光伏逆变器原理基础知识
太阳能光伏逆变器工作原理和分类的相关知识

光伏逆变器可以将光伏太阳能板产生的可变直流电压转换为市电频率交流电的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。
光伏逆变器是光伏阵列系统中重要的系统平衡之一,可以配合一般交流供电的设备使用。
光伏逆变器的工作原理光伏组件产生的直流电,先经过直流滤波电路,去除电流波动和电磁干扰,进入逆变电路,在逆变电路中现将直流电转换为交流电,再将不规则的交流电整流为正弦波交流电,再由输出端的滤波电路滤除逆变过程中产生高频干扰信号,从而并入电网或者直接供应负载。
光伏逆变器的分类光伏逆变器有多种不同的分类方式,根据波形调制方式的不同可分为方波型逆变器、阶梯型逆变器、正弦波型逆变器和组合型三相逆变器。
1.方波逆变器此逆变器输出的电压波形为方波,逆变器线路简单,价格便宜,实现较为容易。
缺点是方波电压中含有大量的高次谐波成分,在负载中会产生附加的损耗,并对通信等设备产生较大的干扰,需要外加额外的滤波器。
此类逆变器多见于早期,设计功率不超过几百瓦的小容量逆变器。
2.阶梯波逆变器阶梯波逆变器输出的电压波形为阶梯波形,阶梯波逆变器的优点是输出波形接近正弦波,比方波有明显的改善,高次谐波含量减少。
当阶梯波的阶梯达到16个以上f付,输出的波形为准正弦波,整机效率较高。
但此逆变器往往需要多组直流电源供电,需要的功率开关管也较多,给光伏阵列分组和蓄电池分组带来不便。
3.正弦波PWM逆变器正弦波逆变器的优点是输出波形基本为正弦波,在负载中只有很少的谐波损耗,对通信设备干扰小,整机效率高。
缺点是设备复杂、价格高。
随着电力电子技术的进步,脉宽调制技术的普及,大容量PWM型正弦波逆变器逐渐成为逆变器的主流产品。
4.变颇器变频器是由三相整流器、电压源的无源逆变器和控制器构成,由于光伏发电系统所发电力为直流的特殊性,光伏变频器不需要三相整流器,而直接将变频器的直流母线接到光伏发电系统的直流母线上。
鉴于光伏电力受光照的自然环境影响较大,直流母线一般要加蓄电池来稳定变频器的运行;在变频器控制端子要加弱电控制信号,不停地调节变频器的设定频率,改变变频器输出功率,以达到与光伏阵列最大功率点跟踪的目的。
光伏逆变器讲解

光伏逆变器讲解
光伏逆变器是将直流电能转化为交流电能的装置,主要应用于太阳能光伏发电系统中。
其工作原理是将太阳能光伏板发出的直流电能通过电缆传输到光伏逆变器中,逆变器通过电子器件将直流电能转化为交流电能,以满足家庭或工业用电需求。
光伏逆变器的工作原理可以分为三个部分:
1. 直流到直流变化:光伏板发出的直流电能需要经过光伏逆变器的直流到直流变化模块进行变换和整流,以保证电能的稳定性和可靠性。
2. 直流到交流变化:经过直流到直流变化后,电能再经过逆变器的直流到交流变化模块,将直流电能转化为交流电能,以便于家庭或工业用电需求。
3. 控制模块:逆变器还配备了控制模块,可以对光伏板发出的电能进行监控和调节,以保证电能的稳定性和可靠性。
光伏逆变器的优点是可以将太阳能光伏板发出的直流电能转化
为交流电能,可以满足家庭或工业用电需求,同时可以对电能进行监控和调节,以保证电能的稳定性和可靠性。
但是由于光伏逆变器需要进行直流到直流变化和直流到交流变化,其中涉及的电子器件较多,因此其成本较高,维护和保养也需要一定的技术水平。
- 1 -。
光伏逆变器相关知识 -回复

光伏逆变器相关知识-回复光伏逆变器是太阳能发电系统中不可或缺的重要组件。
它将太阳能电池板产生的直流电转换为交流电,为家庭、商业和工业用户提供电力。
本文将分步介绍光伏逆变器的相关知识,包括工作原理、种类、应用和性能评估等。
一、工作原理光伏逆变器的主要功能是将太阳能电池板产生的直流电转换为交流电,以供电网或设备使用。
它通过两个关键步骤实现这一功能:直流-直流(DC-DC)转换和直流-交流(DC-AC)转换。
在直流-直流转换过程中,逆变器通过最大功率点跟踪(MPPT)算法调整直流电压和电流,以使太阳能电池板发挥最大输出功率。
然后,逆变器将此直流电输入到DC-AC变换器中。
在直流-交流转换过程中,逆变器将直流电转换为固定频率且幅值可控的交流电。
