DOE-全因子试验设计培训
DOE(试验设计)培训课件

随机性
确保每个试验单元被选 中的机会相同。
重复性
相同条件下进
试验结果能够反映实际 情况,具有实际意义。
可操作性
试验过程易于实施和控 制。
03
试验设计方法
完全随机设计
总结词
完全随机设计是一种简单易行的试验设计方法,适用于处理单个因素或多个因 素对试验结果的影响。
THANKS
谢谢您的观看
佳条件以达到预期的结果。
DOE旨在提高实验效率和降低 成本,同时减少实验次数和缩短
研发周期。
DOE的目的和意义
确定关键因素和最佳条件
通过DOE,可以确定对产品或过程性 能有显著影响的因素,并确定最佳条 件以获得最佳性能。
提高产品或过程性能
降低成本和减少变异
DOE有助于减少实验次数和缩短研发 周期,从而降低成本。此外,它还可 以减少产品或过程中的变异,提高可 重复性和可靠性。
性和完整性。
06
实际应用案例分析
案例一:提高某产品的良品率
总结词
通过DOE方法,提高产品良品率
详细描述
针对某产品良品率低的问题,采用 DOE方法进行试验设计,通过调整工 艺参数、优化原料配方等手段,提高 产品良品率,降低生产成本。
案例二:优化某生产过程的工艺参数
总结词
通过DOE方法,优化生产过程工艺参数
JMP
强大的统计分析功能和可视化工具
VS
JMP是SAS公司开发的一款强大的统 计分析软件,它提供了丰富的统计方 法和可视化工具,可以帮助用户进行 各种复杂的数据分析和试验设计。 JMP具有直观的用户界面和易于使用 的操作方式,使得用户可以轻松地进 行数据处理和分析。同时,JMP还支 持多种数据格式,可以与其他软件进 行数据交换和共享。
最经典的DOE培训资料

最经典的DOE培训资料一、DOE培训简介DOE(Design of Experiments)即试验设计,是一种科学的统计方法,用于优化和改进产品、流程或系统。
本文将介绍最经典的DOE培训资料,帮助读者快速掌握DOE的基本概念和应用技巧。
二、DOE基本原理DOE的基本原理是通过合理安排实验来获取尽可能多的有用信息,以便推断出因果关系和优化条件。
在DOE中,研究者通过改变实验因子的水平,观察响应变量的变化情况,从而确定影响响应变量的主要因素,并找到最优的因素水平组合。
三、DOE的常用方法1. 完全随机设计(Completely Randomized Design):在完全随机设计中,实验因子的各个水平组合以完全随机的方式分配给试验单元。
这种设计适用于因素水平较少的情况,能够较好地估计因素效应。
2. 随机区组设计(Randomized Complete Block Design):随机区组设计将试验区分为几个均匀分布的区块,每个区块内的试验因子水平组合是随机分配的。
这种设计适用于试验区存在显著差异的情况,能够减小区组间的差异对因素效应评估的影响。
3. 多因子实验设计(Factorial Design):多因子实验设计同时考虑两个或多个因素对响应变量的影响。
通过观察各个因素水平组合下的响应变量值,可以评估因素间的交互作用,并确定最佳的因素组合。
4. 响应曲面法(Response Surface Methodology):响应曲面法利用数学模型来描述因素和响应变量之间的关系。
通过在响应曲面图上寻找最大或最小值点,可以找到最优的因素组合。
四、DOE的应用领域DOE广泛应用于各个领域,包括制造业、医药、食品、化工等。
以制造业为例,DOE可以用于优化工艺参数,提高产品质量和生产效率;在医药领域,DOE可以用于药物配方的优化和剂量的确定。
DOE的灵活性和可迅速得到结果的特点,使其成为许多领域中问题解决和优化的重要工具。
DOE(试验设计)培训课件

介绍DOE软件工具中各种选项和参数的意义及 设置方法,例如实验设计类型、因子和水平设 置等。
DOE软件工具的应用案例
通过实际案例介绍如何使用DOE软件工具进行实验 设计和数据分析。
通过案例展示DOE软件工具在工业生产、新产品研 发等领域的应用。
DOE基本原则
随机化原则
试验设计应遵循随机化原则,以避 免潜在的人为偏见和系统误差。
重复性原则
为提高试验结果的可靠性和精确度 ,应尽可能遵循重复性原则,即在 相同条件下多次进行试验。
对照原则
