等差数列和等比数列专题讲义

等差数列和等比数列专题讲义
等差数列和等比数列专题讲义

等差数列和等比数列专题讲义

考情解读 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.

1.a n 与S n 的关系S n =a 1+a 2+…+a n ,a n =?

????

S 1,n =1,

S n -S n -1,n ≥2.

2.等差数列和等比数列

热点一 等差数列

例1 (1)等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( )

A .21

B .24

C .28

D .7

(2)设等差数列{a n }的前n 项和为S n ,若-1

解析 (1)由题意可知,a 2+a 6=2a 4,则3a 4=12,a 4=4,所以S 7=7×(a 1+a 7)

2=7a 4=28.

(2)S 9=9a 1+36d =3(a 1+2d )+6(a 1+5d ) 又-1

∴-3<3(a 1+2d )<3,0<6(a 1+5d )<18, 故-3

思维升华 (1)等差数列问题的基本思想是求解a 1和d ,可利用方程思想; (2)等差数列的性质

①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②S m ,S 2m -S m ,S 3m -S 2m ,…,仍成等差数列; ③a m -a n =(m -n )d ?d =a m -a n

m -n

(m ,n ∈N *);

④a n b n =A 2n -1B 2n -1(A 2n -1

,B 2n -1分别为{a n },{b n }的前2n -1项的和). (3)等差数列前n 项和的问题可以利用函数的性质或者转化为等差数列的项,利用性质解决.

(1)已知等差数列{a n }中,a 7+a 9=16,S 11=99

2

,则a 12的值是( )

A .15

B .30

C .31

D .64

(2)在等差数列{a n }中,a 5<0,a 6>0且a 6>|a 5|,S n 是数列的前n 项的和,则下列说法正确的是( )

A .S 1,S 2,S 3均小于0,S 4,S 5,S 6…均大于0

B .S 1,S 2,…S 5均小于0,S 6,S 7,…均大于0

C .S 1,S 2,…S 9均小于0,S 10,S 11…均大于0

D .S 1,S 2,…S 11均小于0,S 12,S 13…均大于0 答案 (1)A (2)C

解析 (1)因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16?a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=9

2,则d =

a 8-a 62=7

4,所以a 12=a 8+4d =15,故选A. (2)由题意可知a 6+a 5>0,故

S 10=(a 1+a 10)×102=(a 5+a 6)×102>0,

而S 9=(a 1+a 9)×92=2a 5×9

2=9a 5<0,故选C.

热点二 等比数列

例2 (1)(2014·安徽)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =_____________________.

(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n

a n 等于( )

A .4n -

1

B .4n -1

C .2n -

1

D .2n -1

思维启迪 (1)列方程求出d ,代入q 即可;(2)求出a 1,q ,代入化简. 答案 (1)1 (2)D

解析 (1)设等差数列的公差为d ,则a 3=a 1+2d , a 5=a 1+4d ,

∴(a 1+2d +3)2=(a 1+1)(a 1+4d +5),解得d =-1, ∴q =a 3+3a 1+1=a 1-2+3

a 1+1

=1.

(2)∵???

a 1+a 3=52

a 2

+a 4

=5

4

,∴???

a 1+a 1q 2=5

2

,①

a 1

q +a 1q 3

=5

4

,②

由①②可得1+q 2q +q 3=2,∴q =1

2,代入①得a 1=2, ∴a n =2×(12)n -1=42n ,

∴S n =2×(1-(12)n )

1-12=4(1-1

2n ),

∴S n

a n =4(1-12n )

4

2n

=2n -1,故选D. 思维升华 (1){a n }为等比数列,其性质如下:

①若m 、n 、r 、s ∈N *,且m +n =r +s ,则a m ·a n =a r ·a s ; ②a n =a m q n -

m ;

③S n ,S 2n -S n ,S 3n -S 2n 成等比数列(q ≠-1). (2)等比数列前n 项和公式

S n =?????

na 1

(q =1),a 1(1-q n )1-q

=a 1-a n q 1-q (q ≠1).

①能“知三求二”;②注意讨论公比q 是否为1;③a 1≠0.

(1)已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,

数列{b n }是等比数列,且b 7=a 7,则b 2b 8b 11等于( ) A .1 B .2 C .4

D .8

(2)在等比数列{a n }中,a 1+a n =34,a 2·a n -1=64,且前n 项和S n =62,则项数n 等于( ) A .4 B .5 C .6

D .7

答案 (1)D (2)B

解析 (1)∵a 4-2a 27+3a 8=0,∴2a 27=a 4+3a 8,即2a 2

7=4a 7,∴a 7=2,∴b 7=2,又∵b 2b 8b 11=b 1qb 1q 7b 1q 10=b 31q 18=(b 7)3=8,故选D.

(2)设等比数列{a n }的公比为q ,由a 2a n -1=a 1a n =64,又a 1+a n =34,解得a 1=2,a n =32或a 1=32,a n =2.当a 1=2,a n =32时,S n =a 1(1-q n )1-q =a 1-a n q 1-q =2-32q 1-q =62,解得q =2.又a n

=a 1q n -

1,所以2×2n -

1=2n =32,解得n =5.同理,当a 1=32,a n =2时,由S n =62,解得q

=12.由a n =a 1q n -

1=32×(12)n -1=2,得(12)n -1=116=(12)4,即n -1=4,n =5.综上,项数n 等于5,故选B.