这样的交流电符合电网的标准,可直接供电网使用或进一步被其他设备利用。
二、种类光伏逆变器可以根据连接方式、功率范围和应用环境等分类。
常见的种类有以下几种:1. 独立式/网侧式逆变器:独立式逆变器主要用于离网系统,不需要连入电网。
而网侧式逆变器则连接到电网,可对接并与其同步运行,将多余的电能注入电网。
2. 单相/三相逆变器:根据电源输入和输出的相数,逆变器可分为单相和三相逆变器。
单相逆变器适用于家庭和小型商业应用,而三相逆变器通常用于工业和商业应用。
3. 中频/高频逆变器:根据电压和频率的变换方式,逆变器可分为中频和高频逆变器。
中频逆变器适用于大功率应用,而高频逆变器则适用于小功率应用。
4. 引流/非引流逆变器:引流逆变器具有对电网进行主动控制的功能,可以实现电力品质的调整和故障保护等操作。
而非引流逆变器则只能将电能注入电网,没有主动控制的功能。
三、应用光伏逆变器广泛应用于家庭、商业和工业领域,为用户提供可靠的电力供应。
以下是一些主要的应用场景:1. 屋顶光伏发电:光伏逆变器通常安装在屋顶上,将太阳能电池板生成的直流电转换为可用的交流电,为家庭供电或并网供电。
2. 太阳能农业:光伏逆变器在农田中的应用越来越广泛,用于给水泵、农业设备和温室等提供电力。
太阳能光伏逆变器的工作原理和作用介绍

光伏逆变器又称电源调整器,可以将光伏太阳能板产生的可变直流电压转换为市电频率交流电的逆变器,可以反馈回商用输电系统,或是供离网的电网使用。
一、光伏逆变器工作原理逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关,使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制,使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列。
然后让脉冲波通过简单的滤波器形成正弦波。
二、光伏逆变器的作用光伏逆变器不只具有直交流变换功用,还具有最大限制地发扬太阳电池功能的功用和系统毛病维护功用。
归结起来有主动运转和停机功用、最大功率跟踪节制功用、防独自运转功用、主动电压调整功用、直流检测功用、直流接地检测功用。
1、主动运转和停机功能早晨日出后,太阳辐射强度逐步加强,太阳能电池的输出也随之增大,当达到逆变器任务所需的输出功率后,逆变器即主动开始运转,进入运转后,逆变器便每时每刻看管太阳能电池组件的输出,只需太阳能电池组件的输出功率大于逆变器任务所需的输出功率,逆变器就继续运转;直到日落停机,即便阴雨天逆变器也能运转。
当太阳能电池组件输出变小,逆变器输出接近0时,逆变器便构成待机状态。
2、最大功率追踪MPPT功能当日照强度和环境温度变化时,光伏组件输入功率呈现非线性变化,光伏组件既不是恒压源,也不是恒流源,它的功率随着输出电压改变而改变,和负载没有关系。
它的输出电流随着电压升高一开始是一条水平线,到达一定功率时,随着电压升高而降低,当到达组件开路电压时,电流下降到零。
3、孤岛效应的检测及控制功能在正常发电时,光伏并网发电系统连接在电网上,向电网输送有效功率,但是,当电网失电时,光伏并网发电系统可能还在持续工作,并和本地负载处于独立运行状态,这种现象被称为孤岛效应。
逆变器出现孤岛效应时,会对人身安全,电网运行,逆变器本身造成极大的安全隐患,因此逆变器入网标准规定,光伏并网逆变器必须有孤岛效应的检测及控制功能。
光伏逆变器工作原理

光伏逆变器工作原理
光伏逆变器是将太阳能光伏电池板所产生的直流电转换为交流电的设备。
它是光伏发电系统中的核心部件,其工作原理对于太阳能发电具有至关重要的作用。
在光伏逆变器中,最基本的工作原理是利用电子器件将直流电转换为交流电。
当太阳能光伏电池板吸收到阳光后产生的直流电首先被送入光伏逆变器中。
逆变器内部的电子器件会对这些直流电进行一系列的处理,最终将其转换为交流电。
在逆变器内部,直流电首先经过一个整流器,将其转换为大致稳定的直流电。
然后,经过一个中间环节,直流电被送入逆变器的主要部件——逆变器芯片。
