气冷堆的固有安全特性
1,高温气冷堆停堆后的余热通过 反应堆压力壳表面散出。不需要 专设设施以防止堆芯熔化。排除 堆芯熔化。
燃料元件耐1600℃高温
剩余发热量(相当于满功率的份额)
0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 1.E-6
堆内石墨提供大热容
15
堆芯横截面
16
直径 6 厘米的燃料球
17
包覆颗粒燃料元件主要性能指标达到 国际先进水平
制作了 20000 个燃料元件,每一批的 34 项性能均达到 10 MW 高温气冷堆的设计要求 燃料元件的破损率达到世界最好水平 清华 1.4×10-5 日本 3.1×10-5 德国 3×10-5 计划指标 3×10-4
相关文档
最新文档