第八章 杆件的应力与强度计算
《材料力学》第八章课后习题参考答案

解题方法与技巧归纳
受力分析
在解题前首先要对物体进行受力分析, 明确各力的大小和方向,以便后续进 行应力和应变的计算。
图形结合
对于一些复杂的力学问题,可以画出 相应的示意图或变形图,帮助理解和 分析问题。
公式应用
熟练掌握材料力学的相关公式,能够 准确应用公式进行计算和分析。
检查结果
在解题完成后,要对结果进行检查和 验证,确保答案的正确性和合理性。
压杆稳定
探讨细长压杆在压缩载荷作用下的稳定性问题。
解题方法与技巧
准确理解题意
仔细审题,明确题目要求和考查的知识点。
选择合适的公式
根据题目类型和所给条件,选用相应的公式 进行计算。
注意单位换算
在计算过程中,要注意各物理量的单位换算, 确保计算结果的准确性。
检查答案合理性
得出答案后,要检查其是否符合实际情况和 物理规律,避免出现错误。
相关题型拓展与延伸
组合变形问题
超静定问题
涉及多种基本变形的组合,如弯曲与扭转 的组合、拉伸与压缩的组合等,需要综合 运用所学知识进行分析和计算。
超静定结构是指未知力数目多于静力平衡 方程数目的结构,需要通过变形协调条件 或力法、位移法等方法进行求解。
稳定性问题
疲劳强度问题
研究细长压杆在压力作用下的稳定性问题 ,需要考虑压杆的临界力和失稳形式等因 素。
研究材料在交变应力作用下的疲劳破坏行为 ,需要了解疲劳极限、疲劳寿命等概念和计 算方法。
THANKS FOR WATCHING
感谢您的观看
重点知识点回顾
材料的力学性质
包括弹性、塑性、强度、硬度等基本概念和 性质。
杆件的拉伸与压缩
涉及杆件在拉伸和压缩状态下的应力、应变及 变形分析。
8章弯曲应力及弯曲强度

x
Fs<0 M
递增函数
x
x
递减函数
Fs1–Fs2=F 由左到右的折角
Fs2
x
斜直线
曲线
M x
递增函数
M x
M
M
x
隆起 与 F相同
以轴线变弯为主要特征 的变形形式。 a) 外力特征: 受横向载荷的作用,即外 力或外力偶的矢量方向垂 直于杆轴. b) 变形特征: 杆件的轴线由直线变为曲线. 梁:以弯曲变形为主要变形的杆件.
8.1 平面弯曲的概念和实例
对称面
c) 平面弯曲: 如果作用于杆件上的所有外力都在同一平面内,并 且弯曲变形后的轴线也位于这个平面内,则梁必关于 此平面对称,这类弯曲称为平面弯曲。
1 a y qL M x 1 M1 x1 Fs1 2 b FR MR
2 用截面法计算Fs1和M1 取1-1截面左边的梁段,根据平衡条件计算 Fs1和M1 .
1 2 M R M qL(a b) qb 2
FR qL qb
F
Y
0
ql FS1 0
M
c1
0
FS1 ql
FS 2 q( x2 a l )
M
c2
0
1 M ql x2 M 2 q( x2 a) 2 0 2
1 M 2 M qlx 2 q( x2 a) 2 2
8.2 剪力和弯矩与剪力图和弯矩图
qL M 1 1 a y x 2
q
若取2-2截面右边的梁段,计算FQ2 FR qL qb 和M2.