通过设置对照组,可以更好地评估 试验组中目标变量与影响因素之间 的关系。
简约性原则
在满足试验目的的前提下,应尽可 能采用简约的试验设计,以降低试 验成本和时间。
设计实验方案
采用正交表进行实验设计,选择了三因素三水平的正交 表,设计了九组实验方案,每组方案重复五次。
实施实验并收集数据
按照设计的实验方案进行实验,并收集了三十组实验数 据。
分析数据并得出结论
对收集的实验数据进行统计分析,发现生产温度对产品 质量影响最大,其次是生产压力,最后是生产时间
06
DOE软件工具介绍与操作指南
试验设计的基本原则
试验设计需要遵循随机化、重复性和对照等基本原则。
试验设计在生产中的应用
试验设计可以应用于生产过程中,通过优化生产工艺和参数,提高产品质量和生产效率。
试验设计在研发中的应用
试验设计可以应用于产品研发过程中,通过科学筛选和优化设计方案,降低产品成本和提高性能。
DOE与六西格玛的关系
DOE的基本概念
设计实验方案
采用正交表进行实验设计,选择了三因素三水平的正交表 ,设计了九组实验方案,每组方案重复三次。
试验设计DOE培训教材

优点
1. 与一次只改变一个参数的实验方法相比,可以减少试验次数(24:8) 2. 可以观察参数间的相互作用 3. 得到的结果适用范围更广——主效应和相互作用是在各参数各种可能的组 合的情况下得到的,与实际情况较接近。
缺点
所有可能的组合都必须加以深究,信息全面,但相当耗费时间、金钱 例如: 13因子,3水准就必须做了1,594,323次实验,如果每个实验花3分钟, 每天8小时,一年250个工作天,共须做40年的时间。 由于这个缺点,完全析因实验(特别是多参数的完全析因实验)在工业中并未得到广 泛的应用。 而如果可以假设一定的高阶相互作用是可以忽略的,则通过仅进行完全析因实验所要 求的一部分试验便可以得到主效应和低阶相互作用。实际经验表明,这样做往往是合 理的,这类实验称为部分因子实验。 20世纪50年代田口博士(Dr.Taguchi)把部分因子实验的应用技术进行了简化,大大方便 了普通工程师把这种实验设计应用于解决工程实际问题。因此也叫田口式实验法。
所以,用正交表来安排试验时,各因子的 各种水平的搭配是均衡的,这是正交表 的优点
1. 如有图所示输入因子资料(3因子,3水平) 2. 数据输入完毕,打开Stat 菜单,点选 DOE--- Taguchi ---Create Taguchi Design…
3. 在弹出的对话框中选择3-Level Design 4. “Number of factors”中选择3 5. 点击Design 6. 在对话框中选择L9,点击OK 普通试验需 做27次
特点: 1. 一条对角线上全是A,另一条对角线上是4。 2. 方块与梅花左右对称的,红桃与黑桃左右 对称。 3. 方块与黑桃,梅花与红桃上下对称。 4. A与4, 2与3左右对称。 5. A与4, 2与3上下对称。 6. 两条对角线上四种四种花色齐全。
实验设计(DOE)方法培训教案PPT课件

.
14
根据具体要求选择DOE实验方法
• DOE实验方法流程如图(二)所示
实验设计的基本策略
• 1、确定问题
• 为解决何种问题,需要进行的何种实验,应做到心中有数, 有的放矢。
• 2、建立实验目标
• 实验要达到何种目的,要达到怎样的指标,应从实际出发, 根据当时当地的实情,确定实验目标,不要夸大其辞,矫 揉造作。
复运行的结果计算出平均值(Y) 6. 按标准计算软件或EXCEL进行计算
.
19
7. 作出实验因子的影响及关系图
8. 进行方差分析,用以决定实验因子是否重要,用P值进 行衡量(P〈0.05)
9. 对方差分析结果进行评价,以确定因子对实验的影响程度
10. 选择重要因子(通常不超过4个)而进行全因子DOE实验,以 确定实验的最终结果
.
25
3、考核指标 考核指标是在试验设计中,根据试验目的而选定的用来
衡量试验效果的量值(指标)。 考核指标可以是定量的,也可以是定性的。定量指标如
硬度、强度、寿命、成本、几何尺寸、各种特性等。定量 指标根据试验结果的预期要求,又可分为望目值、望小值、 望大值三种类型。定性指标不是按数而是按质区分,如质 量的好与坏,天气的晴与阴,指标可以用加权的方法 量化为不同等级。
.