热点三 等差数列、等比数列的综合应用

例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6. (1)求数列{a n }的通项公式a n 与前n 项和S n ;

(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n

思维启迪 (1)利用方程思想求出a 1,代入公式求出a n 和S n ;(2)将恒成立问题通过分离法转化为最值.

解 (1)由a 2+a 7+a 12=-6得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.

(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q , 则q =b 2b 1=12

∴T m =4[1-(12)m ]

1-12=8[1-(1

2)m ],

∵(1

2)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-1

2(n 2-9n )

=-12[(n -92)2-81

4],

故(S n )max =S 4=S 5=10,

若存在m ∈N *,使对任意n ∈N *总有S n 6.即实数λ的取值范围为(6,+∞). 思维升华 等差(比)数列的综合问题的常见类型及解法

(1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.

(2)等差数列、等比数列与函数、方程、不等式等的交汇问题,求解时用等差(比)数列的相关知识,将问题转化为相应的函数、方程、不等式等问题求解即可.

已知数列{a n }前n 项和为S n ,首项为a 1,且1

2

,a n ,S n 成等差数列.

(1)求数列{a n }的通项公式;

(2)数列{b n }满足b n =(log 2a 2n +1)×(log 2a 2n +3),求证:1b 1+1b 2+1b 3+…+1b n <1

2.

(1)解 ∵12,a n ,S n 成等差数列,∴2a n =S n +1

2,

当n =1时,2a 1=S 1+12,∴a 1=1

2,

当n ≥2时,S n =2a n -12,S n -1=2a n -1-1

2,

两式相减得a n =S n -S n -1=2a n -2a n -1, ∴

a n

a n -1

=2, ∴数列{a n }是首项为1

2,公比为2的等比数列,

∴a n =12

×2n -1=2n -

2.

(2)证明 b n =(log 2a 2n +1)×(log 2a 2n +3)=log 222n +1-2

×log 222n

+3-2

=(2n -1)(2n +1),

1b n =12n -1×12n +1=12(12n -1-12n +1

),

1b 1+1b 2+1b 3+…+1b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12(1-12n +1)<12(n ∈N *). 即1b 1+1b 2+1b 3+…+1b n <12

.

1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.

3.等差、等比数列的单调性 (1)等差数列的单调性

d >0?{a n }为递增数列,S n 有最小值. d <0?{a n }为递减数列,S n 有最大值. d =0?{a n }为常数列. (2)等比数列的单调性

当????? a 1>0,q >1或????? a 1<0,00,0

????

a 1<0,q >1时,{a n }为递减数列. 4.常用结论

(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S n

n }仍为等差数列,

其中m ,k 为常数.

(2)若{a n },{b n }均是等比数列,则{ca n }(c ≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2

n },

{1

a n

}仍为等比数列. (3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…,成等比数列,且公比为a 3-a 2a 2-a 1=(a 2-a 1)q

a 2-a 1

=q .

(4)等比数列(q ≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等比数列,其公差为q k .

等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…,成等差数列,公差为k 2d . 5.易错提醒

(1)应用关系式a n =?

????

S 1,n =1,

S n -S n -1,n ≥2时,一定要注意分n =1,n ≥2两种情况,在求出结果

后,看看这两种情况能否整合在一起.

(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c

2,但三个数a ,b ,c 成等比数列的充要

条件是b 2=ac .

真题感悟

1.(2014·大纲全国)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 答案 C

解析 数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4 =lg(a 4·a 5)4=lg(2×5)4=4.

2.(2014·北京)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8

解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 9<-a 8<0. ∴数列的前8项和最大,即n =8. 押题精练

1.已知等比数列{a n }的前n 项和为S n ,则下列一定成立的是( ) A .若a 3>0,则a 2 013<0 B .若a 4>0,则a 2 014<0 C .若a 3>0,则a 2 013>0 D .若a 4>0,则a 2 014>0 答案 C

解析 因为a 3=a 1q 2,a 2 013=a 1q 2 012,而q 2与q 2 012均为正数,若a 3>0,则a 1>0,所以a 2 013>0,故选C.

2.已知数列{a n }是首项为a ,公差为1的等差数列,b n =1+a n

a n

.若对任意的n ∈N *,都有b n ≥b 8成立,则实数a 的取值范围为________. 答案 (-8,-7)

解析 a n =a +(n -1)×1=n +a -1,所以b n =1+a n a n =n +a n +a -1,因为对任意的n ∈N *,都有

b n ≥b 8成立,即

n +a n +a -1≥8+a 8+a -1(n ∈N *)恒成立,即n -8

(a +7)(n +a -1)

≤0(n ∈N *),则有

?

????

a +7<0,1-a <9,解得-8

a 14恰好是等比数列{

b n }的前三项. (1)求数列{a n },{b n }的通项公式;

(2)记数列{b n }的前n 项和为T n ,若对任意的n ∈N *,(T n +3

2)k ≥3n -6恒成立,求实数k 的

取值范围.

解 (1)当n ≥2时,由题设知4S n -1=a 2n -4(n -1)-1,

∴4a n =4S n -4S n -1=a 2n +1-a 2n -4, ∴a 2n +1=a 2n +4a n +4=(a n +2)2,

∵a n >0,∴a n +1=a n +2.

