SPC统计过程控制基本概念
SPC统计过程控制及CPK分析

SPC统计过程控制及CPK分析随着工业的不断发展,SPC统计过程控制和CPK分析作为质量控制的重要工具被广泛使用。
本文将从以下几个方面进行介绍:•SPC统计过程控制的基本概念及步骤•CPK分析的基本概念和应用方法•SPC统计过程控制和CPK分析在实际生产中的应用SPC统计过程控制的基本概念及步骤SPC统计过程控制是指在生产过程中,通过对产品质量进行监测和控制,确保产品质量的稳定和一致性。
其基本步骤如下:1.定义指标:确定需要监测的关键指标,如尺寸、重量、硬度等。
2.收集数据:在生产过程中按一定规律收集指标数据。
3.统计分析:对数据进行统计分析,得出产品质量的统计特性,如均值、方差、极差等。
4.制定控制策略:根据分析结果制定控制策略,如控制上下限、报警线等。
5.实施控制:在实际生产过程中,根据控制策略对产品质量进行实时监测和控制。
6.持续改进:根据监测结果和反馈信息,不断优化控制策略,实现质量持续改进。
CPK分析的基本概念和应用方法CPK是一种衡量产品质量稳定性的指标,其计算方法为:CPK=(USL-LSL)/(6σ)。
其中,USL和LSL分别为上限和下限,σ为标准差。
CPK的值越接近1,产品质量的稳定性就越好。
CPK分析的应用方法如下:1.定义指标:选择需要监测的关键指标。
2.收集数据:在一段时间内按一定规律收集指标数据。
3.统计分析:对数据进行统计分析,计算出指标的均值、标准差以及CPK值。
4.制定改进措施:根据CPK值的高低以及其他因素,制定针对性的改进措施,并在实际生产中进行落实和监测。
5.持续改进:根据改进措施的效果,不断优化工艺流程和控制方法,实现产品质量的持续改进。
SPC统计过程控制和CPK分析在实际生产中的应用SPC统计过程控制和CPK分析在实际生产中的应用非常广泛。
以汽车制造为例,汽车零部件的质量稳定性是确保整车质量的关键,因此,对关键指标进行SPC统计过程控制和CPK分析就显得尤为重要。
SPC的基本概念与特点

SPC的基本概念与特点什么是SPCSPC,即统计过程控制(Statistical Process Control),是一种通过统计方法对过程进行监控和管理的质量管理工具。
它通过收集和分析过程数据,以便实时地监测过程的稳定性和能力,并及时采取纠正措施,以保证产品或服务的质量符合要求。
SPC基于统计学原理,利用数据分析的手段来判断过程的偏差和稳定性,采取控制图等图形化工具来展示过程变化的规律,并通过数学模型对过程进行预测和改进。
SPC的基本特点1.实时性SPC能够实时地监测过程的稳定性和能力,通过实时收集的数据进行分析,及时发现过程的偏差和异常情况,并及时采取纠正措施。
这使得SPC能够快速响应问题,避免质量问题的扩大和重复出现。
2.统计方法SPC基于统计学原理,利用统计方法对过程数据进行分析和判断。
通过对数据的测量、统计和分析,可以客观地了解过程的状态,并进行准确的判断和决策。
这使得SPC能够避免主观判断和盲目决策的问题,提高质量管理的科学性和准确性。
3.图形化工具SPC采用图形化工具展示过程变化的规律,常用的图形化工具包括控制图、趋势图、直方图等。
这些图形化工具直观地展示了过程的状态和变化趋势,使人们能够快速地理解和分析数据,辅助决策和改进。
图形化工具还能够帮助人们发现隐藏在数据中的规律和关联性,进一步优化和改进过程。
SPC通过数据的分析和建模,能够对过程进行预测和改进。
通过建立数学模型和趋势分析,可以预测过程的发展方向和变化趋势,为及时调整和改进提供依据。
这使得SPC能够提前发现潜在问题和缺陷,及时采取措施进行预防和纠正,确保产品或服务的质量稳定。
5.过程稳定性SPC关注过程的稳定性,即过程的变异是否在可接受的范围内。
通过对数据的统计和分析,可以判断过程的稳定性,并得到稳定性指标,如均值、标准差、过程能力指数等。
这使得SPC能够帮助人们了解过程的状态和品质能力,及时调整和改进过程,提高产品或服务的稳定性和一致性。
统计过程控制SPC基本概念

