椭圆综合题总结

椭圆综合题总结
椭圆综合题总结

椭 圆

一、直线与椭圆问题的常规解题方法:

1.设直线与方程;(提醒:①设直线时分斜率存在与不存在;②设为y=kx+b 与x=my+n 的区别)

2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”)

3.联立方程组;

4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单)

5.根据条件重转化;常有以下类型:

①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在)

?OA OB ⊥ ?121K K ?=- ?0OA OB ?=u u u r u u u r

? 12120x x y y +=

②“点在圆内、圆上、圆外问题”

?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0;

③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题”

(如:AQ QB λ=u u u r u u u r

?数的角度:坐标表示法;形的角度:距离转化法);

(如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系;

⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0.

二、基本解题思想:

1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式;

2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解;

3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。

4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明,

5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等 式的方法等再解决;

6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性,

关键是积累“转化”的经验;

椭圆中的定值、定点问题

一、常见基本题型:

在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过 取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三 角式,证明该式是恒定的。 (1)直线恒过定点问题

1、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012

x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

2、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为

2

2

,P 是椭圆在第一 象限弧上一点,且121PF PF ?=u u u r u u u u r

,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭 圆于

A 、

B 两点。(1)求P 点坐标;(2)求证直线AB 的斜率为定值;

3、已知动直线(1)y k x =+与椭圆22

:

155

3x y C +=相交于A 、B 两点,已知点 7

(,0)3

M -, 求证:MA MB ?u u u r u u u r 为定值.

4、 在平面直角坐标系xOy 中,已知椭圆2

2:13

x C y +=.如图所示,斜率为(0)k k >且不 过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E , 射线OE 交椭圆C 于

点G ,交直线3x =-于点(3,)D m -.(Ⅰ)求22

m k +的最小值;(Ⅱ)若2

OG OD =?OE ,

求证:直线l 过定点;

椭圆中的取值范围问题

一、常见基本题型:

对于求曲线方程中参数范围问题,应根据题设条件及曲线的几何性质构造参数满足的不等式,通过解不等式求得参数的范围;或建立关于参数的目标函数,转化为函数的值域来解.

(1)从直线和二次曲线的位置关系出发,利用判别式的符号,确定参数的取值范围。

5、已知直线l 与y 轴交于点(0,)P m ,与椭圆22

:21C x y +=交于相异两点A 、B ,

且3AP PB =u u u r u u u r

,求m 的取值范围.

(2)利用题中其他变量的范围,借助于方程产生参变量的函数表达式,确定参数的取值范 围.

6、已知点(4, 0)M ,(1, 0)N ,若动点P 满足6||MN MP PN ?=u u u u r u u u r u u u r

(Ⅰ)求动点P 的轨迹C 的方程;

(Ⅱ)设过点N 的直线l 交轨迹C 于A ,B 两点,若1812

75

NA NB -?-u u u r u u u r ≤≤,求

直线l 的斜率的取值范围.

(3)利用基本不等式求参数的取值范围

7、已知点Q 为椭圆E :22

1182

x y +=上的一动点,点A 的坐标为(3,1),求AP AQ ?u u u r u u u r

的取值范围.

8.已知椭圆的一个顶点为(0,1)A -,焦点在x 轴上.若右焦点到直线220x y -+=的距 离为3.(1)求椭圆的方程.

(2)设直线(0)y kx m k =+≠与椭圆相交于不同的两点,M N .当||||AM AN =时,求m 的 取值范围.

9. 如图所示,已知圆M A y x C ),0,1(,8)1(:2

2

定点=++为圆上一动点,点P 在AM 上, 点N 在CM 上,且满足N AM NP AP AM 点,0,2=?=的轨迹为曲线E . (I )求曲线E 的方程;

(II )若过定点F (0,2)的直线交曲线E 于不同的两

点,G H (点G 在点,F H 之间),且满足FH FG λ=, 求λ的取值范围.