∴当n ≥2时,{a n }是公差d =2的等差数列. ∵a 2,a 5,a 14构成等比数列,

∴a 25=a 2·a 14,(a 2+6)2=a 2·(a 2+24),解得a 2=3, 由条件可知,4a 1=a 22-5=4,∴a 1=1, ∵a 2-a 1=3-1=2,

∴{a n }是首项a 1=1,公差d =2的等差数列. ∴等差数列{a n }的通项公式为a n =2n -1. ∵等比数列{b n }的公比q =a 5a 2=2×5-13=3,

∴等比数列{b n }的通项公式为b n =3n . (2)T n =b 1(1-q n )1-q =3(1-3n )1-3

=3n +

1-3

2,

∴(3n +

1-32+3

2

)k ≥3n -6对任意的n ∈N *恒成立,

∴k ≥2n -4

3

n 对任意的n ∈N *恒成立,

令c n =2n -43n ,c n -c n -1=2n -43n -2n -63n -1=-2(2n -7)

3n ,

当n ≤3时,c n >c n -1; 当n ≥4时,c n

227,∴k ≥2

27

.

(推荐时间:60分钟)

一、选择题

1.等比数列{a n }中a 1=3,a 4=24,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189

答案 C

解析 由题意可得q 3=8,所以q =2.所以a 3+a 4+a 5=a 1q 2(1+q +q 2)=84. 2.设等差数列{a n }的前n 项和为S n ,若2a 6=6+a 7,则S 9的值是( ) A .27 B .36 C .45 D .54

答案 D

解析 由2a 6=6+a 7得a 5=6,所以S 9=9a 5=54.故选D.

3.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A .3 B .4 C .5 D .6

答案 C

解析 由已知得,S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =

a 1-a m q

1-q =-11,故a 1=-1,又a m =a 1·q m -

1=-16,代入可求得m =5.

4.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8等于( )

A .0

B .3

C .8

D .11 答案 B

解析 ∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,

∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6, ∴b 1+b 2+…+b 7=7b 1+7×62·d

=7×(-6)+21×2=0,

又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∴a 8-3=0,a 8=3.故选B.

5.数列{a n }满足a 1=2,a n =a n +1-1

a n +1+1

,其前n 项积为T n ,则T 2 014等于( )

A.16 B .-16

C .6

D .-6

答案 D

解析 由a n =a n +1-1a n +1+1得a n +1=1+a n 1-a n ,而a 1=2,所以a 2=-3,a 3=-12,a 4=1

3,a 5=2,则

数列是以4为周期,且a 1a 2a 3a 4=1,所以T 2 014=(a 1a 2a 3a 4)503a 1a 2=1503×2×(-3)=-6,故选D.

6.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ), Q (2 011,a 2 011),则OP →·OQ →

等于( ) A .2 011 B .-2 011 C .0 D .1 答案 A

解析 由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 二、填空题

7.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 答案 3

解析 设等比数列{a n }的公比为q ,

由已知,得?

????

a 1+a 1q 2

=8,a 1q 4+a 1q 6=4,解得q 4=12. 又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×(1

2)2=2,

a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×(1

2)3=1,

所以a 9+a 11+a 13+a 15=2+1=3.

8.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______. 答案 50

解析 因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.

所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)

=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5=50ln e =50.

9.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =

等差数列和等比数列的总结与联系

等差数列和等比数列的综合及其联系 课题设计背景: 数列是反映自然规律的基本数学模型之一。而等差数列和等比数列是学生必须掌握的两种基本数学模型,研究等差数列的通项、性质以及求和公式,并用类比的方法对等比数列进行研究是课程标准的教学要求。 课题设计目标: (1)掌握等差数列的通项公式及其前n项和公式; (2)掌握等差数列的通项公式及其前n项和公式;体验用类比的思想方法对等差数列和等比数列进行研究的活动。

例题分析: 1、已知(), f x = 利用课本推导等差数列前n 项和的公式的方法,求和: (5)(4)(3)...(5)f f f f f -+-+-+++的值 2、已知公差不为零的等差数列{n a }中,236,,a a a 组成等比数列的连续三项,求公比q 3、已知等差数列{}n a 的公差和等比数列{}n b 的公比都是11441010,1,,,;d d a b a b a b ≠=== (1)求1a 和d 的值;(2)16b 是不是数列{}n a 中的项,为什么? (二)等差数列和等比数列之间的转化 结论: (1){}n a 成等差数列,则{}(0,1)n a c c c >≠成等比数列; (2)正项数列{}n a 成等比数列,则{}log (0,1)c n a c c >≠成等差数列。类比可结合上述结论将等比数列转化为等差数列,再还原成等比数列写出有关结论。 例题分析: 1、 已知数列)}({* N n a n ∈是一个以(0)q q >为公比,以11(0)a a >为首项的等比数列,求 12lg lg ...lg n a a a +++ 2、 若数列)}({* N n a n ∈是等差数列,则有数列*123......,()n n a a a a b n N n ++++= ∈ 也是等差数列;类比上述性质,相应地:若数列)}({* N n c n ∈是等比数列,且0>n c ,则 有数列*_________________,()n d n N =∈也是等比数列。 3、 设)}({* N n a n ∈是等差数列,12n a n b ?? = ? ?? ,已知123123211 ,,88 b b b b b b ++= =求数列)}({*N n a n ∈的通项公式。 (三)学法总结: (四)课后反思:

等差、等比数列知识点总结

一、任意数列的通项n a 与前n 项和n S 的关系:???≥-==-)2() 1(11n S S n S a n n n 二、等差数列 1、等差数列及等差中项定义 d a a n n =--1、2 1 1-++= n n n a a a 。 2、等差数列的通项公式:d n a a n )1(1-+=、d k n a a k n )(-+= 当0≠d 时,n a 是关于n 的一次式;当0=d 时,n a 是一个常数。 3、等差数列的前n 项和公式:2)(1n n a a n S += d n n na S n 2 ) 1(1-+= 4、等差数列}{n a 中,若q p n m +=+,则q p n m a a a a +=+ 5、等差数列}{n a 的公差为d ,则任意连续m 项的和构成的数列m S 、m m S S -2、m m S S 23-、…… 仍为等差数列。 6、B A a A d Bn An S n +==+=122,, 7、在等差数列}{n a 中,有关n S 的最值问题 利用n S (0≠d 时,n S 是关于n 的二次函数)进行配方(注意n 应取正整数) 三、等比数列 1、等比数列及等比中项定义: q a a n n =-1 、112+-=n n n a a a 2、等比数列的通项公式: 11-=n n q a a k n k n q a a -= 3、等比数列的前n 项和公式:当1=q 时,1na S n = 当1≠q 时,q q a S n n --=1)1(1 q q a a S n n --=11 4、等比数列}{n a 中,若q p n m +=+,则q p n m a a a a ?=? 5、等比数列}{n a 的公比为q ,且0≠n S ,则任意连续m 项的和构成的数列m S 、m m S S -2、 m m S S 23-、……仍为等比数列 6、0=++=B A B Aq S n n ,则 四、求数列}{n a 的最大的方法: 1-1n n n n a a a a ≥≥+ 五、求数列}{n a 的最小项的方法: 1 -1n n n n a a a a ≤≤+ 例:已知数列}{n a 的通项公式为:32922-+-=n n a n ,求数列}{n a 的最大项。 例:已知数列}{n a 的通项公式为:n n n n a 10) 1(9+=,求数列}{n a 的最大项。

微专题11等差数列与等比数列(教学案)

微专题11等差数列与等比数列 1.掌握并活用等差、等比数列的基本量和性质,进行基本运算. 2.运用定义域分析通项公式,判断或证明一个数列是等差(比)数列. 3.从分析数列特征入手,综合运用通项公式、求和公式、不等式、函数等方法求解最值或参数范围问题. 考题导航题组一等差数列、等比数列的基本量及基本运算 1.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=________. 2.设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 1.已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________. 2.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2 =________.题组二等差数列、等比数列的判定与证明 1.已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1 ,则a n =________.2.已知数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明:{b n }是等差数列; (2)求数列{a n }的通项公式.

1.记S n为数列{a n}的前n项和,若S n=2a n+1,则S6=________. 2.设数列{a n}中,S1=1,S2=2,S n+1-3S n+2S n-1=0(n≥2),则命题“{a n}是等比数列”是________命题.(填“真”或“假”) 题组三与等差数列、等比数列有关的最值、参数范围问 题 1.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为________. 2.已知数列{a n}为等差数列,若a7 a6 <-1,且它们的前n项和S n有最大值,则使S n>0的n的最大值为________. 3.等差数列{a n}的前n项和为S n,已知S10=0,S15=25,则nS n的最小值为________. 1.已知首项为3 2的等比数列{a n }不是递减数列,其前n项和为S n(n∈N*),且S3+a3,S5+a5,S4+a4成等差数列. (1)求数列{a n}的通项公式; (2)设T n=S n-1 S n (n∈N*),求数列{T n}最大项的值与最小项的值.

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差数列、等比数列知识点梳理

等差数列和等比数列知识点梳理 第一节:等差数列的公式和相关性质 1、等差数列的定义:对于一个数列,如果它的后一项减去前一项的差为一个定值,则称这个数列为等差数列,记:d a a n n =--1(d 为公差)(2≥n ,*n N ∈) 2、等差数列通项公式: 1(1)n a a n d =+-,1a 为首项,d 为公差 推导过程:叠加法 推广公式:()n m a a n m d =+- 变形推广:m n a a d m n --= 3、等差中项 (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 (2)等差中项: 数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4、等差数列的前n 项和公式: 1()2n n n a a S += 1(1) 2n n na d -=+ 211 ()22 d n a d n =+-2An Bn =+ 前N 相和的推导:当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=。(注:12132n n n a a a a a a --+=+=+=???,)当然扩充到3项、4项……都是可以的,但要保证等号两边项数相同,下标系数之和相等。

5、等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2)等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a (3)数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4)数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6、等差数列的证明方法 定义法或者等差中项发? {}n a 是等差数列. 7、等差数列相关技巧: (1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、 n a 及n S ,其中1a 、d 称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。 (2)设项技巧: ①一般可设通项1(1)n a a n d =+- ②奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d ); ③偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(注意;公差为2d ) 8、等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222 n n n d d S na d n a n -=+=+-是关于n 的二次函数且常数项为0。

等差数列与等比数列练习和解析(高考真题)