■ 子组数的大小: 子组数的大小应满足两个原则,从过程的角度来看,收集 越多的子组可以确保变差的主要原因有机会出现。一般情 况下,包含100或更多单值读数的25或更多个子组可以很 好地用来检验稳定性,如果过程已稳定,则可以得到过程 位置和分布宽度的有效的估计值。 ◆ 在有些情况下,可以利用现有的数据来加速这个第一 阶段的研究。然而,只有它们是最近的,并且对建立 子组的基础很清楚的情况下才能使用。
Cpk≧1.33计算 每班 1.检验记录表
2.设备点检记录表 每班 3.作业准备验证记
录表 1.首检、自检 每2 2.检验记录表 小时 3.X-R控制图,
Cpk≧1.33计算
反应 计划
1.标识、隔离、 评审、处置 2.100%检验
调整、呈报班组 长
1.标识、隔离、 评审、处置 2.100%检验
4、统计过程控制(SPC)的目的: 为了解制造过程以及改善制造过程,藉由对制造过程能力的分析/评估
日期(修订):
顾客工程批准/日期(如需要):
零件名称/描述:
供方/工厂批准/日期:
顾客质量批准/日期(如需要):
供方/工厂:
供方代码:
其它批准/日期(如需要):
其它批准/日期(如需要):
零件/过 程编号
过程 名称/ 操作 描述
机器、装置、 夹具、工装
编 号
特性 产品 过程
特殊 特性 分类
1 硬度
▽
30
2 收集数据:
A)、选择子组大小、频率和数据;
■ 子组频率:
其目的是检查经过一段时间后过程中的变化。应当在适当的时间收集足够 的子组,这样子组才能反映潜在的变化。这些变化的潜在原因可能是换班、 或操作人员更换、温升趋势、材料批次等原因造成的。
统计过程控制(SPC)

11
控制图的选择
控制图的选定
计量值 数据性质
计数值
平均值
“n”=10~25 “n”是否较大
n≧1 样本大小 n≧2
Cl的性质
中位数 “n”=2~5
“n”=1
不良数
缺陷数
不良数或
缺陷数
不一定
一定
“n”是否一定
单位大小 是否一定 不一定 一定
X-s 图
X-R 图
X-R
X-Rm “p”
图
图图
“np” “c”
数据类别: 计数值数据:只以缺陷数和个数表示,不能连续取值的数据 计量值数据:以产品本身的特性来表示,可以连续取值的数据
2
两种变异
普通性(特定性)变异:不易避免的原因(普通 原因)造成的变异,如操作人员的熟练程度的 差异、设备精度与保养好坏的差异、同批原材 料本身的差异
特殊性(偶尔性)变异:可以避免也必须避免 的原因(特殊原因)造成的变异,如不同原材料 之间的差异、设备故障
“u”
图图
图
12
案例1(控制图的选择)
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用什么图
13
答案1
质量特性 长度 重量 乙醇比重 电灯亮/不亮 每一百平方米的 脏点
样本数 5 10 1
100 100平方米
选用控制图 均值极差控制图
通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题
8
控制图的目的
控制图和一般的统计图不同,因其不仅能 将数值以曲线表示出来,以观其变异之趋 势,且能显示变异系属于机遇性或非机遇 性,以指示某种现象是否正常,而采取适 当之措施。
SPC基本概念

SPC的特点 SPC的特点
●与全面质量管理相同,强调全员参与,而 不是只依靠少数质量管理人员 ●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制 SPC不是用来解决个别工序采用什么控制 图的问题,SPC强调从整个过程、整个体 图的问题,SPC强调从整个过程、整个体 系出发来解决问题。SPC的重点就在与“ 系出发来解决问题。SPC的重点就在与“P (Process,过程) Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
判稳原则
●计算公式:
准则 N=25 d=0
N=35 N=100 d≤3 d≤1
P(过程为正常的概率)
25 (0 . 9973 0
判断错误 的概率
= 0 . 9345
)25 (1 − 0 . 9973 )0
1-P 1-P
35 35 35 34 1 (0 .9973 ) + (0 .9973 ) (0 .0027 ) = 0 .9959 0 1
统计学在生产中应用的目的
