【高中数学课件】圆锥曲线中的定值、定点问题

合集下载

圆锥曲线中的定点、定值问题课件-2025届高三数学一轮复习

圆锥曲线中的定点、定值问题课件-2025届高三数学一轮复习

有lMN:x=2+1=3,也过定点(3,0), 故直线MN过定点,且该定点为(3,0).
(2)设G为直线AE与直线BD的交点,求△GMN面积的最小值.
解:由A(x1,y1),B(x2,y2),E(x3,y3),D(x4,y4), 则 lAE:y=yx33- -yx11(x-x1)+y1,由 y21=4x1,y22=4x2, 故 y=yy4323--yy4121x-y421+y1=y3+4xy1-y3+y21 y1+y1=y3+4xy1+y3y+1y3y1, 同理可得 lBD:y=y4+4xy2+y4y+2y4y2,
(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M, N,证明:线段MN的中点为定点.
解:证明:由题意可知:直线PQ的斜率存在, 设PQ:y=k(x+2)+3, P(x1,y1),Q(x2,y2), 联立方程
y=k(x+2)+3, y92+x42=1, 消去y得(4k2+9)x2+8k(2k+3)x+16(k2+3k)=0, 则Δ=64k2(2k+3)2-64(4k2+9)(k2+3k)=-1 728k>0,解得k<0,
[kx1+(2k+3)](x2+2)+[kx2+(2k+3)](x1+2) (x1+2)(x2+2)
=2kx1x2+x(14xk2++32)((xx11++xx22))++44(2k+3)
=32k4(kk22++19364k(kk)-22++893kk(4)-k4+1k263+4k)k((2292+kk++933))++44(2k+3)=13068=3, 所以线段MN的中点是定点(0,3).
综合①②知,|MN|=4 3,为定值.
规律方法
由特殊到一般法求定值问题的两个常用技巧

圆锥曲线定点问题 ppt课件

圆锥曲线定点问题 ppt课件
圆锥曲线定点问题
y=kx+m, (2)设点 P(x0,y0),由 x42+y32=1
得(4k2+3)x2+8kmx+4m2-12=0, 由题意知 Δ=64k2m2-4(4k2+3)(4m2-12)=0, 化简得 4k2-m2+3=0,
∴x0=-4k42k+ m3=-4mk,y0=m3 ,∴P-4mk,m3 .
y=kx+m,
由x=4
得 Q(4,4k+m),
假设存在点 M,坐标圆为 锥曲线(x定点1, 问题 0),
则M→P=-4mk-x1,m3 ,M→Q=(4-x1,4k+m). ∵以 PQ 为直径的圆恒过 M 点,∴M→P·M→Q=0, 即-1m6k+4kmx1-4x1+x21+1m2k+3=0, ∴(4x1-4)mk +x21-4x1+3=0 对任意 k,m 都成立. 则4x21x-1-44x=1+03,=0,解得 x1=1,
圆锥曲线定点问题
(1)解 依题意得 e=ac= 23,
(2 分)
过右焦点 F 与长轴垂直的直线 x=c 与椭圆xa22+by22=1,
联立解得弦长为2ab2=1,∴a=2,b=1,
所以椭圆 C 的方程为x42+y2=1.
(4 分)
圆锥曲线定点问题
(2)证明 设 P(1,t),kPA=1t-+02=3t , 直线 lPA:y=3t (x+2),
圆锥曲线定点问题
解 (1)由 e=12可得 a2=4c2,① S△F1AF2=12|AF1||AF2|sin 60°= 3,可得|AF1||AF2|=4, 在△F1AF2 中,由余弦定理可得 |F1A|2+|F2A|2-2|F1A|·|F2A|cos 60°=4c2, 又|AF1|+|AF2|=2a,可得 a2-c2=3,② 联立①②得 a2=4,c2=1.∴b2=3, ∴椭圆 C 的方程为x42+y32=1.

第9节 圆锥曲线中的定值、定点与存在性问题(课件PPT)