1.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A .a n =2n -5 B .a n =3n -10 C .S n =2n 2 -8n D .S n =12 n 2 -2n 2.(2019·长郡中学联考)已知数列{a n }满足,a n +1+2a n =0,且a 2 =2,则{a n }前10项的和等于( ) A.1-2103 B .-1-210 3 C .210-1 D .1-210 3.已知等比数列{a n }的首项为1,公比q ≠-1,且a 5+a 4=3(a 3 +a 2),则 9 a 1a 2a 3…a 9等于( ) A .-9 B .9 C .-81 D .81 4.(2018·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10 D .12 5.(2019·山东省实验中学联考)已知等差数列{a n }的公差不为零,S n 为其前n 项和,S 3=9,且a 2-1,a 3-1,a 5-1构成等比数列,则S 5=( ) A .15 B .-15 C .30 D .25 二、填空题 6.(2019·北京卷)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________. 7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,

等差数列与等比数列的基本运算

一.课题:等差数列与等比数列的基本运算 二.教学目标:掌握等差数列和等比数列的定义,通项公式和前n 项和的公式,并能利用这些知识 解决有关问题,培养学生的化归能力. 三.教学重点:对等差数列和等比数列的判断,通项公式和前n 项和的公式的应用. 四.教学过程: (一)主要知识: 1.等差数列的概念及其通项公式,等差数列前n 项和公式; 2.等比数列的概念及其通项公式,等比数列前n 项和公式; 3.等差中项和等比中项的概念. (二)主要方法: 1.涉及等差(比)数列的基本概念的问题,常用基本量1,()a d q 来处理; 2.使用等比数列前n 项和公式时,必须弄清公比q 是否可能等于1还是必不等于1,如果不能确定则需要讨论; 3.若奇数个成等差数列且和为定值时,可设中间三项为,,a d a a d -+;若偶数个成等差数列且和为定值时,可设中间两项为,a d a d -+,其余各项再根据等差数列的定义进行对称设元.若干个数个成等比数列且积为定值时,设元方法与等差数列类似. 4.在求解数列问题时要注意运用函数思想,方程思想和整体消元思想,设而不求. (三)例题分析: 例1.(1)设数列{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项为 2 . (2)已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a a a a a ++++=1316 . 例2.有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个书的和是12,求这四个数. 解:设这四个数为:2 (),,,a d a d a a d a +-+,则2 ()16212a d a d a a d ?+-+=???+=? 解得:48a d =??=?或96a d =??=-?,所以所求的四个数为:4,4,12,36-;或15,9,3,1. 例3.由正数组成的等比数列{}n a ,若前2n 项之和等于它前2n 项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:当1q =时,得11211na na =不成立,∴1q ≠, ∴221122331111 (1)11(1)1111n n a q a q q q q a q a q a q a q ?--=?--??+=?? 由①得110 q =,代入②得110a =, ∴21()10 n n a -=. 说明:用等比数列前n 项和公式时,一定要注意讨论公比是否为1. 例4.已知等差数列110,116,122,, ① ②

等差数列与等比数列十大例题

等差数列与等比数列十大例题 例1、已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令b n = 2 1 1 n a -(n ∈N *),求数列{}n b 的前n 项和n T . 【解析】(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有 11 27 21026a d a d +=?? +=?,解得13,2a d ==, 所以321)=2n+1n a n =+-(;n S =n(n-1) 3n+22 ?=2n +2n 。 (Ⅱ)由(Ⅰ)知2n+1n a =,所以b n = 2 1 1n a -=21=2n+1)1-(114n(n+1)?=111(-)4n n+1 ?, 所以n T = 111111(1-+++-)4223n n+1?- =11(1-)=4n+1?n 4(n+1) , 即数列{}n b 的前n 项和n T = n 4(n+1) 。 【命题意图】本题考查等差数列的通项公式与前n 项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。 例2、 设n S 为数列{}n a 的前n 项和,2n S kn n =+,* n N ∈,其中k 是常数. (I ) 求1a 及n a ; (II )若对于任意的* m N ∈,m a ,2m a ,4m a 成等比数列,求k 的值. 解(Ⅰ)当1,111+===k S a n , 12)]1()1([,2221+-=-+--+=-=≥-k kn n n k n kn S S a n n n n (*) 经验,,1=n (*)式成立, 12+-=∴k kn a n (Ⅱ)m m m a a a 42,, 成等比数列,m m m a a a 42 2.=∴, 即)18)(12()14(2 +-+-=+-k km k km k km ,整理得:0)1(=-k mk ,

等差数列与等比数列

等差数列与等比数列 一.选择题 (1)在等差数列{a n }中, a 7=9, a 13=-2, 则a 25= ( ) A -22 B -24 C 60 D 64 (2) 在等比数列{a n }中, 存在正整数m, 有a m =3, a m+5=24, 则, a m+15= ( ) A 864 B 1176 C 1440 D 1536 (3)已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a = ( ) A –4 B –6 C –8 D –10 (4)设数列{}n a 是等差数列,且n S a a ,6,682=-=是数列{}n a 的前n 项和,则 ( ) A S 4+><,则使前n 项和0n S >成 立的最大自然数n 是: ( ) A .4005 B .4006 C .4007 D .4008 (7) 数列{a n }的前n 项和S n =3n -c, 则c=1是数列{a n }为等比数列的 ( ) A 充分非必要条件 B 必要非充分条件 C 充分必要条件 D 既非充分又非必要条件 (8) 在等比数列{a n }中, a 1<0, 若对正整数n 都有a n 1 B 0