1. x, s --了解产品总体性能 2. Eliminate outlier due to assignable cause -- 取消人为特殊因素造成的极端值以稳定制程 3. Hit target(µ) -- 规格趋向目标值 4. Reduce variance (s) -- 减小差异 5. Spec Review for feasibility -- 審核規格,看看是否適用
判稳原则
●判稳准则 在点子随机排列的情况下,符合下列各点之一判稳: 在点子随机排列的情况下,符合下列各点之一判稳: -----连续25个点,界外点数d=0 -----连续25个点,界外点数d=0 -----连续35个点,界外点数d≤1 -----连续35个点,界外点数d≤1 -----连续100个点,界外点数d≤2 -----连续100个点,界外点数d≤2 ●分析判稳原则 准则 1 2 3 α 0.0654 0.0041 0.0026 β 0.9346 0.9959 0.9974
统计过程控制(SPC)

CD
AP
CD
AP
AP
CD
CD
统计过程控制(SPC)
SPC的基本概念 控制图原理 常规(休哈特)控制图 控制图的判断准则 常用控制图的计算 通用控制图 过程能力与过程能力指数
统计过程控制(SPC)
SPC的基本概念
• SPC的涵义 SPC是英文Statistical Process Control(统计过程控制)
C B A
准则:连续9点落在中心线同一側。
LCL
准则:连续6点递增或递减。
准则:连续14点中相邻点上下交替。
准则:连续3点中有2点落在中心线同一側的B区之外。
准则:连续5点中有4点落在中心线同一側的C区之外。
准则:连续15点在C区的中心线上下。
准则:连续8点在中心线两側,但无一在C区中。
统计过程控制(SPC)
统计过程控制(SPC)
• 控制图的作用 控制图的作用是:及时告警。体现SPC与SPD的贯彻
预防原则。 控制图是SPC与SPD的重要工具,用以直接控制与诊断 过程,故为质量管理七个工具的核心。
质量管理七个工具:因果图(Cause-effect diagram), 排列图(Pareto diagram),直方图(Histogram),散 步图(Scatter diagram),控制图(Control chart),分 层法(Stratification),检查表(Check list)。 贯彻预防原则的“20字方针”:
u控制图的控制线为:
UCL = u + 3 u / n CL = u
LCL = u - 3 u / n
式 否中则:控u制=线 呈ci /凹凸ni 状,。ci为样本的不合格数。样本容量n最好恒定,
统计过程控制(SPC)

(三) x R 控制图的操作步骤
1. 确定控制对象(统计量) 2. 收集k组预备数据(一般K=25;每组数
据个数n ≥ 2;遵循合理子组原则) 3. 计算每一个样本的均值 X i 与极差 Ri 。 4. 计算 X与R 5. 计算R图控制限并作图 6. 用各样本点绘在图中,判断状态。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。 8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日
常管理
四、 X S 图(掌握) 五、X-Rs图(了解)
六、Me-R图(了解)
七、P控制图
(一)P控制图的控制状态
P 常数
n
n
ˆp p di / ni
i1 i1
(二)P控制图的统计基础为二项分布,其
内容 (1)利用控制图分析过程的稳定性,对
过程存在的异常原因进行预警;
(2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。
三、统计过程控制的特点 是一种预防性的方法 贯彻预防原则是现代质量管理的核心 强调全员参与
SPC的涵义
为了贯彻预防原则,应用统计技术对 过程各阶段评估和监控,建立并保持过程 处于可接受的并且稳定的水平从而保证产 品与服务符合规定的要求的一种质量管理 技术。
过程能力指数 过程性能指数
CP
TU TL 6ˆ ST
PP
TU TL 6ˆ LT
其中 ˆ St —— 短期波动的标准差估计,在稳态
下计算
ˆ St
R d2
或
S C4
ˆ Lt —— 长期波动的标准差估计,在实
际情况下计算 ˆ Lt S
