遥感图像处理计算题PPT课件
合集下载
第七章遥感数字图像计算机解译ppt课件

➢采用距离衡量相似度 时,距离越小相似度 越大。 ➢采用相关系数衡量相 似度时,相关程度越 大,相似度越大。
2
二、分类方法
非监督分类( Unsupervised classification ): 是在没有先验类别(训练场地)作为样本的条件 下,即事先不知道类别特征,主要根据像元间相 似度的大小进行归类合并(即相似度的像元归为 一类85%,模板需要要重建。
35
三、图像分类中的有关问题
1、未充分利用遥感图像提供的多种信息 只考虑多光谱特征,没有利用到地物空间关系、
图像中提供的形状和空间位置特征等方面的信 息。 统计模式识别以像素为识别的基本单元,未能利 用图像中提供的形状和空间位置特征,其本质是 地物光谱特征分类
(3)多级切割分类法 (4)特征曲线窗口分类法
监督分类的一般步骤
采集训练样本 建立模板 评价模板 初步分类 检验分类
分类后处理 分类特征统计
训练样本选择:
取决于用户对研究区及类别的了解程度。
1)矢量多边形:使用矢量图层;自定义AOI多边形; 2)标志种子象素:利用AOI工具,用十字光标标出 一个象元作为种子象素(seed pixel)代表训练样本, 其相邻象素根据用户指定参数进行比较,直到没有 相邻象元满足要求,这些相似元素通过栅矢转换成 为感兴趣区域。
46
小波分析
小波理论起源于信号处理。由于探测精度的限
制.一般的信号都是离散的,通过分析认为信号是由多
个小波组成的,这些小波代表着不同的频率持征。小波
函数平移、组合形成了小波函数库,通过小波函数库中
区间的变化可以对某些感兴趣的频率特征局部放大,因
此.小波函数被称为数学显微镜。
47
小波分析
小波分析方法的基本思想就是将图像进行多分辨率 分解.分解成不同空间、不同频率的子图像、然后再对子 图像进行系数编码。基于小波分析的图像压缩实质上是对 分解系数进行量化的压缩。
2
二、分类方法
非监督分类( Unsupervised classification ): 是在没有先验类别(训练场地)作为样本的条件 下,即事先不知道类别特征,主要根据像元间相 似度的大小进行归类合并(即相似度的像元归为 一类85%,模板需要要重建。
35
三、图像分类中的有关问题
1、未充分利用遥感图像提供的多种信息 只考虑多光谱特征,没有利用到地物空间关系、
图像中提供的形状和空间位置特征等方面的信 息。 统计模式识别以像素为识别的基本单元,未能利 用图像中提供的形状和空间位置特征,其本质是 地物光谱特征分类
(3)多级切割分类法 (4)特征曲线窗口分类法
监督分类的一般步骤
采集训练样本 建立模板 评价模板 初步分类 检验分类
分类后处理 分类特征统计
训练样本选择:
取决于用户对研究区及类别的了解程度。
1)矢量多边形:使用矢量图层;自定义AOI多边形; 2)标志种子象素:利用AOI工具,用十字光标标出 一个象元作为种子象素(seed pixel)代表训练样本, 其相邻象素根据用户指定参数进行比较,直到没有 相邻象元满足要求,这些相似元素通过栅矢转换成 为感兴趣区域。
46
小波分析
小波理论起源于信号处理。由于探测精度的限
制.一般的信号都是离散的,通过分析认为信号是由多
个小波组成的,这些小波代表着不同的频率持征。小波
函数平移、组合形成了小波函数库,通过小波函数库中
区间的变化可以对某些感兴趣的频率特征局部放大,因
此.小波函数被称为数学显微镜。
47
小波分析
小波分析方法的基本思想就是将图像进行多分辨率 分解.分解成不同空间、不同频率的子图像、然后再对子 图像进行系数编码。基于小波分析的图像压缩实质上是对 分解系数进行量化的压缩。
遥感数字图象处理课件.ppt

减色法:从自然光(白光)中减去一种或两种基色光而产 生色彩的方法。
加色法彩色合成与减色法彩色合成
Байду номын сангаас
加色法三原色
减色法三原色
三、光学增强处理
✓ 图像的光学增强处理方法具有精度高, 反映目标地物 更真实,图像目视效果等优点,是遥感图像处理的重 要方法之一。
✓ 计算机图像处理的优点在于速度快、操作简单、效率 高等优点,有逐步取代光学方法的趋势。
2、颜色的性质:
所有颜色都是对某段波长有选择地反射而对其他波长吸收的结果。 颜色的性质由明度、色调、饱和度来描述。
(1)明度:是人眼对光源或物体明亮程度的感觉。物体
反射率越高,明度就越高。
(2)色调:是色彩彼此相互区分的特性。 (3)饱和度:是色彩纯洁的程度,即光谱中波长段是否窄,
频率是否单一的表示。
第一节 遥感图像的光学处理原理及方法
一、颜色视觉
1、亮度对比和颜色对比
(1)亮度对比:对象相对于背景的的明亮程度。改变对
比度,可以提高图象的视觉效果。 C=(L对象 – L 背景)/ L 背景
(2)颜色对比:在视场中,相邻区域的不同颜色的相互
影响叫做颜色对比。两种颜色相互影响的结果,使每种颜 色会向其影响色的补色变化。在两种颜色的边界,对比现 象更为明显。因此,颜色的对比会产生不同的视觉效果。
③ 色度图:可以直观地表现颜色相加的 原理,更准确地表现颜色混合的规律.