椭圆中的最值问题

一、常见基本题型:

(1)利用基本不等式求最值,

12、已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为

2

2

,P 是椭圆在第一 象限弧上一点,且121PF PF ?=u u u r u u u u r

,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交 椭圆

于A 、B 两点,求△PAB 面积的最大值。 (2)利用函数求最值,

13.如图,DP x ⊥轴,点M 在DP 的延长线上,且||2||DM DP =.当点P 在圆2

2

1

x y +=上运动时。 (I )求点M 的轨迹C 的方程;

(Ⅱ)过点2

2

(0,)1T t y +=作圆x 的切线l 交曲线 C 于A ,B 两点,求△AOB 面积S 的最大值和相应的点T 的坐标。

14、已知椭圆2

2:14

x G y +=.过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A,B 两点. 将|AB|表示为m 的函数,并求|AB|的最大值.

选做

1、已知A 、B 、C 是椭圆)0(1:22

22>>=+b a b

y a x m 上的三点,其中点A 的坐标为

)0,32(,BC 过椭圆m 的中心,且||2||,0AC BC BC AC ==?.

(1)求椭圆m 的方程;

(2)过点),0(t M 的直线l (斜率存在时)与椭圆m 交于两点P ,Q ,设D 为椭圆m 与y 轴负半轴的交点,且||||DQ DP =.求实数t 的取值范围.

2.已知圆M :222

()()x m y n r -+-=及定点(1,0)N ,点P 是圆M 上的动点,点Q 在NP

上,点G 在MP 上,且满足NP uuu r =2NQ u u u r ,GQ u u u r ·NP uuu

r =0.

(1)若1,0,4m n r =-==,求点G 的轨迹C 的方程;

(2)若动圆M 和(1)中所求轨迹C 相交于不同两点,A B ,是否存在一组正实数,,m n r , 使得直线MN 垂直平分线段AB ,若存在,求出这组正实数;若不存在,说明理由.

3、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.

(Ⅰ)求椭圆C 的标准方程;

(Ⅱ)若直线:l y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.

4.如图,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的2倍且经过点M (2,1),平行于OM 的直线l 在y 轴上的截距为m (m ≠0),l 交椭圆于A 、B 两个不同点。 (1)求椭圆的方程; (2)求m 的取值范围;

(3)求证直线MA 、MB 与x 轴始终围成一个等腰三角形.

参考答案

1、解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n

则0000001

2120

22x n

m y x n m y x y ?=-?+??-??--=??,解得3200020432

00002002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-?

∴ 直线PN 的斜率为4320000032

00004288

2(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 43200000032

0004288

()2(34)x x x x y y x x y x x ++---=---+ 即32000432

00002(34)

14288

y x x x y x x x x --+=+++-- 从而直线PN 恒过定点(1,0)G

2、解:(1)设椭圆方程为22

221y x a b +=,由题意可得

2,2,22a b c ===,所以椭圆的方程为22

142y x +=

则12(0,2),(0,2)F F -,设

0000(,)(0,0)P x y x y >> 则100200(,2),(,2),PF x y PF x y =--=---u u u r u u u u r

22

1200(2)1PF PF x y ∴?=--=u u u r u u u u r Q 点00(,)P x y 在曲线上,则

2200 1.24x y += 2

2

0042

y x -∴= 从而2

2

004(2)12

y y ---=,得02y =,则点P 的坐标为(1,2)。

(2)由(1)知1//PF x 轴,直线PA 、PB 斜率互为相反数,

设PB 斜率为(0)k k >,则PB 的直线方程为:2(1)y k x -=-

椭圆典型题型归纳(供参考)

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 练习: 1.6=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 2.10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 4.1m =+表示椭圆,则m 的取值范围是 5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的 另一个焦点2F 构成的2ABF ?的周长等于 ; 6.设圆22 (1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例1.方程22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程; 例4.求经过点(2,3)-且与椭圆22 9436x y +=有共同焦点的椭圆方程; 注:一般地,与椭圆22221x y a b +=共焦点的椭圆可设其方程为22 2221()x y k b a k b k +=>-++; (四)定义法求轨迹方程; 例5.在ABC ?中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>