第9节 圆锥曲线中的定值、定点与存在性问题(课件PPT)
栏目导航
12
解:(1)由题意知 A(1,1),B(4,-2),设点 P 的坐标为(xP,yP), 切线 l1:y-1=k(x-1),联立yy-2=1x=k(x-1),由抛物线与直线 l1 相切,解得 k=12, 即 l1:y=12x+12,同理,l2:y=-14x-1.
xP=-2, 联立 l1,l2 的方程,可解得yP=-12, 即点 P 的坐标为-2,-12.
y0),由 k1+k2=2 得y0x-0 1+-yx00-1=2,得 x0=-1. 当直线 AB 的斜率存在时,设直线 AB 的方程为 y=kx+m(m≠1),A(x1,y1),B(x2,
y2). 则x22+y2=1 ,可得(1+2k2)x2+4kmx+2m2-2=0, y=kx+m
栏目导航
17 则 Δ=8(2k2-m2+1)>0,x1+x2=1-+42kkm2,x1·x2=21m+2-2k22 . 由 k1+k2=2,得y1x-1 1+y2x-2 1=2, 即(kx2+m-1)x1x+1x2(kx1+m-1)x2=2,(2-2k)x1x2=(m-1)(x1+x2),(2-2k)(2m2-
点,不妨设 C 为椭圆的左顶点,则 C(- 2,0),x1+x2=-x3= 2,x1=x2= 22,
可取 A 22, 23,B 22,- 23,则 S△ABC=12×
3×3 2
2=3
4
6 .
综上,△ABC 的面积为定值,定值为346.
栏目导航
10
解析几何中的定值问题是指某些几何量(线段的长度、图形的面积、角的度数、直线 的斜率等)的大小或某些代数表达式的值等和题目中的参数无关,不依参数的变化而变 化,始终是一个确定的值.求定值问题常见的方法有两种:①从特殊入手,求出定值, 再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而 得到定值.

高三总复习数学课件 圆锥曲线中的定点、定值问题

高三总复习数学课件 圆锥曲线中的定点、定值问题

定点问题
考向 1 参数法求证定点问题的一般思路 (1)把直线或者曲线方程中的变量 x,y 当作常数看待,把常量当作未知数,将方程 一端化为 0,即化为 kf(x,y)+g(x,y)=0 的形式(这里把常量 k 当作未知数). (2)既然过定点,那么这个方程就要对任意参数都成立,这时参数的系数就要全部 等于 0,这样就得到一个关于 x,y 的方程组,即fgxx,,yy==00,. (3)这个方程组的解所确定的点就是直线或曲线所过的定点,即满足fgxx,,yy==00, 的点(x0,y0)为直线或曲线所过的定点.
[解] (1)抛物线 y2=8x 的准线为 x=-2, 所以 F(-2,0),即 c=2, 又因为椭圆 C 经过点 A( 6,1),
则a62+b12=1, 解得 a2=8,b2=4, a2=b2+c2,
所以椭圆 C 的方程为x82+y42=1. (2)证明:由(1)知,A1(-2 2,0),A2(2 2,0), 所以 l1:x=-2 2,l2:x=2 2, 联立x82+y42=1, 消 y 得(2k2+1)x2+4ktx+2t2-8=0,
(2020·全国Ⅰ卷)已知 A,B 分别为椭圆 E:xa22+y2=1(a>1)的左、右顶点,G 为 E 的上顶点,―A→G ·―G→B =8.P 为直线 x=6 上的动点,PA 与 E 的另一交点为 C,PB 与 E 的另一交点为 D.
(1)求 E 的方程; (2)证明:直线 CD 过定点. [解] (1)由题意得 A(-a,0),B(a,0),G(0,1). 则―A→G =(a,1),―G→B =(a,-1). 由―A→G ·―G→B =8 得 a2-1=8,即 a=3. 所以 E 的方程为x92+y2=1.
直线过定点问题的解题模型

第8章 命题探秘2 第1课时 圆锥曲线中的定点、定值问题 课件(共39张PPT)

第8章 命题探秘2 第1课时 圆锥曲线中的定点、定值问题   课件(共39张PPT)

第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
法二:设T(x,y),Mx3,14x23,Nx4,14x24.
由xx2324= =44yy34, 得(x3+x4)(x3-x4)=4(y3-y4),
所以x3+4 x4=xy33--xy44. 设Q(x,y5),则直线MN的斜率k=yx5--12,
所以直线AB过定点0,21. (2)略.
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
02
典型考题·技法突破
技法一 技法二 技法三 技法四
直接推理解决直线过定点问题 直接推理解决曲线过定点问题 定直线的方程问题 直接推理解决定值问题
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
点评:动直线l过定点问题的基本思路 设动直线方程(斜率存在)为y=kx+t,由题设条件将t用k表示为t= mk,得y=k(x+m),故动直线过定点(-m,0).
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[思维流程]
第1课时 圆锥曲线中的定点、定值问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
[解] (1)设A(x1,y1),B(x2,y2). 因为F0,p2,所以过F且斜率为1的直线的方程为y=x+p2. 由y=x+p2, 消去y并整理,得x2-2px-p2=0,易知Δ>0.