逆变器芯片是整个逆变器的核心部件,它通过一系列复杂的电子控制和调节,将直流电转换为符合国家标准的交流电。
在这个过程中,逆变器芯片会根据太阳能光伏电池板的输出情况,自动调节输出的交流电的电压、频率和波形,以确保其符合电网的要求。
这样,光伏逆变器就能够将光伏电池板产生的直流电转换为符合电网要求的交流电,实现太阳能发电系统与电网的连接。
除了基本的电子器件外,现代光伏逆变器还配备了许多智能控制和监测系统。
这些系统可以实时监测光伏电池板的输出情况,对逆变器内部的电子器件进行智能控制和调节,以提高发电效率和延长设备寿命。
总的来说,光伏逆变器的工作原理是利用电子器件将光伏电池板产生的直流电转换为符合电网要求的交流电。
通过一系列复杂的电子控制和调节,逆变器能够实现高效、稳定地将太阳能转化为电能,为可再生能源的发展做出了重要贡献。
光伏逆变器的原理与作用

光伏逆变器的原理与作用一、光伏逆变器的原理光伏逆变器是一种将直流电转化为交流电的电力电子设备。
其基本工作原理主要是基于电力半导体开关管的通断作用,通过对开关管的周期性开关控制,将直流电转换为交流电。
光伏逆变器的核心部分是逆变桥路和控制器。
逆变桥路主要由电力半导体开关管组成,负责将直流电转化为交流电,而控制器则负责控制开关管的开关状态,以达到最佳的逆变效果。
此外,光伏逆变器还通常配备有电压、电流、功率等保护功能,以确保设备的正常工作和安全。
二、光伏逆变器的作用1. 光伏发电系统的核心设备:光伏逆变器是光伏发电系统的核心设备,它将光伏板产生的直流电转换为交流电,方便用户的使用。
同时,光伏逆变器还可以根据实际需求进行电压和电流的调节,以提高发电效率和设备安全性。
2. 转换能量形式:光伏逆变器可以将直流电能转换为交流电能,实现了能量的转换和传输。
在光伏发电系统中,太阳光的能量形式转换为电能,通过光伏逆变器将其转换为交流电,可以被各种电器设备使用。
3. 保护功能:光伏逆变器通常配备有各种保护功能,如过压保护、欠压保护、过流保护等,可以有效地保护光伏设备和避免因异常情况导致的损失。
这些保护功能可以通过控制器来实现,通过检测和控制开关管的开关状态,避免过载、过压、短路等异常情况的发生。
4. 智能控制:光伏逆变器可以通过控制器实现智能控制,可以根据实际需求进行发电量的调节和控制。
同时,光伏逆变器还可以与智能电网系统连接,实现双向互动,可以根据实际需求进行电力交换。
5. 提高发电效率:光伏逆变器可以通过优化逆变过程,提高发电效率。
例如,可以通过调节交流电的电压、电流等参数,提高发电效率;还可以通过控制开关管的开关状态,实现最大功率点追踪,提高发电效率。
总之,光伏逆变器在光伏发电系统中起着至关重要的作用。
它可以将光伏板产生的直流电转换为交流电,方便用户使用;同时还可以实现能量的转换和传输,保护设备和提高发电效率。
随着光伏技术的不断发展,光伏逆变器的技术也在不断进步,未来光伏逆变器将在光伏发电系统中发挥更加重要的作用。
光伏三相逆变器工作原理

光伏三相逆变器工作原理
光伏三相逆变器的工作原理如下:
1. 光伏组件:光伏组件是整个发电系统里的核心部分,通过光能转换成直流电。
单片光伏电池片的电流和电压都很小,所以需要先串联获得高电压,再并联获得高电流。
2. 控制器:控制器在离网系统中使用,主要作用是控制整个系统的运行,确保电流的正常流动和稳定输出。
3. 逆变器:逆变器是实现直流电能到交流电能的转换的关键设备。
在光伏系统中,逆变器将光伏组件产生的直流电转换成交流电。
逆变器的工作原理是:首先,光伏组件将光能转换成直流电,然后直流电在逆变器的作用下转变成交流电。
最终实现用电、上网功能。
以上内容仅供参考,建议咨询专业人士获取更准确的信息。
太阳能光伏逆变器工作原理

太阳能光伏逆变器工作原理太阳能光伏逆变器是将太阳能光伏发电系统产生的直流电转换为交流电的关键设备。
它通过波形质量控制和频率变换,实现太阳能发电系统向电网输出电能,从而满足家庭和工业用电需求。
本文将详细介绍太阳能光伏逆变器的工作原理及其技术特点。
一、太阳能光伏逆变器的工作原理1. 光伏效应太阳能光伏逆变器的工作原理基于光伏效应。
光伏效应是指在半导体材料中,当太阳光照射到半导体表面时,光子激发了半导体中的电子,使其跃迁到导带形成电子-空穴对。