10
36) 材料的影响 37) 机器设备的影响 38) 测试设备的影响 39) 领导者的支持 40) 制造者支持 41) 工程部门的支持 42) 优化后的合格率 43) 配合度 44) 测量精密 45) 随机抽样 46) 块的区分 47) 决定区分程度 48) 假设构造
49) 测量方法 50) 管理者支持 51) 将实验结果图表化 52) 确定主要因子 53) 计算出各因子影响大小 54) 作出相关因子影响图 55) 连续样本 56) 从样本收集到样本测量的时
DOE(试验设计)培训课件

遵循伦理规范,保障受试者权益、减少风险。
试验设计中的技术性问题
实验设计不严谨
采用对照试验、随机化等方法,减少偏倚。
检测与分析方法选择不当
根据研究目的选择合适的检测方法,并对结果进行综合分析。
试验设计中的其他问题
研究结果可重复性差
重视实验操作细节,确保实验结果可重复验证。
研究结果推广问题
简便性原则
试验设计应尽可能简单
试验设计应尽可能采用简单的试验方法和装置,以便减少误差和干扰因素。
试验设计应考虑实际应用情况
试验设计应考虑实际应用中的可行性和便利性,以便研究成果能够在实际中得到 广泛应用。
随机性原则
试验设计应采用随机抽样方法
采用随机抽样的方法可以避免选择性偏误,使得样本更具代 表性。
案例二:水稻品种筛选试验设计
目的
01
筛选出适应本地生长环境的水稻品种,提高水稻产量和质量。
试验方法
02
采用随机区组设计,将不同品种的水稻种植在相同的环境下,
观察其生长情况、产量和品质等方面的表现。
结果分析
03
通过方差分析和多重比较,得出不同品种水稻的优劣顺序,选
择适合当地种植的品种。
案例三:产品可靠性加速寿命试验设计
试验设计的目的是为了解决产品、工艺、材料等开发过程中 存在的各种问题,通过优化试验方案和评价指标,提高试验 的效率和质量,从而获得最佳的试验结果。
试验设计的发展历程
01
早期的试验设计方法可以追溯到17世纪,当时科学家们开始采用随机抽样和统 计分析等方法来研究农业、医学等领域的问题。
02
20世纪初,费歇尔等统计学家开始发展出一套完整的试验设计理论和方法,包 括随机化、重复性、因素分析、方差分析等。
六西格玛doe实验设计培训

部分因子实验 在23全因子实验法的基本设计上追加2个因子. 因子数 : 5 实验数= 8次 D=AB E=AC 即ABD=1 ACE=1 BDCE=1 , BD=CE
-1,1
1,1
-1,1
时 间 1,1
-1,-1
1,1
湿度 温度
实验次数= 23 +3 2为水准数,3为因子数,3为中心点数量
追定
为了改善的大概 方向
(线形效果)
主效果和局部 交互作用
所有的主效果 和交互作用 可估计弯曲
输出变量的预测
模型 (曲率效果)
因全阶乘因子实验,实验次数过多,实验较复杂
通常使用2k 两水平全因子实验法(增加中心点后近似可代替3水平因子实验),实验次数大幅减少
2因子实验
未编码
温度
200 300 250 250 200 250 300
中心点 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
部分因子实验例题 2. Minitab路径: 统计-DOE-因子-分析因子设计 选择输出变量数据列,图形选项勾选正态和4合1图
从两个图中可以看出,显著因子为B D BD E DE五个 (Catalyst Temp Conc三个因子及Catalyst*Temp Conc*Temp两个交互项)
部分因子间关系
所有 因子之间的关系
X与Y的二次关系 X的最优点
分析
改善的粗略方向 (线形效果)
最重要的因素
主效果和局部 交互作用
实验设计(DOE)方法培训

和偏差。
控制干扰因素
02
考虑并控制可能干扰实验结果的干扰因素,如仪器误差、环境
变化等。
可重复性与可扩展性
03
确保实验方案具有可重复性和可扩展性,以便验证实验结果和
推广应用。
注意数据收集与分析的准确性
数据质量
确保数据收集过程中准确记录和处理数据,避免数据失真或遗漏 。
数据分析方法
根据实验目的和数据类型选择合适的数据分析方法,如回归分析 、方差分析、主成分分析等。
降低成本
通过优化实验设计,可以 减少不必要的实验次数和 资源消耗,从而降低成本 。
提高生产效率
通过实验设计,可以确定 最佳的工艺参数和操作条 件,从而提高生产效率。
DOE的历史与发展
历史
实验设计起源于20世纪20年代的统计学领域,随着计算机技术的发展,实验设 计方法得到了广泛应用。
发展
现代实验设计方法已经广泛应用于各个领域,如制造业、医药、生物技术等。 同时,随着大数据和人工智能技术的发展,实验设计方法也在不断创新和发展 。
02
实验设计(DOE)基本原理
因子与水平
因子
影响产品、过程或系统性能的变量称为因子。
水平
因子的不同状态或取值。
因子与水平的选择
根据实际需求和条件选择合适的因子和水平。
实验设计类型
完全随机设计
每个因子在每个水平上的 组合都是随机的。
部分因子设计
只选取部分因子和水平进 行实验。
饱和设计
包含所有因子和水平的组 合。
确定实验设计的主要目的和研究问题,确保实验结果能够解 决实际问题。
确定研究范围
明确实验研究的范围和边界条件,避免不必要的复杂性和确定影响实验结果的关键因素或变量 ,这些因素可能对实验结果产生影响 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB无交互作用时的效应图
Y(产量)交互作用图数据平均值
250 240
B(压力)
低 高
平 230 均 值 220
210
200
低
高
A(温度)
案例:合成氨试验2
例:在合成氨生产中,考虑两个因子(A,B),每个因子皆2水平,A:温度,低水平 700℃,高水平:720 ℃。B:压力, 低水平: 1200帕, 高水平:1250帕。以产量y 为响应变量(单位:kg),列表如下:
1-拟合选定模型
2-进行残差诊断
3-模型要改进吗?