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中定点与定值问题

2024届高考一轮复习数学课件(新人教B版):圆锥曲线中定点与定值问题

得 y2=83,
∴y=±2
6 3.
结合题意可知
M1,-2
3
6,N1,2
3
6,
∴过
M
且平行于
x
轴的直线的方程为
y=-2
6 3.
易知点 T 的横坐标 xT∈0,32,
直线 AB 的方程为 y-(-2)=-132---0 2×(x-0),即 y=23x-2,
由y=-2 3 6, y=32x-2
得 xT=3- 6,
设线段MN的中点为T(x0,y0), 则 x0=x1+2 x2=-4+3k3k2,y0=kx0+1=4+43k2, 线段 MN 的垂直平分线的斜率为-1k, 方程为 y-4+43k2=-1kx+4+3k3k2,
令 x=0,解得 y=4+13k2,即为点 H 的纵坐标,
∴|FH|=1-4+13k2=341++3kk22,
(2)若经过点P(t,0)的直线l与椭圆C交于A,B两点,实数t取何值时以AB 为直径的圆恒过点M ?
由(1)知M(2,0), 若直线l的斜率不存在,则直线l的方程为x=t(-2<t<2),
此时 At,
2-t22,Bt,-
2-t22,
由M→A·M→B=0
得t-2,
2-t22·t-2,-
2-t22=0,
1234
设直线MN的方程为y=kx+1,代入x2=4y, 得x2-4kx-4=0,所以x1x2=-4, 所以点P在y=-1上,结论得证.
1234
2.已知双曲线 C 的渐近线方程为 y=± 33x,且过点 P(3, 2). (1)求C的方程;
因为双曲线 C 的渐近线方程为 y=± 33x, 则可设双曲线的方程为x92-y32=λ(λ≠0), 将点 P(3, 2)代入得99-23=λ,解得 λ=13, 所以双曲线 C 的方程为x32-y2=1.

2025高考数学一轮复习-44.1-圆锥曲线中的定值与定点问题【课件】

2025高考数学一轮复习-44.1-圆锥曲线中的定值与定点问题【课件】
然直线 MN 的斜率不为 0,所以设直线 MN 的方程为 x=my-4, 且-12<m<12,与x42-1y62 =1 联立得(4m2-1)y2-32my+48=0,Δ =64(4m2+3)>0,则 y1+y2=4m322-m 1,y1y2=4m42y+1 2(x+2),直线 NA2 的方程为 y=x2y-2 2(x-2),联立直线 MA1
44.1-圆锥曲线中的定值与定点问题
举题说法 定点问题
1 已知点 P(4,3)在双曲线 C:ax22-yb22=1(a>0,b>0)上,过点 P 作 x 轴的平行线, 分别交双曲线 C 的两条渐近线于 M,N 两点,且|PM|·|PN|=4.
(1) 求双曲线C的方程;
【解答】因为点 P(4,3)在双曲线上,所以1a62-b92=1.过点 P 作 x 轴的平行线 y=3,与 y=±bax 相交于 M,N 两点,不妨取 M3ba,3,则 N-3ba,3,所以4-3ba×4+3ba =16-9ba22=a21a62 -b92=a2=4,所以 a=2. 代入1a62-b92=1,解得 b= 3,所以双曲线 C 的方程为x42-y32=1.
①【k解1+答】k2=若选1;①②:设k1kA2(=x1,1.y1),B(x2,y2).联立x42-y32=1, 得(3-4k2)x2-8kmx-4m2
y=kx+m, -12=0,所以 3-4k2≠0,Δ=(-8km)2-4(3-4k2)(-4m2-12)>0,即 m2+3-4k2> 0,x1+x2=3-8km4k2,x1x2=-34-m24-k212(*).
定直线问题
2 已知双曲线 C 的中心为坐标原点,左焦点为(-2 5,0),离心率为 5.
(1) 求C的方程;
【解答】设双曲线 C 的方程为ax22-by22=1(a>0,b>0).由焦点坐标可知 c=2 5.由 e= ac= 5,可得 a=2,则 b= c2-a2=4,故双曲线 C 的方程为x42-1y62 =1.