等差数列与等比数列的类比练习题(带答案)

等差数列与等比数列的类比 一、选择题(本大题共1小题,共5.0分) 1.记等差数列{a n}的前n项和为S n,利用倒序求和的方法得S n=n(a1+a n) 2 ; 类似地,记等比数列{b n}的前n项积为T n,且b n>0(n∈N?),类比等差数列求和的方法,可将T n表示成关于首项b1,末项b n与项数n的关系式为( ) A. (b1b n)n B. nb1b n 2C. nb1b n D. nb1b n 2 1. A 二、填空题(本大题共9小题,共45.0分) 2.在公差为d的等差数列{a n}中有:a n=a m+(n?m)d(m、n∈N+), 类比到公比为q的等比数列{b n}中有:______ . 2. b n=b m?q n?m(m,n∈N?) 3.数列{a n}是正项等差数列,若b n=a1+2a2+3a3+?+na n 1+2+3+?+n ,则数列{b n}也为等差数列,类比上述结论,写出正项等比数列{c n},若d n=______ 则数列{d n}也为等比数列. 3. (c 1 c22c33…c n n)1 4.等差数列{a n}中,有a1+a2+?+a2n+1=(2n+1)a n+1,类比以上性 质,在等比数列{b n}中,有等式______ 成立. 4. b1b2…b2n+1=b n+1 2n+1 5.若等比数列{a n}的前n项之积为T n,则有T3n=(T2n T n )3;类比可得到以下正确结论:若等差数列的前n项之和为S n,则有______ . 5. S3n=3(S2n?S n) 6.已知在等差数列{a n}中,a11+a12+?+a20 10=a1+a2+?a30 30 ,则在等比数列{b n} 中,类似的结论为______ 10b11?b12?…?b20=30b1?b2?b3?…?b30 7.在等比数列{a n}中,若a9=1,则有a1?a2…a n=a1?a2…a17?n(n< 17,且n∈N?)成立,类比上述性质,在等差数列{b n}中,若b7=0,则有______ . b1+b2+?+b n=b1+b2+?+b13?n(n<13,且n∈N?)

(完整版)高考等差等比数列知识点总结

高考数列知识点 等差数列 1.等差数列的定义:d a a n n =--1(d 为常数)(2≥n ); 2.等差数列通项公式:* 11(1)()n a a n d dn a d n N =+-=+-∈ , 首项:1a ,公差:d ,末项:n a 推广: d m n a a m n )(-+=. 从而m n a a d m n --= ; 3.等差中项(1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A += 或b a A +=2 (2)等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 特别地()()()12121121212 n n n n a a S n a +++++= = + 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列)2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2 n S An Bn =+,(其中A 、B 是常数) 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数* ∈N n )? {}n a 是等差数列 7.等差数列的性质: (1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函 数,且斜率为公差d ; 前n 和211(1)()222 n n n d d S na d n a n -=+ =+-是关于n 的二次函数且常数项为0. (2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=. (4)若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列 (5) 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列 (6)求n S 的最值 法一:因等差数列前n 项和是关于n 的二次函数,故可转化为求二次函数的最值,但要 注意数列的特殊性 *n N ∈。 法二:(1)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和 即当,,001<>d a 由?? ?≤≥+0 1n n a a 可得n S 达到最大值时的n 值. (2) “首负”的递增等差数列中,前n 项和的最小值是所有非正项之和。 即 当,,001>

专题10 等差数列与等比数列—三年高考(2015-2017)数学(文)真题汇编

1.【2017浙江,6】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C 【考点】 等差数列、充分必要性 【名师点睛】本题考查等差数列的前n 项和公式,通过公式的套入与简单运算,可知 4652S S S d +-=, 结合充分必要性的判断,若q p ?,则p 是q 的充分条件,若q p ?, 则 p 是q 的必要条件,该题“0>d ”?“02564>-+S S S ”,故为充要条件. 2.【2015高考新课标1,文7】已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若 844S S =,则10a =( ) (A ) 172 (B )19 2 (C )10 (D )12 【答案】B 【解析】∵公差1d =,844S S =,∴11118874(443)2 2 a a +??=+??,解得1a =1 2 , ∴101119 9922 a a d =+= += ,故选B. 【考点定位】等差数列通项公式及前n 项和公式 【名师点睛】解等差数列问题关键在于熟记等差数列定义、性质、通项公式、前n 项和公式,利用方程思想和公式列出关于首项与公差的方程,解出首项与公差,利用等差数列性质可以简化计算. 3.【2014高考重庆文第2题】在等差数列{}n a 中,1 352,10a a a =+=,则7a =( ) .5A .8B .10C .14D 【答案】B