F
y
0; ( FS ( x) dFs ( x) Fs ( x) q( x)dx 0
第八章 轴向拉压杆的强度计算

标准试件:试验段l0称为标距。
试件的尺寸统一的规定:
对于矩形截面试件,记中部原始横截面面积为A0,
短试件: /
=5.65 长试件: /
=11.3
对, 于圆截面试件,设中部直径为d0,则 五倍试件:
十倍试件:
金属材料的压缩试验, 试件一般制成短圆柱体。 为了保证试验过程中试件不 发生失稳,圆柱的高度取为直径的1~3倍。
引入比例系数E,把上式写成
式中E为弹性模量,表示材料抵抗弹性变形的能力,是一个只 与材料有关的物理量,其值可以通过试验测得,量纲与应力量 纲相同。弹性模量E和泊松比ν都是材料的弹性常数。
------轴向拉(压)杆件的变形与EA成反比。
EA称为轴向拉(压)杆的抗拉(压)刚度,表示杆件抵抗 拉伸(压缩)的能力。
材料的力学性质除取决于材料本身的成分和组织结构外, 还与荷载作用状态、温度和加载方式等因素有关。
重点讨论常温、静载条件下金属材料在拉伸或压缩时的力 学性质。
为使不同材料的试验结果能进行对比,对于钢、铁和有色 金属材料,需将试验材料按《金属拉伸试验试样》的规定加工 成标准试件,分为圆截面试件和矩形截面试件。
这种由于杆件形状或截面尺寸突然改变而引起局部区 域的应力急剧增大的现象称为应力集中。
设产生应力集中现象的截面上最大应力为σmax,同一 截面视作均匀分布按净面 积A0计算的名义应力为σ0, 即
则比值
称为应力集中因数,它反映了应力集中的程度,是一个大 于1的因数。
§8–3、轴向拉压杆的变形——胡克定律
§8–1、应力与应变的基本概念
1、应力的概念 应力:指截面上一点处单位面积内的分布内力;
或是指内力在一点处的集度。 平均应力:
M点处的内力集度(总应力):
工程力学第八章

l-试验段原长(标距) -试验段原长(标距) ∆l0-试验段残余变形
28
断面收缩率
A A − 1 100 × 00 ψ= A
A -试验段横截面原面积 A1-断口的横截面面积 塑性与脆性材料 塑性材料: δ ≥ 5 % 例如结构钢与硬铝等 塑性材料: 脆性材料: δ <5 % 例如灰口铸铁与陶瓷等 脆性材料: 5
第8章 轴向拉伸与压缩
本章主要研究: :
拉压杆的内力、应力与强度计算 材料在拉伸与压缩时的力学性能 轴向拉压变形分析 简单拉压静不定问题分析 连接部分的强度计算
1
§1 引 言
轴向拉压实例 轴向拉压实例 轴向拉压及其特点 轴向拉压及其特点
2
轴向拉压实例 轴向拉压实例
3
轴向拉压及其特点
外力特征:外力或其合力作用线沿杆件轴线 : 变形特征:轴向伸长或缩短,轴线仍为直线 :轴向伸长或缩短, 轴向拉压: 以轴向伸长或缩短为主要特征的变形形式 : 拉 压 杆: 以轴向拉压为主要变形的杆件 :
37
应力集中对构件强度的影响
对于脆性材料构件, 对于脆性材料构件,当 σmax=σb 时,构件断裂
对于塑性材料构件, 后再增加载荷, 对于塑性材料构件,当σmax达到σs 后再增加载荷, σ 分布趋于均匀化,不影响构件静强度 分布趋于均匀化, 应力集中促使疲劳裂纹的形成与扩展, 对构件( 应力集中促使疲劳裂纹的形成与扩展 对构件(塑 性与脆性材料) 性与脆性材料)的疲劳强度影响极大
33
应力集中与应力集中因数
应力集中
由于截面急剧变化引起应力局部增大现象-应力集中 由于截面急剧变化引起应力局部增大现象-
34
应力集中因数
σmax K= σn
9第八章 杆件变形分析与刚度

2, 由强度条件可得: 由强度条件可得:
由刚度条件可得: 由刚度条件可得:
所以,空心轴的外径应不小于 所以,空心轴的外径应不小于147mm. .
8.5.2 杆件的刚度设计 从挠曲线的近似微分方程及其积分可以看出, 从挠曲线的近似微分方程及其积分可以看出, 弯曲变形与弯矩大小,跨度长短,支座条件, 弯曲变形与弯矩大小,跨度长短,支座条件,梁 有关. 截面的惯性矩 ,材料的弹性模量 有关.故提高 梁刚度的措施为: 梁刚度的措施为: 1) 改善结构受力形式,减小弯矩 ; 改善结构受力形式, 2) 增加支承,减小跨度 ; 增加支承, 3) 选用合适的材料,增加弹性模量 .但因各 选用合适的材料, 种钢材的弹性模量基本相同, 种钢材的弹性模量基本相同,所以为 提高梁的刚 度而采用高强度钢,效果并不显著; 度而采用高强度钢,效果并不显著; 4) 选择合理的截面形状,提高惯性矩 ,如工字形 形状,
4,由于实际无变形,所以: ,由于实际无变形,所以:
解得: 解得:
已知α=30.,杆长 杆长L=2m,直径 直径d=25mm, 【例8.3 】已知 直径 , E=210GPa,P=100kN,求节点 的位移. 求节点A的位移 , 求节点 的位移.