(完整版)椭圆常见题型总结

椭圆常见题型总结 1、椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决; 椭圆 22 2 21(0)x y a b a b +=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PF F ?中,12F PF α=∠,则当P 为短轴端点时α最大,且 ① 122PF PF a +=; ②22 2 12122cos 4c PF PF PF PF α=+-; ③12 121 sin 2PF F S PF PF α?= =2tan 2 b α?(b 短轴长) 2、直线与椭圆的位置关系:直线y kx b =+与椭圆22 221(0)x y a b a b +=>>交于 1122(,),(,)A x y B x y 两点,则12AB x =-=3、椭圆的中点弦:设1122(,),(,)A x y B x y 是椭圆22 221(0)x y a b a b +=>>上不同两点, 00(,)M x y 是线段AB 的中点,可运用点差法可得直线AB 斜率,且20 20 AB b x k a y =-; 4、椭圆的离心率 范围:01e <<,e 越大,椭圆就越扁。 求椭圆离心率时注意运用:c a e = ,222c b a += 5、椭圆的焦半径 若00(,)P x y 是离心率为e 的椭圆22 221(0)x y a b a b +=>>上任一点,焦点 为1(,0)c F -,2(,0)c F ,则焦半径10PF a ex =+,10PF a ex =-; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定2 a ,2 b 值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出2 a ,2 b ,从而求出标准方程; ⑶在不知道焦点的情况下可设椭圆方程为221Ax By +=;

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

椭圆题型总结(较难)

椭圆题型总结 一、焦点三角形 1. 设F 1、F2是椭圆12 322 =+y x 的左、右焦点,弦AB 过F 2,求1ABF △的面积的最大值。 (法一)解:如图,设2(0)xF B ααπ∠=<<,22||||AF m BF n ==,, 根据椭圆的定义 ,1||AF m = ,1||BF n =,又12||2F F =,在ΔAF 2F 1和ΔBF 2F 1中应用余弦定理,得 22 22)44cos )44cos m m m n n n αα ?=+-??=++??, ∴m = ,n =∴1 1211 ||||2()sin 22 F AB B A S F F y y m n α?=?-=??+ α= =令sin t α=,所以01t <≤,∴2 1()22t g t t t t = =++在(01],上是增函数 ∴当1t =,即2 πα= 时,max 1()3 g t =,故1ABF △ (法二)解:设AB :x=my+1,与椭圆2x 2+3y 2=6联立,消x 得 (2m 2+3)y 2+4my-4=0 ?∵?AB 过椭圆内定点F2,∴?Δ恒大于0.设A(x 1,y 1),B(x2,y 2),则 ?Δ=48(m2+1) 1ABF S ?=|y 1-y 2| = = 令 t =m 2+1≥1,m 2=t-1, 则1ABF S ?? = ∈[1,+∞) f(t)=144t t ++在t∈[1,+∞)上单调递增,且f(t)∈[9,+∞) ∴?t =1即m=0时,ΔABF 1 注意:上述AB 的设法:x =my+1,方程中的m相当于直线AB 的斜率的倒数,但又包含斜率不存在的情况,即m=0的时候。在直线斜率不等于零时都可以这样设,往往可使消元过程简单化,而且避免了讨论。

椭圆知识点归纳总结和经典例题

椭圆的基本知识 1.椭圆的定义:把平面与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 12 2=+b a (a > b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0) 不必考虑焦点位置,求出方程 3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法 . ,.2,,1的轨迹中点求线段段轴作垂线 向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解: (相 关点法)设点M (x , y ),点P (x 0, y 0), 则x =x 0, y = 2 0y 得x 0=x , y 0=2y. ∵x 02 +y 02 =4, 得 x 2 +(2y )2 =4, 即.14 2 =+y x 所以点M 的轨迹是一个椭圆. 4.围. x 2≤a 2,y 2≤b 2 ,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里. 5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长. |B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2 , 即c 2=a 2-b 2 . 7.椭圆的几何性质:

椭圆常见题型总结

椭圆常见题型总结 1椭圆中的焦点三角形: 通常结合定义、正弦定理、余弦定理、勾股定理来解决; 0)上一点P(x 0, y 0)和焦点F i ( c,0) , F 2(C ,0)为顶点的 ① PF [ PF 2 2a ; 人任孑),B(X 2, y 2)两点,贝U AB| J i|x 1 x 2| J ik 2J (x 1 X 2)24x 1x 2 2 2 3、椭圆的中点弦: 设A(X i , yj, B(X 2,y 2)是椭圆 务% 1(a b 0)上不同两点, a b M(x °,y °)是线段AB 的中点,可运用 点差法可得直线 AB 斜率,且k AB 4、椭圆的离心率 求椭圆离心率时注意运用: e C , a 2 b 2 C 2 a 2 2 若P(x 0, y 0)是离心率为e 的椭圆^2 1(a a b 椭圆 x 2 y2 !(a b a b PF i F 2 中,F 1PF 2 ,则当P 为短轴端点时 最大,且 ②4C 2 2 PF i 2 PF 2 2 PF 1 PF 2 COS ③ S PF 1F 2 1 1|PF i |PF 2 sin 2 =b tan ( b 短轴长) 2 2、直线与椭圆的位置关系: 直线y 2 kx b 与椭圆笃 a 2 b 1(a b 0)交于 b 2X o ; ~2~ ; a y 。 范围:0 e 1, e 越大,椭圆就越扁。 5、椭圆的焦半径 b 0)上任一点,焦点

为 F i ( c,0) , F 2C O ),则焦半径 PF i a ex o , PR a ex o ; 6、椭圆标准方程的求法 ⑴定义法:根据椭圆定义,确定 a 2, b 2值,结合焦点位置直接写出椭圆方程; ⑵待定系数法:根据焦点位置设出相应标准方程,根据题中条件解出 准方程; ⑶在不知道焦点的情况下可设椭圆方程为 Ax 2 By 2 1; 椭圆方程的常见题型 2 x 2、已知x 轴上一定点 A (1,0),Q 为椭圆 y 2 1上的动点,贝U AQ 中点M 的轨迹方程 4 的轨迹方程是( ) 2 x 2 “ C y 1 4 6、设一动点P 到直线x 3的距离与它到点 A (1,0)的距离之比为-.3,则动点P 的轨迹方 2 2 a , b ,从而求出标 1、点P 到定点F (4,0)的距离和它到定直线 10的距离之比为 1:2,则点P 的轨迹方程 3、平面内一点 M 到两定点F 2(0, 5)、F 2(0,5)的距离之和为 10,则M 的轨迹为( A 椭圆 B 圆 4、经过点(2, 3)且与椭圆9x 2 4y 2 2 2 2 2 A 乞匕1 B x L 1 15 10 10 15 C 直线 D 线段 36有共冋焦点的椭圆为 ( ) 2 2 2 2 C0匕1 x D — 工1 5 10 10 5 2 2 5、已知圆x y 1,从这个圆上任意一点 P 向y 轴做垂线段 PR ,则线段PR 的中点M A 4x 2 y 2 1 B x 2 4y 2 1

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

椭圆练习题(经典归纳)

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点1 3, 22?? ? ??? ,,M N 为平面上关于原点对称的两点,已知N 的坐标为30,3? ? - ? ??? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材P .37 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x -=-; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论;

(4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设 直线为x my t =+。【反斜截式,1 m k = 】不含垂直于y 轴的情况(水平线) 例题:圆C 的方程为:.0222=-+y x (1)若直线过点)(4,0且与圆C 相交于A,B 两点,且2=AB ,求直线方程. (2)若直线过点)(3,1且与圆C 相切,求直线方程. (3)若直线过点) (0,4且与圆C 相切,求直线方程. 附加:4)4(3:22=-+-y x C )(. 若直线过点)(0,1且与圆C 相交于P 、Q 两点,求CPQ S ?最大时的直线方程. 椭 圆 1、椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离c 2叫椭圆的焦距。若M 为椭圆上任意一点,则有 21||||2MF MF a +=. 注意:212F F a >表示椭圆;212F F a =表示线段21F F ;212F F a <没有轨迹; 2、椭圆标准方程 椭圆方程为12 2 222=-+c a y a x ,设2 2c a b -=,则化为()012222>>=+b a b y a x 这就是焦点在x 轴上的椭圆的标准方程,这里焦点分别是1F ()0,c -,2F ()0,c ,且22c a b -=. 类比:写出焦点在y 轴上,中心在原点的椭圆的 标准方程()22 2210y x a b a b +=>>. 椭圆标准方程:22 221x y a b +=(0a b >>)(焦点在x 轴上) 或122 22=+b x a y (0a b >>)(焦点在y 轴上)。 注:(1)以上方程中,a b 的大小0a b >>,其中222b a c =-; (2)要分清焦点的位置,只要看2x 和2y 的分母的大小,“谁大焦点在谁上”