【解析】 试题分析:设等差数列{}n a的公差为d,由题设知,12610 a d +=,所以,1 102 1 6 a d - ==所以,716268 a a d =+=+=.故选B. 考点:等差数列通项公式. 【名师点睛】本题考查了等差数列的概念与通项公式,本题属于基础题,利用下标和相等的两项的和相等更能快速作答. 4.【2014天津,文5】设 {} n a是首项为 1 a,公差为1-的等差数列,n S为其前n项和,若, , , 4 2 1 S S S成等比数列,则 1 a=() A.2 B.-2 C. 2 1 D . 1 2 - 【答案】D 考点:等比数列 【名师点睛】本题考查等差数列的通项公式和前n项和公式,本题属于基础题,利用等差数列的前n项和公式表示出, , , 4 2 1 S S S然后依据, , , 4 2 1 S S S成等比数列,列出方程求出首项.这类问题考查等差数列和等比数列的基本知识,大多利用通项公式和前n项和公式通过列方程或方程组就可以解出. 5.【2014辽宁文9】设等差数列{}n a的公差为d,若数列1{2}n a a为递减数列,则()A.0 dC.10 a d 【答案】C 【解析】 试题分析:由已知得,111 22 n n a a a a- <,即 1 11 2 1 2 n n a a a a- <,1n1 (a) 21 n a a- -<,又n1 a n a d - -=,故121 a d<,从而10 a d<,选C. 【考点定位】1、等差数列的定义;2、数列的单调性. 【名师点睛】本题考查等差数列的通项公式、数列的性质等,解答本题的关键,是写出等差

等差等比数列知识点梳理及经典例题

A 、等差数列知识点及经典例题 一、数列 由n a 与n S 的关系求n a 由n S 求n a 时,要分n=1和n ≥2两种情况讨论,然后验证两种情况可否用统一的解析式表示,若不能,则用分段 函数的形式表示为1 1(1)(2)n n n S n a S S n -=?=?-≥?。 〖例〗根据下列条件,确定数列{}n a 的通项公式。 分析:(1)可用构造等比数列法求解; (2)可转化后利用累乘法求解; (3)将无理问题有理化,而后利用n a 与n S 的关系求解。 解答:(1) (2) …… 累乘可得, 故 (3)

二、等差数列及其前n 项和 (一)等差数列的判定 1、等差数列的判定通常有两种方法: 第一种是利用定义,1()(2)n n a a d n --=≥常数,第二种是利用等差中项,即112(2)n n n a a a n +-=+≥。 2、解选择题、填空题时,亦可用通项或前n 项和直接判断。 (1)通项法:若数列{n a }的通项公式为n 的一次函数,即n a =An+B,则{n a }是等差数列; (2)前n 项和法:若数列{n a }的前n 项和n S 是2 n S An Bn =+的形式(A ,B 是常数),则{n a }是等差 数列。 注:若判断一个数列不是等差数列,则只需说明任意连续三项不是等差数列即可。 〖例〗已知数列{n a }的前n 项和为n S ,且满足111120(2),2 n n n n S S S S n a ---+=≥=g (1)求证:{ 1 n S }是等差数列; (2)求n a 的表达式。 分析:(1)1120n n n n S S S S ---+=g → 1n S 与1 1n S -的关系→结论; (2)由 1 n S 的关系式→n S 的关系式→n a

等差数列与等比数列复习小结

山西省朔州市应县四中高二数学学案(十一) 等差数列与等比数列 编写人:朱强基 考纲要求 1理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。 2掌握等差数列与等比数列的概念、通项公式、前n 项和的公式,并能够运用这些知识解决一些问题。 重点、难点归纳 1数列的有关概念 数列:按照一定的次序排列的一列数。 通项公式:数列的第n 项a n 与n 之间的函数关系如果能够用一个解析式来表示,则这个解析式就叫做这个数列的通项公式。 2数列的表示法 列举法:如a 1,a 2,a 3,…,a n ,… 图象法:用孤立的点(n ,a n )来表示 解析法:即用通项公式来表示 递推法:一个数列的各项可由它的前m 项的值以及与它相邻的m 项之间的关系来表示 3数列的分类 有穷数列与无穷数列 有界数列与无界数列 常数列、递增数列、递减数列、摆动数列 4a n 与S n 的关系 S n =a 1+a 2+a 3+…+a n ;a n =S 1(n =1时),a n =S n -S n -1(n ≥2时)。 前n 项和公式 等差数列{a n }前n 项的和为2111()(1)()2222 n n a a n n n d d S na d n a n +-= =+=+-。

Ⅰ.设数列{}n a 是等差数列,其奇数项之和为奇S 、偶数项之和为 偶S ,那么,当项数为偶数2n 时, 1, +=n n a a S S nd S S = -偶 奇奇偶;当项数为奇数2n +1时,11,n S n S S a S n ++-==奇奇偶 偶 Ⅱ.在等差数列{n a }中,有关S n 的最值问题:(1)当1a >0,d<0时,满足???≤≥+00 1 m m a a 的项数m 使得m s 取最大值. (2) 当1a <0,d>0时,满足???≥≤+0 1m m a a 的项数m 使得m s 取最小值。在解含绝对值的数列最值问题时,注意转化思想的应 用。 Ⅲ.121(21),{}2 n n n s a d s n a n n -=-是以为首项,为公差的等差数列. 等比数列{a n }前n 项的和为S n =na 1,(q =1时);S n =q q a a q q a n n --=--11)1(11,(q ≠1时)。 (1)正数等比数列各项的(同底)对数值,依次组成等差数列.即{ }为等比数列且 (i=1,2……,n,……) { }( 且 )为等差数列;若定义 = ,则{ }亦 为等差数列. (2)取一个不等于1的正数为底数,则以等差数列各项为指数的方幂依次组成等比数列.即设a>0且a≠1,则{ } 为等差数列 { }为等比数列. (3){ }既是等差数列,又是等比数列 { }是非零常数列.