圆锥曲线中的定点 定值 最值 范围问题 公开课一等奖课件

圆锥曲线中的定点 定值 最值 范围问题  公开课一等奖课件

(2)双曲线中的最值 x2 y2 F1,F2 分别为双曲线a2-b2=1(a>0,b>0)的左、右焦点,P 为 双曲线上的任一点,O 为坐标原点,则有 ①|OP|≥a; ②|PF1|≥c-a. (3)抛物线中的最值 点 P 为抛物线 y2=2px(p>0)上的任一点,F 为焦点,则有 p ①|PF|≥2; ②A(m,n)为一定点,则|PA|+|PF|有最小值.Βιβλιοθήκη (1)求C1,C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点.当直线OM 与C2交于P,Q两点时,求四边形APBQ面积的最小值.
解 a2-b2 a2+b2 3 3 3 4 4 (1)因为 e1e2= 2 ,所以 a · a = 2 ,即 a -b =4
a4,因此 a2=2b2,从而 F2(b,0),F4( 3b,0).于是 3b-b=|F2F4|
2 2 2· 1 + m 又 因 为 |y1 - y2| = y1+y22-4y1y2 = , 所 以 2d = 2 m +2
2 2· 1+m2 . 2 m +4
故四边形 APBQ 的面积 2 2· 1+m2 1 S=2|PQ|· 2d= 2-m2 3 =2 2· -1+ . 2-m2 而 0<2-m2≤2,故当 m=0 时,S 取得最小值 2. 综上所述,四边形 APBQ 面积的最小值 2.
第2讲 圆锥曲线中的定点、定值、最值、范围问题
高考定位 圆锥曲线的综合问题包括:探索性问题、定点与定 值问题、范围与最值问题等,一般试题难度较大.这类问题以 直线和圆锥曲线的位置关系为载体,以参数处理为核心,需要
综合运用函数与方程、不等式、平面向量等诸多知识以及数形
结合、分类讨论等多种数学思想方法进行求解,对考生的代数 恒等变形能力、计算能力等有较高的要求.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结提炼:
• 有关定点问题,多出现在直线过定点问题,一种 方法是先求出直线方程,后把参数的同次项合并, 令各次项系数为0即可得到定点,另一种方法是利 用特殊情况找到定点,后证明曲线过该点即可。
思考:
• 如图,椭圆
的两焦点F1,F2与短轴
两端点B1,B2构成∠B2F (2)若直线l:y=kx+m与椭
成立。 • 例2、已知一动圆M,恒过点F (1,0),且总与直线x=-1 • 相切,(Ⅰ)求动圆圆心M的轨迹C的方程;(Ⅱ)探究在
曲线C上,是否存在异于原点的 A(x1, y1), B(x2, y2 ) 两点, 当 y1 y2 16 , 直线AB恒过定点?若存在,求出定点坐标; 若不存在,说明理由.
圆锥曲线中的定值、定点问题
一、曲线过定点问题:
• 例1、(课本P79页第19题)设直线L与抛物线y2=2px(p> 0)交于A(x1,y1),B(x2,y2)两点,其中y1>y2。
• (1)若 OA • OB 0,AB • OX 0,求L与x轴的交点坐标。 • (2)是否存在定点M,使得当L经过M点时,总有OA • OB 0
且MA MB , 若M为定点,证明:直线
EF的斜率为定值.
总结提炼:
• 定值问题:
• 解决定值问题主要通过两类方法,一是通过特殊 位置得出定值,然后通过证明在一般位置也成 立.二是通过把所要证明为定值的量表示为另外 一个或两个引起变化的量的函数或方程,然后通
过化简变形,证明结果与引起变化的量无关.
• 例5、已知抛物线Q:x2=2py(p>0)上任意一点到焦 点F的距离的最小值为1.
• (1)求实数p的值; • (2)设圆M过A(0,2),且圆心M在抛物线Q上,EG是圆
M在x轴上截得的弦,试探究当M运动时,弦长|EG| 是否为定值?为什么?
• 例6、如图,M是抛物线上y2=x上的一点, 动弦ME、MF分别交x轴于A、B两点,
圆相交于M,N两点(M、N不是左、右顶点),且以
MN为直径的圆过椭圆的右顶点A.求证:直线l过定
点,并求出该定点的坐标.
二、定值问题:
• 例3、圆上的动点、椭圆上的动点、双曲线上的动 点与定值有关吗?
• 例4、若直线L过抛物线y2=2px(p≠0)的焦点,且与 抛物线交于A(x1,y1),B(x2,y2)两点。求证: 4x1x2=p2,y1y2=-p2.(舵手P50例4、例5)
作业:
• 已知点A(-1,0),B(1,-1)和抛物线C : y2 4x , O为坐标原点,过点A的动直线l交抛物线C于M、P,直线 MB交抛物线C于另一点Q,如图.(I)证明: OM OP为定值;
(Ⅱ)若△POM的面积为 5 ,求向量 与 的夹角;
(Ⅲ) 证明直线PQ恒过一个定2 点.
OM OP
相关文档
最新文档