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

椭圆题型归纳大全

椭圆题型归纳大全

椭圆典型题型归纳 题型一. 定义及其应用 例1.已知一个动圆与圆2 2:(4)100 C x y ++=相内切,且 过点(4,0)A ,求这个动圆圆心M 的轨迹方程; 例2. 方程 2 x =++所表示的曲线是 练习: 1.方程 6 =对应的图形是 ( ) A.直线 B. 线段 C. 椭圆 D. 圆 2. 10=对应的图形是( ) A.直线 B. 线段 C. 椭圆 D. 圆 3.方程 10 =成立的充要条件是 ( ) A. 2 2 12516x y += B.2 2 1 259 x y += C. 22 11625 x y += D. 22 1925 x y +=

4. 1 m =+表示椭圆,则 m 的取值范围是 5.过椭圆2 2941 x y +=的一个焦点1 F 的直线与椭圆相 交于,A B 两点,则,A B 两点与椭圆的另一个焦点2 F 构成的2 ABF ?的周长等于 ; 6.设圆2 2(1) 25 x y ++=的圆心为C ,(1,0)A 是圆内一定点, Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点 M ,则点M 的轨迹方程 为 ; 题型二. 椭圆的方程 (一)由方程研究曲线 例 1.方程 22 11625 x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程 例 2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程 例 3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点 1 P 、2 (P ,求椭圆的方程;

高中数学椭圆题型完美归纳(经典)

椭圆题型归纳 一、知识总结 1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程: 12222=+b y a x (a >b >0) 122 22=+b x a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形, 可设方程为221(0,0)mx ny m n +=>>不必考虑焦点位置,求出方程。 3.范围. 椭圆位于直线x =±a 和y =±b 围成的矩形里.|x|≤a ,|y|≤b . 4.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心. 5.顶点 椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ). 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴.。 长轴的长等于2a . 短轴的长等于2b .

|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a . 在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2,即c 2=a 2-b 2. 6.离心率 7.椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8.椭圆22 221x y a b +=(a >b >0)的焦半径公式10||MF a ex =+,20 ||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ). 9.AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2 OM AB b k k a ?=-,即0 2 02y a x b K AB -=。 )10(<<= e a c e

椭圆综合专题整理(供参考)

椭 圆专题总结 一、直线与椭圆问题的常规解题方法: 1.设直线与方程; (提醒:①设直线时分斜率存在与不-存在;②设为y=kx+b 与x=my+n 的区别) 2.设交点坐标;(提醒:之所以要设是因为不去求出它,即“设而不求”) 3.联立方程组; 4.消元韦达定理;(提醒:抛物线时经常是把抛物线方程代入直线方程反而简单) 5.根据条件重转化;常有以下类型: ①“以弦AB 为直径的圆过点0”(提醒:需讨论K 是否存在) ②“点在圆内、圆上、圆外问题” ?“直角、锐角、钝角问题” ?“向量的数量积大于、等于、小于0问题” ?12120x x y y +>>0; ③“等角、角平分、角互补问题” ?斜率关系(120K K +=或12K K =); ④“共线问题” (如:AQ QB λ= ?数的角度:坐标表示法;形的角度:距离转化法); (如:A 、O 、B 三点共线?直线OA 与OB 斜率相等); ⑤“点、线对称问题” ?坐标与斜率关系; ⑥“弦长、面积问题”?转化为坐标与弦长公式问题(提醒:注意两个面积公式 的 合理选择); 6.化简与计算; 7.细节问题不忽略;