CIE色度图
3、颜色相减原理
减色过程:
白色光线先后通过两块滤光片的过程.
颜色相减原理:当两块滤光片组合产生颜色混合时,入
射光通过每一滤光片时都减掉一部分辐射,最后通过的光是经过 多次减法的结果.
减法三原色:黄、品红、青
加色法彩色合成与减色法彩色合成
Байду номын сангаас
加色法三原色
减色法三原色
三、光学增强处理
✓ 图像的光学增强处理方法具有精度高, 反映目标地物 更真实,图像目视效果等优点,是遥感图像处理的重 要方法之一。
✓ 计算机图像处理的优点在于速度快、操作简单、效率 高等优点,有逐步取代光学方法的趋势。
2、颜色的性质:
所有颜色都是对某段波长有选择地反射而对其他波长吸收的结果。 颜色的性质由明度、色调、饱和度来描述。
(1)明度:是人眼对光源或物体明亮程度的感觉。物体
反射率越高,明度就越高。
(2)色调:是色彩彼此相互区分的特性。 (3)饱和度:是色彩纯洁的程度,即光谱中波长段是否窄,
频率是否单一的表示。
第一节 遥感图像的光学处理原理及方法
一、颜色视觉
1、亮度对比和颜色对比
(1)亮度对比:对象相对于背景的的明亮程度。改变对
比度,可以提高图象的视觉效果。 C=(L对象 – L 背景)/ L 背景
(2)颜色对比:在视场中,相邻区域的不同颜色的相互
影响叫做颜色对比。两种颜色相互影响的结果,使每种颜 色会向其影响色的补色变化。在两种颜色的边界,对比现 象更为明显。因此,颜色的对比会产生不同的视觉效果。
③ 色度图:可以直观地表现颜色相加的 原理,更准确地表现颜色混合的规律.
CIE色度图
3、颜色相减原理
减色过程:
白色光线先后通过两块滤光片的过程.
颜色相减原理:当两块滤光片组合产生颜色混合时,入
射光通过每一滤光片时都减掉一部分辐射,最后通过的光是经过 多次减法的结果.
减法三原色:黄、品红、青
《遥感图像处理》课件

遥感图像的数字化处理技术
介绍遥感图像数字化处理的常用方法,如图像增强、图像融合、图像压缩和图像分割。
遥感图像的分类方法和技术
讲解遥感图像的分类方法,包括监督分类和非监督分类,以及常用的分类算法和技术。
遥感图像的特征提取技术
探讨遥感图像特征提取的方法,包括手工特征提取和基于机器学习的特征提 取技术。
遥感图像的实际应用
探索遥感图像在环境监测、自然资源管理、城市规划和农业等领域的实际应 用案例。
遥感图像处理软件的常用工具 和功能
介绍遥感图像处理软件的常见工具和功能,包括影像处理、特征提取、目标 检测和空间分析。
遥感图像处理中的预处理技术
讨论遥感图像处理中的预处理技术,包括辐射校正、大气校正和几何校正等。
遥感图像处理
本课程将介绍遥感技术的基础知识,并深入探讨遥感图像的获取、处理、分 类和特征提取解遥感技术的定义、原理和应用范围,以及不同类型的遥感传感器和遥感 平台。
遥感图像的获取与处理流程
深入了解遥感图像的获取过程,包括数据源选择、遥感数据的预处理、辐射 校正和几何校正。
遥感图像分析与处理ppt课件

19
仪器所引起 的条带噪声
• 引起辐射畸变的原因:是由于探测器的不正常功能 或不同敏感度、地形因素和大气因素等造成的。
20
二、大气引起的辐射预处理
大气引起的辐射变化
21
大气引起的辐射预处理方法
• 1、物理模型法 :
• 根据辐射通过大气层时的物理原理进行建模。 • 优点:具有严密、准确和适用广。 • 缺点:模型复杂,而且需要大量难以获得的参数,所以可
较大区域或整幅影像 较小区域或局部影像
28
§3 几何校正
• 原始遥感图像上常存在各种像元位置误差,使图像表现出旋 转、中心偏离、偏扭、梯形变化、纵横向比例尺不一致、边 缘与中心比例尺不一致等变形,因此需要进行几何校正。
数学变换
29
简述引起遥感影像几何变形的原因?