由于半导体结构的特殊性质,电子-空穴对会在材料内部产生电流。
2. 太阳能光伏电池组件太阳能光伏电池组件是太阳能光伏逆变器的输入端,将光伏效应产生的直流电源输入到逆变器中。
太阳能光伏电池组件由多个太阳能光伏电池单元串联或并联而成,能够将太阳能转换为直流电能。
3. 推进器/变换器光伏电池组件产生的直流电必须经过推进器或变换器进行电压调整和电流整流。
推进器/变换器能够根据电网的要求调整直流电的电压和电流,保证输出的电能符合电网标准。
4. 逆变器逆变器是太阳能光伏逆变器的关键部件,主要负责将直流电转换为交流电。
逆变器具备波形质量控制和频率转换的能力,能够将直流电转换为符合电网要求的交流电。
5. 电网连接逆变器将转换后的交流电能够直接连接到电网中,供家庭和工业用电。
同时,逆变器还能根据电网的变化实时调整电流和电压的波形,确保输出电能的稳定性和安全性。
二、太阳能光伏逆变器的技术特点1. 系统效率太阳能光伏逆变器的主要目标是提高太阳能发电系统的效率。
通过优化功率转换过程,减少能量损失,提高系统的总体效率。
一般来说,高效率的太阳能光伏逆变器能够提高整个系统的能量输出。
2. MPPT技术最大功率点跟踪(MPPT)是太阳能光伏逆变器的关键技术之一。
MPPT技术能够根据太阳能的辐射强度和温度变化,实时调整太阳能电池的工作电压和电流,以确保将光伏组件的输出功率最大化。
3. 波形控制太阳能光伏逆变器的另一项重要技术是波形控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏逆变器原理基础知识从事电力行业的各位同仁们应当会常常听说逆变器,知道逆变器的用途与功能,今日就先带大家了解一下光伏逆变器的原理吧。
一、工作原理及特点:工作原理:逆变装置的核心,是逆变开关电路,简称为逆变电路。
该电路通过电力电子开关的导通与关断,来完成逆变的功能。
特点:(1)要求具有较高的效率。
由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必需设法提高逆变器的效率。
(2)要求具有较高的牢靠性。
目前光伏电站系统主要用于边远地区,很多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种爱护功能,如:输入直流极性接反爱护、沟通输出短路爱护、过热、过载爱护等。
(3)要求输入电压有较宽的适应范围。
由于太阳能电池的端电压随负载和日照强度变化而变化。
特殊是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。
二、光伏逆变器分类有关逆变器分类的方法许多,例如:依据逆变器输出沟通电压的相数,可分为单相逆变器和三相逆变器;依据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。
依据逆变器线路原理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。
依据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。
为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。
1、集中型逆变器集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换掌握器来改善所产出电能的质量,使它特别接近于正弦波电流,一般用于大型光伏发电站(10kW)的系统中。
最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特殊是光伏组串因多云、树荫、污渍等缘由被部分遮挡时),采纳集中逆变的方式会导致逆变过程的效率降低和电户能的下降。
同时整个光伏系统的发电牢靠性受某一光伏单元组工作状态不良的影响。
最新的讨论方向是运用空间矢量的调制掌握以及开发新的逆变器的拓扑连接,以获得部分负载状况下的高效率。