【解】
§8.2 圆轴的扭转变形
圆截面直杆在扭转时,小变形情况下, 圆截面直杆在扭转时,小变形情况下,可认为各 横截面之间的距离保持不变,仅绕轴线作相对转动, 横截面之间的距离保持不变 , 仅绕轴线作相对转动 , 表示. 两横截面间相对转过的角度称为 扭转角 , 用 φ表示 . 表示 取一微段dx研究,设徽段d 的相对扭转角为dφ, 取一微段 x研究,设徽段dx的相对扭转角为 ,沿 轴线方向的变化率为dφ/dx . 在线弹性范围内 , 由 轴线方向的变化率为 x 在线弹性范围内, 5-22) 式(5-22)可知 :
第八章组合变形时的强度计算

Iy
IY
由 mz 产生的正应力
s"' MZ .y Fyp y
IZ
IZ
假设C 点在第一象限内,根据杆件的变形可知, s ',s '',s ''' 均为拉应
力,由叠加原理,即得 C点处的正应力为:
σ σ' σ'' σ'''
任意横截面 n-n上的 C点的正应力为
c
σ F F zP z F yP y
与y轴的夹角θ为:
tgθ z0 Mz Iy Iy tgφ y0 My Iz Iz
公式中角度 是横截面上合成弯矩 M 的矢量与 y 轴的夹角 . 横截面上合成弯矩 M 为:
M
M
2 y
M
2 z
tgθ Iy tgφ Iz
讨论:
(1) 一般情况下,截面的 IzIy ,故中性轴与合成弯矩 M 所在平面不垂直,此为斜弯曲的受力特征。导致挠曲线与外 力(合成弯矩)所在面不共面,此为斜弯曲的变பைடு நூலகம்特征。
s s ' s '' My z - Mz y
Iy
Iz
式中,Iy和Iz分别为横截面对于两对称轴y和z的惯性矩; M y和Mz分别是截面上位于水平和铅垂对称平面内的弯矩,且 其力矩矢量分别与y轴和z轴的正向相一致。在具体计算中,
也可以先不考虑弯矩M y、Mz和坐标y、z的正负号,以它们的 绝对值代入,然后根据梁在P1和P2分别作用下的变形情况, 来判断上式右边两项的正负号。
FN A
Mz Wz
158 MPa
s
所以强度是安全
【例8-4】矩形截面柱如图所示。P1的作用线与杆轴线重合, P2作用在 y 轴上。已知, P1= P2=80kN,b=24cm , h=30cm。 如要使柱的m—m截面只出现压应力,求P2的偏心距e。
杆件屈服应力计算公式

杆件屈服应力计算公式在工程力学中,杆件屈服应力是一个非常重要的参数,它可以帮助工程师确定杆件在受力时是否会发生屈服现象。
屈服现象是指在杆件受到一定的外力作用时,杆件内部会出现塑性变形,导致杆件失去原有的弹性特性。
因此,计算杆件屈服应力是非常重要的,可以帮助工程师选择合适的材料和设计合理的结构。
杆件屈服应力的计算公式可以通过材料的力学性能参数来确定,一般来说,常见的材料力学性能参数包括杨氏模量、屈服强度和断裂强度等。
通过这些参数,可以得到杆件屈服应力的计算公式如下:σ_yield = F_y / A。
其中,σ_yield表示杆件的屈服应力,F_y表示材料的屈服强度,A表示杆件的横截面积。
从这个公式可以看出,杆件的屈服应力与材料的屈服强度和杆件的横截面积有关。
材料的屈服强度越大,杆件的屈服应力也会越大;而杆件的横截面积越大,杆件的屈服应力也会越大。
在实际工程中,工程师需要根据具体的材料和结构设计要求来确定杆件的屈服应力。
一般来说,材料的屈服强度可以通过材料的力学性能表来查找,而杆件的横截面积可以通过几何参数来计算。
在计算杆件的屈服应力时,工程师还需要考虑杆件的受力情况,例如受拉、受压或受弯等情况,这些都会对杆件的屈服应力产生影响。
除了杆件的屈服应力,工程师在设计结构时还需要考虑杆件的安全系数。
安全系数是指杆件的实际强度与设计强度之间的比值,通过安全系数可以评估杆件在受力时的安全性。
一般来说,工程师会根据设计要求和材料的力学性能来确定安全系数的大小,以确保结构在受力时不会发生屈服现象。
总的来说,杆件屈服应力是一个非常重要的参数,在工程设计中起着至关重要的作用。
通过合理计算杆件的屈服应力,可以帮助工程师选择合适的材料和设计合理的结构,从而确保结构在受力时具有足够的强度和稳定性。