30
一、导致几何畸变的原因:
• 遥感平台姿态变化、地球自转和球面弯曲、大气折 射、地形起伏等外部因素综合作用导致几何变形。
x=fx(u,v) y=fy(u,v)
上述数学关系常表示为二元多项式(一次、二次、三次或更高 次)表达,其中二元二次多项式可以表示为:
x a00 a10u a01v a11uv a20u2 a02v2
y
b00
b10u
a01v
b11uv
b20u 2
b02v 2
• 1、地面控制点的选取方法
• 控制点分布均匀,边界、四角要有,以避免图像校正不能满 幅,地形起伏大的区域要多选;所选点在图像上要易辨认且 目标较小,如道路的交叉点、河流的分叉处或弯曲处、飞机 场等,而且这些特征在研究时间范围内没有变化。
道路交叉口
仪器所引起 的条带噪声
• 引起辐射畸变的原因:是由于探测器的不正常功能 或不同敏感度、地形因素和大气因素等造成的。
20
二、大气引起的辐射预处理
大气引起的辐射变化
21
大气引起的辐射预处理方法
• 1、物理模型法 :
• 根据辐射通过大气层时的物理原理进行建模。 • 优点:具有严密、准确和适用广。 • 缺点:模型复杂,而且需要大量难以获得的参数,所以可
较大区域或整幅影像 较小区域或局部影像
28
§3 几何校正
• 原始遥感图像上常存在各种像元位置误差,使图像表现出旋 转、中心偏离、偏扭、梯形变化、纵横向比例尺不一致、边 缘与中心比例尺不一致等变形,因此需要进行几何校正。
数学变换
29
简述引起遥感影像几何变形的原因?
30
一、导致几何畸变的原因:
• 遥感平台姿态变化、地球自转和球面弯曲、大气折 射、地形起伏等外部因素综合作用导致几何变形。
x=fx(u,v) y=fy(u,v)
上述数学关系常表示为二元多项式(一次、二次、三次或更高 次)表达,其中二元二次多项式可以表示为:
x a00 a10u a01v a11uv a20u2 a02v2
y
b00
b10u
a01v
b11uv
b20u 2
b02v 2
• 1、地面控制点的选取方法
• 控制点分布均匀,边界、四角要有,以避免图像校正不能满 幅,地形起伏大的区域要多选;所选点在图像上要易辨认且 目标较小,如道路的交叉点、河流的分叉处或弯曲处、飞机 场等,而且这些特征在研究时间范围内没有变化。
道路交叉口
遥感图像处理计算题PPT课件

5.6 空间滤波增强
5.6.1 邻域处理 5.6.2 卷积运算 5.6.3 平滑 5.6.4 锐化
5.6.1 邻域处理
对于图像中的任一像元(i,j):
5.6.2 卷积运算
5.6.3 平滑
平滑方法处理图像后,使图像亮度变得平缓, 减小其剧烈变化或者去掉不必要的噪声点。
1) 均值平滑
33 模板为例
g(x,
y)
g f
(x, (x,
y),当 y),当
f (x, y) g(x, y) f (x, y) g(x, y)
T T
2) 中值滤波平滑
中值滤波是对以每个像元为中心的邻域内 的所有像元按灰度值大小排序,用其中值 作为中心像元新的灰度值 。
应用实例: 一幅5*5大小的图像,采用1*3的模板做中值滤
波处理,最左、最右边缘保留原值。
SUCCESS
THANK YOU
2019/7/26
5.6.4 锐化
1)梯度法——非线性锐化滤波器
何谓梯度?