2、组串型逆变器组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在沟通端并联并网,已成为现在国际市场上最流行的逆变器。
很多大型光伏电厂使用组串逆变器。
优点是不受组串间模块差异和遮影的影响,同时削减了光伏组件最佳工作点与逆变器不匹配的状况,从而增加了发电量。
技术上的这些优势不仅降低了系统成本,也增加了系统的牢靠性。
同时,在组串间引人'主-从'的概念,使得系统在单串电能不能使单个逆变器工作的状况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。
3、微型逆变器在传统的PV系统中,每一路组串型逆变器的直流输入端,会由10块左右光伏电池板串联接入。
当10块串联的电池板中,若有一块不能良好工作,则这一串都会受到影响。
若逆变器多路输入使用同一个MPPT,那么各路输入也都会受到影响,大幅降低发电效率。
在实际应用中,云彩,树木,烟囱,动物,灰尘,冰雪等各种遮挡因素都会引起上述因素,状况特别普遍。
而在微型逆变器的PV系统中,每一块电池板分别接入一台微型逆变器,当电池板中有一块不能良好工作,则只有这一块都会受到影响。
其他光伏板都将在最佳工作状态运行,使得系统总体效率更高,发电量更大。
在实际应用中,若组串型逆变器消失故障,则会引起几千瓦的电池板不能发挥作用,而微型逆变器故障造成的影响相当之小。
4、功率优化器太阳能发电系统加装功率优化器(OptimizEr)可大幅提升转换效率,并将逆变器(Inverter)功能化繁为简降低成本。
为实现才智型太阳能发电系统,装置功率优化器可的确让每一个太阳能电池发挥最佳效能,并随时监控电池耗损状态。
功率优化器是介于发电系统与逆变器之间的装置,主要任务是替代逆变器原本的最佳功率点追踪功能。
功率优化器藉由将线路简化以及单一太阳能电池即对应一个功率优化器等方式,以类比式进行极为快速的最佳功率点追踪扫描,进而让每一个太阳能电池皆可的确达到最佳功率点追踪,除此之外,还能藉置入通讯晶片随时随地监控电池状态,即时回报问题让相关人员尽速修理。
三、光伏逆变器的功能逆变器不仅具有直沟通变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障爱护功能。
归纳起来有自动运行和停机功能、最大功率跟踪掌握功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。
这里简洁介绍自动运行和停机功能及最大功率跟踪掌握功能。
(1)自动运行和停机功能早晨日出后,太阳辐射强度渐渐增加,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开头运行。
进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。
当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。
(2)最大功率跟踪掌握功能太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。
另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能猎取最大功率的最佳工作点。
太阳辐射强度是变化着的,明显最佳工作点也是在变化的。
相对于这些变化,始终让太阳电池组件的工作点处于最大功率点,系统始终从太阳电池组件猎取最大功率输出,这种掌握就是最大功率跟踪掌握。
太阳能发电系统用的逆变器的最大特点就是包括了最大功率点跟踪(MPPT)这一功能。
四、光伏逆变器的主要技术指标1.输出电压的稳定度在光伏系统中,太阳电池发出的电能先由蓄电池储存起来,然后经过逆变器逆变成220V或380V的沟通电。
但是蓄电池受自身充放电的影响,其输出电压的变化范围较大,如标称12V的蓄电池,其电压值可在10.8~14.4V之间变动(超出这个范围可能对蓄电池造成损坏)。
对于一个合格的逆变器,输入端电压在这个范围内变化时,其稳态输出电压的变化量应不超过额定值的Plusmn;5%,同时当负载发生突变时,其输出电压偏差不应超过额定值的10%。