①判别式是否已经考虑;②抛物线、双曲线问题中二次项系数是否会出现0. 二、基本解题思想: 1、“常规求值”问题:需要找等式,“求范围”问题需要找不等式; 2、“是否存在”问题:当作存在去求,若不存在则计算时自然会无解; 3、证明定值问题的方法:⑴常把变动的元素用参数表示出来,然后证明计算结果与参数无 关;⑵也可先在特殊条件下求出定值,再给出一般的证明。 4、处理定点问题的方法:⑴常把方程中参数的同次项集在一起,并令各项的系数为零,求 出定点;⑵也可先取参数的特殊值探求定点,然后给出证明, 5、求最值问题时:将对象表示为变量的函数,几何法、配方法(转化为二次函数的最值)、 三角代换法(转化为三角函数的最值)、利用切线的方法、利用均值不等式的方法等再解决; 6、转化思想:有些题思路易成,但难以实施。这就要优化方法,才能使计算具有可行性, 关键是积累“转化”的经验; 椭圆中的定值、定点问题 一、常见基本题型: 在几何问题中,有些几何量和参数无关,这就构成定值问题,解决这类问题常通过取参数和特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角式,证明该式是恒定的。 (1)直线恒过定点问题 1、已知点00(,)P x y 是椭圆2 2:12 x E y +=上任意一点,直线l 的方程为0012 x x y y +=,直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型归纳 题型一:弦的垂直平分线问题 弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。 例题1、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点, 在x 轴上是否存在一点E(0 x ,0),使得ABE ?是等边三角形,若存在,求出0 x ;若不存在,请说明理由。 分析:过点T(-1,0)的直线和曲线N :2 y x =相交A 、B 两点, 则直线的斜率存在且不等于0,可以设直线的方程,联立方程组,消元,分析类一元二次方程,看判别式,运用韦达定理,得弦的中点坐标,再由垂直和中点,写出垂直平分线的方程,得出E 3 倍。运用弦长公式求弦长。 解:依题意知,直线的斜率存在,且不等于0。设直线:(1)l y k x =+, k ≠,1 1 (,)A x y ,2 2 (,)B x y 。 由2 (1) y k x y x =+?? =? 消y 整理,得2 2 22(21)0 k x k x k +-+= ① 由直线和抛物线交于两点,得2 242(21)4410 k k k ?=--=-+>即2 104 k << ② 由韦达定理,得: 2122 21 ,k x x k -+=-121 x x =。则线段AB 的中点为

22 211(,)22k k k --。 线段的垂直平分线方程为:2 2 1112()22k y x k k k --=-- 令y=0,得0 211 22x k = -,则2 1 1 (,0)22E k -ABE ?Q 为正三角形,∴2 1 1(,0)22 E k -到 直线AB 的距离d 为 32 AB 。 2 2 1212()()AB x x y y =-+-Q 22141k k -= +g 212k d k +=222 23141122k k k k k -+∴+=g 解得39 13 k =± 满足②式此时0 53 x = 。 思维规律:直线过定点设直线的斜率k ,利用韦达定理法,将弦的中点用k 表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 3倍,将k 确定,进而求出0 x 的坐标。 例题2、已知椭圆 12 22 =+y x 的左焦点为F ,O 为坐标原点。 (Ⅰ)求过点O 、F ,并且与2x =-相切的圆的方程; (Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围。

椭圆练习题(经典归纳)

椭圆练习题(经典归纳)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

初步圆锥曲线 感受:已知圆O 以坐标原点为圆心且过点12? ?? ,,M N 为平面上关于原点对称的两点,已知N 的坐 标为0,? ?? ,过N 作直线交圆于,A B 两点 (1)求圆O 的方程; (2)求ABM ?面积的取值范围 二. 曲线方程和方程曲线 (1)曲线上点的坐标都是方程的解; (2)方程的解为坐标的点都在曲线上. 三. 轨迹方程 例题:教材 A 组.T3 T4 B 组 T2 练习1.设一动点P 到直线:3l x =的距离到它到点()1,0A 的距离之比为3 ,则动点P 的轨迹方程是____ 练习2.已知两定点的坐标分别为()()1,0,2,0A B -,动点满足条件2MBA MAB ∠=∠,则动点M 的轨迹方程为___________ 总结:求点轨迹方程的步骤: (1)建立直角坐标系 (2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示) (3)列式:从已知条件中发掘,x y 的关系,列出方程 (4)化简:将方程进行变形化简,并求出,x y 的范围 四. 设直线方程 设直线方程:若直线方程未给出,应先假设. (1)若已知直线过点00(,)x y ,则假设方程为00()y y k x x ; (2)若已知直线恒过y 轴上一点()t ,0,则假设方程为t kx y +=; (3)若仅仅知道是直线,则假设方程为b kx y += 【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过x 轴上一点(,0)t ,且水平线不满足条件(斜率为0),可以假设