图像某区域变化剧烈的时候,区域上的像素 之间灰度值差异较大,则此处区域的梯度值就越大;
相反,图像变化缓慢的区域,像素灰度值差异 较小,其梯度值也越小。
梯度的数学描述 :
a) Roberts梯度(罗伯特梯度)
用交叉方法检测出像 元与其邻域在上下之间或 左右之间或斜方向之间的 差异,达到提取边缘信息 的目的。
b) Prewitt和Sobel梯度
(派瑞特梯度) (索伯尔梯度)
Sobel梯度模板
SUCCESS
Tห้องสมุดไป่ตู้ANK YOU
2019/7/26
5.6.1 邻域处理 5.6.2 卷积运算 5.6.3 平滑 5.6.4 锐化
5.6.1 邻域处理
对于图像中的任一像元(i,j):
5.6.2 卷积运算
5.6.3 平滑
平滑方法处理图像后,使图像亮度变得平缓, 减小其剧烈变化或者去掉不必要的噪声点。
1) 均值平滑
33 模板为例
g(x,
y)
g f
(x, (x,
y),当 y),当
f (x, y) g(x, y) f (x, y) g(x, y)
T T
2) 中值滤波平滑
中值滤波是对以每个像元为中心的邻域内 的所有像元按灰度值大小排序,用其中值 作为中心像元新的灰度值 。
应用实例: 一幅5*5大小的图像,采用1*3的模板做中值滤
波处理,最左、最右边缘保留原值。
SUCCESS
THANK YOU
2019/7/26
5.6.4 锐化
1)梯度法——非线性锐化滤波器
何谓梯度?
图像某区域变化剧烈的时候,区域上的像素 之间灰度值差异较大,则此处区域的梯度值就越大;
相反,图像变化缓慢的区域,像素灰度值差异 较小,其梯度值也越小。
梯度的数学描述 :
a) Roberts梯度(罗伯特梯度)
用交叉方法检测出像 元与其邻域在上下之间或 左右之间或斜方向之间的 差异,达到提取边缘信息 的目的。
b) Prewitt和Sobel梯度
(派瑞特梯度) (索伯尔梯度)
Sobel梯度模板
SUCCESS
Tห้องสมุดไป่ตู้ANK YOU
2019/7/26
遥感图像处理ppt课件

02
人工智能在遥感图像处理中可以应用 于地物分类、目标检测、变化检测等 方面。通过训练人工智能算法,使其 能够自动识别和分类地物,提高遥感 数据的利用价值和精度。同时,人工 智能算法还可以对遥感数据进行自动 化分析和处理,提高数据处理效率。
03
人工智能在遥感图像处理中需要解决 的关键问题包括数据标注、模型训练 和优化等。同时,还需要考虑人工智 能算法的可解释性和可靠性,以确保 其在实际应用中的效果和安全性。随 着技术的不断发展,人工智能在遥感 图像处理中的应用将进一步提高遥感 数据的利用价值和精度。
详细描述
遥感图像存储与处理是遥感技术应用的核心环节之一。 在这个过程中,原始数据会经过一系列的预处理、增强 和分类等操作,以提高图像质量和提取更多有用的信息 。例如,辐射定标、大气校正、几何校正等预处理操作 可以提高图像的精度和可靠性;图像增强技术如对比度 拉伸、滤波等可以提高图像的可视化效果和特征提取能 力;分类和目标检测等技术则可以对图像进行语义化表 达和信息提取,以满足不同应用的需求。
遥感图像处理涉及的技术包括辐 射校正、几何校正、图像增强、 信息提取等。
遥感图像处理的重要性
遥感图像处理是遥感技术应用的关键 环节,能够提高遥感数据的精度和可 靠性,为各领域提供更准确、更全面 的信息。
通过遥感图像处理,可以提取出更多 有用的信息,为决策提供科学依据, 促进各行业的智能化发展。
遥感图像处理的应用领域
图像预处理技术
01
02
03
04
去噪
消除图像中的噪声,提高图像 的清晰度。
校正
纠正图像的几何畸变和辐射畸 变,使图像更接近真实场景。
配准
将不同来源的图像进行坐标对 齐,以便于后续的图像分析和
遥感图像处理PPT课件

2021/3/12
14
监督分类
数据:连云港海岸带TM影像图 要求:1)利用上面直方图均衡化之后的图像
2)提取植被、水体、房屋、农田、盐田 等主要地物
2021/3/12
15
1)样本信息提取标志
植被信息提取
TM4是近红外区的唯一的通道,在TM4单波段 的影像上,植被极易与水体区分。在遥感影像 上,植被以红色放映出来,极易于其他地物区 分。在TM4波段中,植被反射近红外的强弱与 植被的生活力、叶面积指数和生物量等信息有 关,而且TM4的光谱信息有较大的独立性。因 此,TM4是反映植被信息的重要波段。在图上 呈现深红色,表面有不规则纹理,较集中并且 大面积分布的区域我们判断为植被。