统计过程控制知识大全

统计过程控制知识大全1、统计过程控制的基本知识1.1统计过程控制的基本概念统计过程控制(Stastistical Process Control简称SPC)是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。
SPC中的主要工具是控制图。
因此,要想推行SPC必须对控制图有一定深入的了解,否则就不可能通过SPC取得真正的实效。
对于来自现场的助理质量工程师而言,主要要求他们当好质量工程师的助手:(1)在现场能够较熟练地建立控制图;(2)在生产过程中对于控制图能够初步加以使用和判断;(3)能够针对出现的问题提出初步的解决措施。
大量实践证明,为了达到上述目的,单纯了解控制图理论公式的推导是行不通的,主要是需要掌握控制图的基本思路与基本概念,懂得各项操作的作用及其物理意义,并伴随以必要的练习与实践方能奏效。
1.2统计过程控制的作用(1)要想搞好质量管理首先应该明确下列两点:①贯彻预防原则是现代质量管理的核心与精髓。
②质量管理学科有一个十分重要的特点,即对于质量管理所提出的原则、方针、目标都要科学措施与科学方法来保证他们的实现。
这体现了质量管理学科的科学性。
第2 页(共12 页)为了保证预防原则的实现,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题组,一为过程控制组,学术领导人为休哈特;另一为产品控制组,学术领导人为道奇。
其后,休哈特提出了过程控制理论以及控制过程的具体工具——控制图。
道奇与罗米格则提出了抽样检验理论和抽样检验表。
这两个研究组的研究成果影响深远,在他们之后,虽然有数以千记的论文出现,但至今仍未能脱其左右。
休哈特与道奇是统计质量控制(SQC)奠基人。
1931年休哈特出版了他的代表作《加工产品质量的经济控制》这标志着统计过程控制时代的开始。
(2)“21世纪是质量的世纪”。
美国著名质量管理专家朱兰早在1994年的美国质量管理年会上即提出此论断,若干年来得到越来越多的人的认同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
LCL A
判异准则
4.连续3点中有2点落在中心线同一侧的B区以外
UCL A
B
CL
C C
B
LCL A
判异准则
5.连续5点中有4点落在中心线同一侧的CC
B
LCL A
判异准则
6.连续15点在C区中心线上下
UCL A
B
CL
C C
B
LCL A
判异准则
7.连续8点在中心线两侧,但无一区在C区中
1%
5%
10%
判稳原则
●判稳准则 在点子随机排列的情况下,符合下列各点之一判稳:
-----连续25个点,界外点数d=0 -----连续35个点,界外点数d≤1 -----连续100个点,界外点数d≤2 ●分析判稳原则
准则
α
β
1
0.0654
0.9346
2
0.0041
0.9959
3
0.0026
0.9974
SPC的基本概念
SPC(Statistical Process Control):为了贯彻预
防原则,应用统计技术对过程中的各个阶段进 行评估和监察,从而保证产品与服务满足要求 的均匀性。
SPC的特点
●与全面质量管理相同,强调全员参与,而 不是只依靠少数质量管理人员
●强调应用统计方法来保证预防原则的实现 ●SPC不是用来解决个别工序采用什么控制
●控制用控制图 等过程调整到稳态后,延长控制图的控制线 作为控制用控制图。应用过程参数判断
控制图设计思想
●先确定 α ,再看β
----按照3σ方式确定UCL、CL、LCL,
α0 =0.27% ----通常采用α =1%,5%,10%三级,为了增 加使用者的信心,取α =0.27%。 Α越大, β 越小
n k
0.9973n
k
0.0027k
●举例
判稳原则
判异准则
两类:
●点出界判异
●界内点排列不随机判异
判异准则:
1、连续9点落在中心线同一侧
UCL A
B
CL
C C
B
LCL A
判异准则
2.连续6点递增或递减
UCL A
B
CL
C C
B
LCL A
判异准则
3.连续14中相邻点上下交替
UCL A
B
CL
C C
不合格品控制图
p
np
不合格品数控制 图
备注