N
Y
4-对选定模型进行分析解释
5-判定目标是否达成
Y
N
进行验证试验
进行下批试验
全因子试验设计案例:
例:改进热处理工艺提高钢板断裂强度问题,合金钢板经热处理后将提高某 抗断裂性能,但工艺参数的选择是个复杂的问题。我们希望考虑可能影响断
裂强度的4个因子,确认哪些因子影响确实是显著的,进而确定出最佳的工
转换时间
540
520
保温时间
Step5.对选定模型进行分析解释---输出等值线,响应曲线图
Minitab>统计>DOE>因子>等值线/曲面图
强度 与 保温时间 , 加热时间 的等值线图
60
525 530 535 540 强度 < 525 – 530 – 535 – 540 – 545 > 545
58
低压(1200) 高压(1250)
因子A的主效应=Y的平均值|A=高- Y的平均值|A=低 =235-215=20kg 因子B的主效应= Y的平均值|B=高- Y的平均值|B=低 =240-210=30kg 因子B在低水平时A的效应=220-200=20kg 因子B在高水平时A的效应=250-230=20kg AB交互效应=(A的效应|B=高- A的效应|B=低)/2 =(20-20)=0kg
因
子:我们将影响响应变量哪些变量称为试验问题中的因子。
水 平:为了研究因子对响应变量的影响,需要用到因子的两个或更多个不同 的取值。 处 理:各因子皆选定了水平后,其组合被称为处理 主效应:响应变量在某因子处于不同水平时平均值差异称为某因子的主效应 交互效应:当因子B处于不同水平时,因子A的效应到底差多少? 交互作用:如果因子A的效应依赖于因子B所处的水平,则称为AB有交互作用
保温时间
56
保持值 加热温度 820
54
52
50 2.0
2.2
2.4 2.6 加热时间
2.8
3.0
Step5.对选定模型进行分析解释-----实现最优化 Minitab>统计>DOE>因子>响应优化器
Step5: 实现最优化配置工艺参数。
Step6:进行试验验证---判定目标是否达到
主要是将预计的最佳值与原试验目标相比较,如果离目标尚远,则应考虑安排 新一轮试验,通常在本次获得的或预计的最佳点附近,重新选定试验的各因子 及其水平。继续做因子设计。以获得更好结果。
Full Factorial design (全因子试验设计)
试验的定义
■试验:为了能观察到对于输出变化的影响,对过程和系统的
输入变量进行有计划的设置,测试并分析结果的方法.