遥感图像处理 —ERDAS遥感数字图像处理
2021/3/12
1
1彩色合成处理
真彩色合成 彩 色 合 成
假彩色合成
2021/3/12
2
利用数字技术合成真彩色图像时
把红色波段的影像作
为合成图像的红色分 R通道
量
把绿色波段的影像作 为合成图像中的绿色 分量
把蓝色波段的影像作
G通道 B通道真真源自彩Natural color composition
亮度范围) ➢ 输出数据统计时忽略零值:Ignore Zero in Stats ➢ OK,执行直方图均衡化处理。
2021/3/12
13
4 遥感数字图像分类的软件演示
目的:深刻理解遥感数字图像的计算机分类的 原理和方法。熟悉在ERDAS里进行图像的计算 机分类的具体方法和步骤。
软件:ERDAS IMAGINE9.1 内容:监督分类。
2021/3/12
16
农田信息提取
遥感图像处理 ppt课件

像元对应于地面宽度的不等 HOME 36
> L3-L1 ,距星下点越远畸变 越大,对应地面长度越长。
遥感影像变形的原因
• 地表曲率的影响
全景畸变:即当传感 器扫描角度较大时 , 影响更加突出,造成 边缘景物在图像显示 时被压缩 。假定原地 面真实景物是一条直 线,成像时中心窄 、 边缘宽, 但图像显示 时像元大小相同 ,这 时直线被显示成反 S形 弯曲。
X F1 ( x, y ) Y F2 ( x, y )
(1)
• 式中的x、y为像元在原始图像上的坐标,X、Y为 像元在校正后的图像(目的图像,即参考图像) 上的坐标。得到函数F1(x,y)和F2(x,y)的方法是选择 原始图像和目的图像同名点对,采用多项式逼近 法求得。
43
• 即:
无论是卫星还是飞机,运动过程中都会由于种种原因产 生飞行姿势的变化从而引起影像变形。
28
遥感影像变形的原因
• 地形起伏的影响
当地形存在起伏时, 会产生局部像点的位 移,使原来本应是地 面点的信号被同一位 置上某高点的信号代 替。由于高差的原因, 实际像点 P 距像幅中 心的距离相对于理想 像点P0距像幅中心的 距离移动了△r。
40
2、几何畸变校正
(1)基本思路
校正前的影像看起来是 由行列整齐的等间距像元 点组成的,但实际上,由 于某种几何畸变,影像中 像元点间所对应的地面距 离并不相等(图 a )。校 正后的影像亦是由等间距 的网格点组成的,且以地 面为标准,符合某种投影 的均匀分布(图 b ),影 像中格网的交点可以看作 是像元的中心。校正的最 终目的是确定校正后影像 的行列数值,然后找到新 影像中每一像元的亮度值。
13
磁带
输入 数字化 扫描 几何校正 图像复原 辐射校正 反差增强 数字图像处理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a) Roberts梯度(罗伯特梯度)
用交叉方法检测出像 元与其邻域在上下之间或 左右之间或斜方向之间的 差异,达到提取边缘信息 的目的。
b) Prewitt和Sobel梯度
(派瑞特梯度) (索伯尔梯度)
Sobel梯度模板
SUCCESS
THANK YOU
2019/7/26
波处理,最左、最右边缘保留原值。
SUCCESS
THANK YOU
2019/7/26
5.6.4 锐化
1)梯度法——非线性锐化滤波器
何谓梯度?
图像某区域变化剧烈的时候,区域上的像素 之间灰度值差异较大,则此处区域的梯度值就越大;
相反,图像变化缓慢的区域,像素灰度值差异 较小,其梯度值也越小。
梯度的数学描述 :
5.6 空间滤波增强
5.6.1 邻域处理 5.6.2 卷积运算 5.6.3 平滑 5.6.4 锐化
5.6.1 邻域处理
对于图像中的任一像元(i,j):
5.6.2 卷积运算
5.6.3 平滑
平滑方法处理图像后,使图像亮度变得平缓, 减小其剧烈变化或者去掉不必要的噪声点。
1) 均值平滑
33 模板为例
Hale Waihona Puke g(x,y) g f
(x, (x,
y),当 y),当
f (x, y) g(x, y) f (x, y) g(x, y)
T T
2) 中值滤波平滑
中值滤波是对以每个像元为中心的邻域内 的所有像元按灰度值大小排序,用其中值 作为中心像元新的灰度值 。
应用实例: 一幅5*5大小的图像,采用1*3的模板做中值滤