2.输出电压的波形失真度对正弦波逆变器,应规定允许的最大波形失真度(或谐波含量)。
通常以输出电压的总波形失真度表示,其值应不超过5%(单相输出允许l0%)。
由于逆变器输出的高次谐波电流会在感性负载上产生涡流等附加损耗,假如逆变器波形失真度过大,会导致负载部件严峻发热,不利于电气设备的平安,并且严峻影响系统的运行效率。
3.额定输出频率对于包含电机之类的负载,如洗衣机、电冰箱等,由于其电机最佳频率工作点为50Hz,频率过高或者过低都会造成设备发热,降低系统运行效率和使用寿命,所以逆变器的输出频率应是一个相对稳定的值,通常为工频50Hz,正常工作条件下其偏差应在Plusmn;l%以内。
4.负载功率因数表征逆变器带感性负载或容性负载的力量。
正弦波逆变器的负载功率因数为0.7~0.9,额定值为0.9。
在负载功率肯定的状况下,假如逆变器的功率因数较低,则所需逆变器的容量就要增大,一方面造成成本增加,同时间伏系统沟通回路的视在功率增大,回路电流增大,损耗必定增加,系统效率也会降低。
5.逆变器效率逆变器的效率是指在规定的工作条件下,其输出功率与输入功率之比,以百分数表示,一般状况下,光伏逆变器的标称效率是指纯阻负载,80%负载状况下的效率。
由于光伏系统总体成本较高,因此应当最大限度地提高光伏逆变器的效率,降低系统成本,提高光伏系统的性价比。
目前主流逆变器标称效率在80%~95%之间,对小功率逆变器要求其效率不低于85%。
在光伏系统实际设计过程中,不但要选择高效率的逆变器,同时还应通过系统合理配置,尽量使光伏系统负载工作在最佳效率点四周。
6、额定输出电流(或额定输出容量)表示在规定的负载功率因数范围内逆变器的额定输出电流。
有些逆变器产品给出的是额定输出容量,其单位以VA或kVA表示。
逆变器的额定容量是当输出功率因数为1(即纯阻性负载)时,额定输出电压为额定输出电流的乘积。
7、爱护措施一款性能优良的逆变器,还应具备完备的爱护功能或措施,以应对在实际使用过程中消失的各种特别状况,使逆变器本身及系统其他部件免受损伤。
(1)输入欠压保户:当输入端电压低于额定电压的85%时,逆变器应有爱护和显示。
(2)输入过压保户:当输入端电压高于额定电压的130%时,逆变器应有爱护和显示。
(3)过电流爱护:逆变器的过电流爱护,应能保证在负载发生短路或电流超过允许值时准时动作,使其免受浪涌电流的损伤。
当工作电流超过额定的150%时,逆变器应能自动爱护。
(4)输出短路保户逆变器短路爱护动作时间应不超过0.5s。
(5)输入反接爱护:当输入端正、负极接反时,逆变器应有防护功能和显示。
(6)防雷爱护:逆变器应有防雷爱护。
(7)过温爱护等另外,对无电压稳定措施的逆变器,逆变器还应有输出过电压防护措施,以使负载免受过电压的损害。
8.起动特性表征逆变器带负载起动的力量和动态工作时的性能。
逆变器应保证在额定负载下牢靠起动。
9.噪声电力电子设备中的变压器、滤波电感、电磁开关及风扇等部件均会产生噪声。
逆变器正常运行时,其噪声应不超过80dB,小型逆变器的噪声应不超过65dB。
五、选型技巧逆变器的选用,首先要考虑具有足够的额定容量,以满意最大负荷下设备对电功率的要求。
对于以单一设备为负载的逆变器,其额定容量的选取较为简洁。
当用电设备为纯阻性负载或功率因数大于0.9时,选取逆变器的额定容量为用电设备容量的1.1~1.15倍即可。
同时逆变器还应具有抗容性和感性负载冲击的力量。
对一般电感性负载,如电机、冰箱、空调、洗衣机、大功率水泵等,在起动时,其瞬时功率可能是其额定功率的5~6倍,此时,逆变器将承受很大的瞬时浪涌。
针对此类系统,逆变器的额定容量应留有充分的余量,以保证负载能牢靠起动,高性能的逆变器可做到连续多次满负荷起动而不损坏功率器件。
小型逆变器为了自身平安,有时需采纳软起动或限流起动的方式。
六、安装留意事项及维护1、在安装前首先应当检查逆变器是否在运输过程中有无损坏。
2、在选择安装场地时,应当保证四周内没有任何其他电力电子设备的干扰。
3、在进行电气连接之前,务必采纳不透光材料将光伏电池板掩盖或断开直流侧断路器。
暴露于阳光,光伏阵列将会产生危急电压。
4、全部安装操作必需且仅由专业技术人员完成。