同时,工程师还需要考虑安全系数等因素,以确保结构在受力时不会出现屈服现象,从而保障工程的安全性和可靠性。
杆件应力及强度计算

P
BC
FNAB 30 103 149Mpa 6 AAB 201 10
FNBC 26 103 2.6Mpa 4 ABC 100 10
拉伸、压缩与剪切
•斜截面上的应力
P
拉压的内力和应力
有些材料在破坏时并不总是沿横截面,有的是沿斜截面。因此要进 一步讨论斜截面上的应力。 k 设拉力为P,横截面积 为A, P
材料力学
长沙理工大学
蔡明兮
2018年8月8日星期三
第四章
杆件应力与强度计算
拉伸、压缩与剪切
•横截面上的应力
A、几何方面: 根据实验现象,作如下假设:
拉压的内力和应力
平截面假设:变形前的横截面,变形后仍然保持为横截面, 只是沿杆轴产生了相对的平移。 应变假设:变形时纵向线和横向线都没有角度的改变,说明 只有线应变而无角应变。
o
o
拉伸、压缩与剪切
•高温短期
When t 250o ~ 300o C When t 2时间的影响
以低碳钢为例,当温度升高,E、S降低。
b b
& &
在低温情况下。象低碳钢, p 、S增大,减小。即发生冷脆现象。
max
s
拉伸、压缩与剪切
剪切的实用计算:
剪切和挤压的实用计算
FS A
剪切的强度条件:
P
P
FS [ ] A
Q
) [1 ] (塑性材料) (0.6 ~ 0.8 [] 0.8 ~ 1.0) [1 ] (脆性材料) ( [1 ] 为材料的许用拉应力
拉伸、压缩与剪切
2、选择截面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FN1 FP1 50kN
FN 2 Fp1 Fp 2 150kN
2)求应力
FN 1 50103 1 A1 240 240
FN 2 150103 2 A2 370 370 1.1MPa
0.87MPa
8
建筑力学与结构
杆件的应力和强度计算
4
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
§8–2轴向拉压杆 应力和强度计算
一、横截面上的应力 求应力,先要找到应力在横截面上的分布情况。 应力是内力的集度,而内力与变形有关,所以可以由观察杆 件变形来确定应力在截面上的分布规律。 观察到如下现象: 1)横向线缩短,但仍保持 为直线,且仍互相平行并垂 直于杆轴线。 2)纵向线仍保持与杆轴线 平行。
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
1
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
第八章
杆件的应力和强度计算
§8–1 应力的概念 §8–2 轴向拉压杆的应力和强度计算 §8–3 材料的力学性质
§ 8–4 平面弯曲的应力和强度计算
§8–5 组合变形构件的强度计算
2
建筑力学与结构
满足强度条件。
12
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
例3 钢木组合屋架的尺寸及计算简图如图所示,已知钢的容许 应力[σ] = 120MPa F = 16kN , 试选择钢拉杆DI的直径。 解:1)首先应求出钢拉杆的轴力,采用截面法。 将桁架沿m-m截面截开,画出截面 以左部分受力图,见图b),列出 左边部分的平衡条件,即: ∑mA(F)=0
5
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
平面假设:
变形前为平面的横截面,变形后仍保持为平面,且
垂直于杆轴线。 单向受力假设
梁的纵向纤维处于单向受力状态,各纤维之间没有相 互作用。
6
建筑力学与结构 平面假设
杆件的应力和强度计算
内江职业技术学院 应力在横截面 上均匀分布
各纤维伸长相同
各点内力相等
杆件的应力和强度计算
内江职业技术学院
§8–1 应力的概念