(不可控因子) U1 U2 U3-------------- Um
Input
Output 。 。
(可控因子)
X1 ,X2…XK
标准化效应的 P a r e t o 图
(响应为 强度,Alpha = 2.306 A B D BD C 因子 A B C D 名称 加热温度 加热时间 转换时间 保温时间 .05)
项
AD BC CD AB AC 0 1 2 3 4 标准化效应
5
6
7
Step4:模型改进 Minitab>统计>DOE>因子>分析因子设计
强度 主效应图
数据平均值
加热温度 550 545 540 535 加热时间 点类型 角点 中心
平均值Βιβλιοθήκη 530 820 550 545 540 535 530 1.4 1.5 1.6 50 55 60 840 转换时间 860 2.0 2.5 保温时间 3.0
Step5.对选定模型进行分析解释---交互效作用
过程
。 。
(品质特性值) Y1 ,Y2…Ys
数学模型:
Y=f(X1, X2…XK)+ε
我们在试验设计中建立的输出和输入之间数学模型,其中ε由不可控因子(或噪音引起 试验误差)
试验设计目的和用语
试验目的:
一是明确哪些自变量x显著地影响着y; 二是找出y与x间关系式,从而进一步找出自变量x取什么值时会使y达到最佳值. 用语 响应变量:模型中y1 ,y2…ys是我们关心的s个输出变量。
案例:合成氨试验1
例:在合成氨生产中,考虑两个因子(A,B),每个因子皆2水平,A:温 度,低水平 700℃,高水平:720 ℃。B:压力, 低水平: 1200帕, 高水 平:1250帕。以产量y为响应变量(单位:kg),列表如下:
A
B
低温( 700℃)
200 230
高温( 720 ℃)
220 250
0
-8
-4
B
0 残差
4
8
2
4
6
8 10 12 观测 值 顺序
14
16
18
项
D
因子
名称
BD
A B D
加热温度 加热时间 保温时间
0
1
2
3
4 5 标准化效应
6
7
8
Step5:对选定模型进行分析解释—回归方程
Y(强度)=213.1+0.5009A-61.35B-2.445D+1.4225BD
Step5.对选定模型进行分析解释---因子主效应 Minitab>统计>DOE>因子>因子图
艺条件。这几个因子及准备安排的试验水平如下: A:加热温度, 低水平:820 ,高水平860(摄氏度) B:加热时间,低水平:2 , 高水平:3 (分钟)
C:转换时间, 低水平:1.4 , 高水平:1.6(分钟) D:保温 时间, 低水平:50 , 高水平:60 (分钟) 解:由于要细致考虑到各因子及其交互作用,因此采用全因子试验最为合适,
强度 残差图
正态概率图
99 90 10 5
与拟合值
百分比
50 10 1 -10 -5 0 残差 5 10
残差
0 -5 520 540 拟合值 560 580
直方图
4.8 3.6 10 5
与顺序
频率
2.4 1.2
残差
-6 -4 -2 0 残差 2 4 6 8
0 -5
0.0 2 4 6 8 10 12 观测 值 顺序 14 16 18
Step4:模型改进
强度 残差图
正态概率图
99 90 10 5
与拟合值
百分比
50 10 1 -10 -5 0 残差 5 10
残差
0 -5 520 540 拟合值 560
直方图
3
(响应为 强度,Alpha = 2.145
残差
标准化效应的 P ar et10 o 图
5 0 -5
与顺序
.05)
频率
2
A
1
AB有交互作用时的效应图
Y(产量)有交互作用图数据平均值
270 260 250 240
B(压力) 低 高
平 均 值
230
220
210 200
低
高
A(温度)
试验设计的基本步聚
1. 阐述目标 2. 选择响应变量 3.选择因子及水平
团队成员都要投入讨论,明确目标及要求。究竟是为了筛 选因子还是为了寻找关系式? 在一个试验中若有多种响应,则要选择起关键作用的且最 好是连续型指标作为响应变量。 用流程图及因果图先列出所有可能对响应变量有影响的因 子清单,然后根据数据和各方面的知识及专业经验,进行 细致分析并作初步筛选。
A B
低温( 700℃)
200 230
高温( 720 ℃)
220 270
低压(1200) 高压(1250)
因子A的主效应=Y的平均值|A=高- Y的平均值|A=低 =245-215=30kg 因子B的主效应= Y的平均值|B=高- Y的平均值|B=低 =250-210=40kg 因子B在低水平时A的效应=220-200=20kg 因子B在高水平时A的效应=270-230=40kg AB交互效应=(A的效应|B=高- A的效应|B=低)/2 =(40-20)/2=10kg
4.选择试验计划 5.实施阶段
根据试验目的,选择正确的试验类型,确定区组状况,试 验次数,并按随机化原则安排好试验顺序衣试验单元的分 配。排好计划矩阵 按计划矩阵安排试验。 使用minitab分析。
6.分析阶段
全因子试验设计定义和试验原则
1.全因子试验设计:所有因子的所有水平的所有组合都至少要进行一次试验的这种设 计.适用范围:全因子试验设计适应于因子个数不超过5个。
试验原则:
1.随机原则: 以完全随机的方式安排各次试验的顺序和或所用试验单元. 2.完全重复原则: 一个处理要施于多个试验单元. 3.(分区组原则):为了使试验单元或试验环境具有同质齐性而以某种方式对试验单 元分区组如:需要长期的数据收集的情况,通常以日别、周别等区分组,在区组内
随机试验。
全因子试验设计---分析步骤
并在因子中心点组合处进行3-4次试验。总试验次数共19次=24+3
Step1:创建试验计划 Minitab>统计>DOE>因子>创建因子