p、np图可由不合格 数npT
泊松
分布 (计点 值)
u
单位不合格数控 用cT代替u、c图
制图
c
不合格数控制图
X s
X X R
常用控制图
• 均值-极差图
--- 图用于观察正态分布均值的变化;R图用 于观察正态分布的分散情况或变异度的情况
• 均值-标准差图 ---同均值-极差图,用标准差代替极差,R图计 算方便;但当n>10时,s图比R图效率高;最 终替代R图;
统计控制状态
●概念:只有偶因而无异因产生的变异的状态 ●优点:
----对产品的质量有完全把握 ----生产也是最经济的 ----在控制状态下,过程的变异最小
常用的控制图
分布 控制图代号 控制图名称
备注
正态
分布
(计 X R
量值)
均值—极差控制 图
X S
X~ R
均值—标准差控 制图
中位值—极差图
X R
判稳、判异,可以通过应用不合格数npT图替代。 ●计点控制图:当样本大小n变化时,由于u图、c图的
控制界限都呈凹凸状,不但作图不方便,更无法判 稳、判异,可以应用通用不合格数cT图替代。 ●有用的控制图: X s 、X R 、npT图、cT控制图
X R 控制图的两个阶段
分析用控制图 ●判断过程是否稳定不稳定,调至稳定 ●过程的过程能力指数是否满足要求,过 程能力指数满足要求称之为技术稳态
Β=
规范界限与控制界限的区别
规范界限:区分合格品与不合格品 控制界限:区分偶波与异波
3σ方式确定控制界限
●UCL=μ+3 σ ●CL=μ ●LCL=μ-3 σ ●虚发警报α=0.27%
漏发警报β=
分析用控制图与控制用控制图
●分析用控制图 应用控制图时,首先将非稳态的过程调整到 稳态,用分析控制图判断是否达到稳态。确 定过程参数 特点: 1、分析过程是否为统计控制状态 2、过程能力指数是否满足要求?
件质量指标的场合; ----例如:不合格品率、交货延迟率、缺勤率、邮电的差
错率等;
常用控制图评价
●计量控制图:由于计算机的应用普及,X s 控制图
的计算机毫无困难,而且无论样本是否大于10,X s 图计算的结果都是精确的,故均值标准差图完全可 以代替均值极差图。
●计件控制图:当样本大小n变化时,由于p图、np图 的控制界限都呈凹凸状,不但作图不方便,更无法
X Rs 单值--极差图
常用的控制图
组数 数据1 数据2 数据3 数据4 均值 极差 标准差 第一组 48 48 52 52 50 4 2.3 第二组 48 50 50 52 50 4 1.6 第三组 45 46 54 55 50 10 5.2
常用控制图
分布 控制图代号 控制图名称
二项
分布 (计件 值)
UCL A
B
CL
C C
B
LCL A
常用控制图
●X控制图:多用于下列场合: ---对每件产品都必须检验,如采用自动化检查和测量的 场合;
---取样费时、昂贵的场合; ---如化工等气体与液体流程式过程,产品均匀,多抽样
无意义; ---特点:灵敏度差 ● p控制图:用于控制对象为不合格品率或合格品率的计
图的问题,SPC强调从整个过程、整个体 系出发来解决问题。SPC的重点就在与“P (Process,过程) ●可判断过程的异常,及时告警; ●不能告知此异常是什么因素引起的
SPC的特点
●最终发展为SPD(Statistical Process Diagnosis,统计过程诊断)
------SPD既有告警功能,又有诊断功能
●中位极差图 X~ R 图, X~ 表示中位值。现在由于 计算机应用普及,故已淘汰,被均值-标准差图替代。
两种错误
一.第一种错误:虚发警报(false alarm)
UCL
α
β
LCL 二.第二种错误:漏发警报(alarm missing)
控制图的第二类错误
三、减少两种错误所造成的损失: ●UCL、LCL距离间隔大,α减小 β增大 ●UCL、LCL距离间隔小,α增大 β减小 ●UCL、LCL距离间隔3σ,α=0.27%
判稳原则
●计算公式:
准则
P(过程为正常的概率)
N=25 d=0
25 0
0.997325
1
0.99730
0.9345
判断错误 的概率
1-P
N=35 d≤1
1-P
35 0
0.997335
135
0.997334
0.0027
1
0.9959
N=100 d≤3
N=n d ≤k
n 0
0.9973n
......