一、应力的概念
应力是反映截面上各点处分布内力的集度,
如图 B点处的应力为:
p lim
A0
F A
将应力分解为垂直于截面和相 切于截面的两个分量。垂直于 截面的应力分量称为正应力, 用 σ 表示,与截面相切的应 力分量称为剪应力,用τ 表 示。
内江职业技术学院
§8-3 材料的力学性质
为了解决构件的强度和变形问题,必须了解材料的一些力学 性质,而这些力学性质都要通过材料实验来测定。工程材料 的种类虽然很多,但依据其破坏时产生变形的情况可以分为 脆性材料和塑性材料两大类。脆性材料在拉断时的塑性变形
很小,如铸铁、混凝土和石料等,而塑性材料在拉断时能产 生较大的变形,如低碳钢等。这两类材料的力学性质具有明 显不同的特点,通常以低碳钢和铸铁作为代表进行讨论。 试验条件及试验仪器: 1、试验条件:常温(20℃);静载(及其缓慢地加载);标准试件。
内江职业技术学院
二、强度计算
强度条件:
max
式中: max ---- 称为最大工作应力
FN [ ] A
[ ] ------ 称为材料的许用应力
FN -----杆件横截面上的轴力; A――杆件的危险截面的横截面面积;
对等直杆来讲,轴力最大的截面就是危险截面;对轴力不变
而截面变化的杆,则截面面积最小的截面是危险截面。
9
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
若拉压杆材料的容许拉应力[σ1]和容许压应力[σy]的大小不相 等,则杆件必须同时满足下列两个强度条件:
FNL max L L A FN Y max Y Y A
根据上述强度条件,可以进行三种类型的强度计算: 1)强度校核 在已知荷载、杆件截面尺寸和材料的容许应力的情况
FN A 来求出杆件的最大荷载值。
11
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
例2:一直径d=14mm的圆杆,许用应力[σ]=170MPa,受 轴向拉力FP=2.5kN作用,试校核此杆是否满足强度条件。 解:
max
3 FN max 2.5 10 162MP a < [ ] A 142 106 4
2、试验仪器:万能材料试验机;变形仪(常用引伸仪)。
14
建筑力学与结构
2)计算钢拉杆DI的直径。
F 3 F FN 8kN 6 2
8 103 4 2 A 0 . 667 10 m 120106 FN
D 4A 4 0.667104 9.2mm 3.14
所以选D=10mm
13
建筑力பைடு நூலகம்与结构
杆件的应力和强度计算
3
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
应力的符号规定:正应力以拉为正,压为负。当剪应力使 隔离体有绕隔离体内一点顺时针转动趋势时,该剪应力为 正;反之为负。 量纲: 通常用 有些材料 工程上用 力/长度2=N/m2 = Pa MPa=N/mm2 = 10 6 Pa GPa= kN/mm2 = 10 9 Pa kg/cm2 = 0.1 MPa
作用在杆横截面上的内力为:
FN dFN dA dA A
A A A
正应力的计算公式为:
FN A
式中:FN ----轴力;A---杆件的横截面面积 正应力的正负号与轴力FN相同,拉为正,压为负。
7
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
例1 图所示为一民用建筑砖柱,上段截面尺寸为240240mm , 承受荷载FP1=50kN;下段370370mm,承受荷载FP2= 100kN。试求各段轴力和应力。 解:1)求轴力
下,验算杆件是否满足强度要求。若σ≤[σ] ,则杆件满足 强度要求;否则说明杆件的强度不够。
10
建筑力学与结构
杆件的应力和强度计算
内江职业技术学院
2)截面选择 在已知荷载、材料的容许应力的情况下,由 来确定杆件的最小横截面面积。 3)确定容许荷载
A
FN
在已知杆件的截面面积和材料容许应力的情况下,由