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

椭圆常见题型与典型方法归纳 考点一 椭圆的定义 椭圆的第一定义:我们把平面内与两个定点12,F F 的距离的和等于常数 1.22(2)a a F F >的点的轨迹叫做椭圆.这两 定点12,F F 叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距. 椭圆的第二定义:我们把平面内与一个定点的距离和它到一条定直线的距离的比是常数e= a c (0>焦点的坐标分别为 (,0),(,0)c c - 2焦点在y 轴上 标准方程是:22 221y x a b +=(其中222,0).b a c a b =->>焦点的坐标分别为 (0,),(0,)c c - 3焦点位置判断 哪项分母大焦点就在相应的轴上 如 求22 179 x y + =的焦点坐标 4 椭圆过两定点,焦点位置不确定时可设椭圆方程为221mx ny +=(其中0,0m n >>) 例 已知椭圆过两点1),(2)42 A B --,求椭圆标准方程 5 与122 22=+b y a x (a >b >0)共焦点的椭圆为12222=+++k b y k a x 二 重难点问题探析: 1.要有用定义的意识

椭圆经典例题分类汇总

椭圆经典例题分类汇总 1.椭圆第一定义的应用 例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11 42 2=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为: 116 42 2=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况. 例2 已知椭圆 19 82 2=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论. 解:当椭圆的焦点在x 轴上时,82 +=k a ,92 =b ,得12 -=k c .由2 1 =e ,得4=k . 当椭圆的焦点在y 轴上时,92 =a ,82 +=k b ,得k c -=12 . 由21= e ,得 4191=-k ,即4 5 -=k . ∴满足条件的4=k 或4 5 -=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由?? ? ??-≠-<-<-,35,03,05k k k k 得53<>b a 这个条件,当b a =时,并不表示椭圆. 例4 已知1cos sin 2 2=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.

2014年高考椭圆综合题做题技巧与方法总结

2014年高考椭圆综合题做题技巧与方法总结 知识点梳理: 1. 椭圆定义: (1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点. 当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在; 当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 (2)椭圆的第二定义:平面内到定点F 与定直线l (定点F 不在定直线l 上)的距离之比是常数e (10<>=+b a b y a x )0(12 22 2>>=+b a b x a y 性 质 参数关系 222c b a += 焦点 )0,(),0,(c c - ),0(),,0(c c - 焦距 c 2 范围 b y a x ≤≤||,|| b x a y ≤≤||,|| 顶点 ),0(),,0(),0,(),0,(b b a a -- )0,(),0,(),,0(),,0(b b a a -- 对称性 关于x 轴、y 轴和原点对称 离心率 )1,0(∈=a c e

准线 c a x 2 ±= c a y 2 ±= 考点1 椭圆定义及标准方程 题型1:椭圆定义的运用 [例1 ] 椭圆有这样的光学性质:从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点,今有一个水平放置的椭圆形台球盘,点A 、B 是它的焦点,长轴长为2a ,焦距为2c ,静放在点A 的小球(小球的半径不计),从点A 沿直线出发,经椭圆壁反弹后第一次回到点A 时,小球经过的路程是 A .4a B .2(a -c) C .2(a+c) D .以上答案均有可能 [解析]按小球的运行路径分三种情况: (1)A C A --,此时小球经过的路程为2(a -c); (2)A B D B A ----, 此时小球经过的路程为2(a+c); (3)A Q B P A ----此时小球经过的路程为4a,故选D 总结:考虑小球的运行路径要全面 练习 1.短轴长为5,离心率3 2 = e 的椭圆两焦点为F 1,F 2,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A.3 B.6 C.12 D.24 [解析]C. 长半轴a=3,△ABF 2的周长为4a=12 2.已知P 为椭圆22 12516 x y +=上的一点,,M N 分别为圆22(3)1x y ++=和圆 22(3)4x y -+=上的点,则PM PN +的最小值为( ) A . 5 B . 7 C .13 D . 15 [解析]B. 两圆心C 、D 恰为椭圆的焦点,10||||=+∴ PD PC ,PM PN +的最小值为10-1-2=7 题型2 求椭圆的标准方程 [例2 ]设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程. 【解题思路】将题中所给条件用关于参数c b a ,,的式子“描述”出来 [解析]设椭圆的方程为122 22=+b y a x 或)0(12222>>=+b a a y b x , O x y D P A B C Q

椭圆各类题型分类汇总修订稿

椭圆各类题型分类汇总 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02, A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆 19822=++y k x 的离心率2 1 =e ,求k 的值. 例3 已知方程 1352 2-=-+-k y k x 表示椭圆,求k 的取值范围. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 例5 已知动圆P 过定点()03, -A ,且在定圆()64322 =+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 2.焦半径及焦三角的应用 例1 已知椭圆13 42 2=+ y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由. 例2 已知椭圆方程()0122 22>>=+b a b y a x ,长轴 端点为 1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点, θ=∠21PA A ,α=∠21PF F .求:21PF F ?的面积(用a 、b 、α表示). 3.第二定义应用 例1 椭圆112 162 2=+ y x 的右焦点为F ,过点() 31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.

例2 已知椭圆1422 22=+b y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距 离. 例3 已知椭圆15 92 2=+ y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. (1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求22 3 PF PA + 的最小值及对应的点P 的坐标. 4.参数方程应用 例1 求椭圆13 22 =+y x 上的点到直线06=+-y x 的距离的最小值. 例2 (1)写出椭圆1492 2=+ y x 的参数方程;(2)求椭圆内接矩形的最大面积. 例3 椭圆122 22=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使 AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围. 5.相交情况下--弦长公式的应用 例1 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为 5 10 2,求直线的方程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为 3 π 的直线交椭圆于A ,B 两点,求弦AB 的长. 6.相交情况下—点差法的应用

椭圆高考题目汇总教师版含答案

椭圆高考题目汇总教师版含答案

考点11 椭圆 1.(2010·广东高考文科·T7)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A . 45 B .35 C .2 5 D .15 【思路点拨】由椭圆长轴的长度、短轴的长度和焦距成等差数列,列出a 、b 、c 的关系,再转化为a 、c 间的关系,从而求出e . 【规范解答】选B . 椭圆长轴的长度、短轴的长度和焦距成等差数列,∴ 2b a c =+, ∴ 2 2 4()b a c =+,即: 2 22 42b a ac c =++,又 2 22 a b c =+, ∴ 2 24()a c -=22 2a ac c ++,即 2 23250 a ac c --=,()(35)0a c a c +-=, ∴ 0a c +=(舍去)或 350a c -=,∴ 35 c e a ==,故选B . 2.(2010·福建高考文科·T11)若点O 和点 F 分别为椭圆 22 143 x y +=的中心和左焦点,点P 为 椭圆上的任意一点,则OP FP ?的最大值为( ) A.2 B.3 C.6 D.8 【命题立意】本题考查椭圆的基本概念、平面向量的内积、利用二次函数求最值. 【思路点拨】先求出椭圆的左焦点,设P 为动点,

依题意写出OP FP ?的表达式,进而转化为求解条件最值的问题,利用二次函数的方法求解. 【规范解答】选C ,设()0 P x ,y ,则 2222 0000x y 3x 1y 3434 +==-即, 又因为()F 1,0- ()2000OP FP x x 1y ∴?=?++2001x x 34 = ++()2 01x 22 4=++,又[]0 x 2,2∈-, () [] OP FP 2,6∴?∈,所以 ()max 6OP FP ?=. 3.(2010·海南高考理科·T20)设1 2 ,F F 分别是椭 圆E: 22 22 1x y a b +=(a>b>0)的左、右焦点,过1 F 斜率 为1的直线l 与E 相交于,A B 两点,且2 AF ,AB ,2 BF 成等差数列. (Ⅰ)求E 的离心率; (Ⅱ)设点P (0,-1)满足PA PB =,求E 的方程. 【命题立意】本题综合考查了椭圆的定义、等差数列的概念以及直线与椭圆的关系等等.解决本题时,一定要灵活运用韦达定理以及弦长公式等知识. 【思路点拨】利用等差数列的定义,得出 2 AF ,AB ,2 BF 满足的一个关系,然后再利用椭圆的 定义进行计算. 【规范解答】(Ⅰ)由椭圆的定义知,

相关文档
最新文档