(完整版)等差等比数列知识点总结

1.等差数列: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数d ,那么这个数列就叫做等差数列,这个常数d 叫做等差数列的公差,即 d a a n n =--1(d 为常数)(2≥n );. 2.等差中项: (1)如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项.即:2 b a A +=或 b a A +=2 ( 2 ) 等 差 中 项 : 数 列 {} n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a 3.等差数列的通项公式: 一般地,如果等差数列{}n a 的首项是1a ,公差是d ,可以得到等差数列的通项公式为: ()d n a a n 11-+= 推广: d m n a a m n )(-+=. 从而m n a a d m n --=; 4.等差数列的前n 项和公式: 1()2n n n a a S += 1(1)2n n na d -=+211 ()22 d n a d n =+-2An Bn =+ (其中A 、B 是常数,所以当d ≠0时,S n 是关于n 的二次式且常数项为0) 5.等差数列的判定方法 (1) 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列. (2) 等差中项:数列{}n a 是等差数列 )2(211-≥+=?+n a a a n n n 212+++=?n n n a a a . (3) 数列{}n a 是等差数列?b kn a n +=(其中b k ,是常数)。 (4) 数列{}n a 是等差数列?2n S An Bn =+,(其中A 、B 是常数)。 6.等差数列的证明方法 定义法:若d a a n n =--1或d a a n n =-+1(常数*∈N n )? {}n a 是等差数列.

高中数学必修5:等差数列与等比数列知识对比表

高中数学必修5:等差数列与等比数列知识比较一览表等差数列等比数列 定义一般地,如果一个数列{} n a从第2项起,每一项与它 的前一项的差等于同一个常数d,那么这个数列就叫 做等差数列.这个常数d叫公差. 等差数列的单调性: 数列{} n a为等差数列,则 当公差0 d>,则为递增等差数列, 当公差0 d<,则为递减等差数列, 当公差0 d=,则为常数列. 一般地,如果一个数列{} n a从第2项起,每一项 与它的前一项的比等于同一个常数q,那么这个数 列就叫等比数列.这个常数q叫公比. 等比数列的单调性: 数列{} n a为等比数列,则 当1 q>时,1 1 0{} 0{} {n n a a a a > < ,则为递增数列 ,则为递减数列; 当1 q< 0<时,1 1 0{} 0{} {n n a a a a > < ,则为递减数列 ,则为递增数列 当q=1时,该数列为常数列,也为等差数列; 当q<0时,该数列为摆动数列. 判定方法等差数列的判定方法 (1)定义法:若d a a n n = - -1 或 d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. (2)等差中项:数列{}n a是等差数列 )2 ( 2 1 1- ≥ + = ? + n a a a n n n2 1 2 + + + = ? n n n a a a (3)通项公式:b kn a n + =(b k,是常数) ?数列{}n a是等差数列 (4)前n项和公式:数列{}n a是等差数列 ?2 n S An Bn =+,(其中A、B是常数)。 等比数列的判定方法 (1)用定义:对任意n,都有 1 1 (0) n n n n n a a qa q q a a + + ==≠ 或为常数, ?{} n a为等比数列 (2)等比中项:2 11 n n n a a a +- =( 11 n n a a +- ≠0) ?{} n a为等比数列 (3)通项公式:()0 n n a A B A B =??≠ ?{} n a为等比数列 (4)前n项和公式: () '',,',' n n n n S A A B S A B A A B A B =-?=- 或为常数 ?{} n a为等比数列 证明方法等差数列的证明方法:只能依据定义: 定义法:若d a a n n = - -1 或d a a n n = - +1 (常数* ∈N n)?{}n a是等差数列. 等比数列的证明方法:只能依据定义: 若()()* 1 2, n n a q q n n N a - =≠≥∈ 0且或1 n n a qa + = ?{} n a为等比数列 递推关系① 121 n n a a a a + -=-(* n N ∈) ② 1 n n a a d + -=(* n N ∈) ③ 11 n n n n a a a a +- -=-(* 2, n n N ≥∈) ①12 1 n n a a a a +=( * n N ∈) ②1n n a q a +=(* 0, q n N ≠∈) ③1 1 n n n n a a a a + - =(* 2, n n N ≥∈) 通项公式① 11 (1) n a a n d dn a d =+-=+-=b kn+ 推广:()d m n a a m n - + =(m、* n N ∈) 特别的,当m=1时,便得到等差数列的通项公式. 此公式比等差数列的通项公式更具有一般性. m n a a d m n - - =, 1 1 - - = n a a d n,()d n a a n 1 1 - - = ② n a pn q =+(* ,, p q n N ∈ 为常数) 是关于n的一次函数,且斜率为公差d ③由 n S的定义, n a= ? ? ? ≥ - = - )2 ( )1 ( 1 1 n S S n S n n (* n N ∈) ①() 11 1 n n n n a a a q q A B A B q - ===??≠ 推广:m n m n q a a- ? =(m、* n N ∈) 特别的,当m=1时,便得到等比数列的通项公式., 此公式比等比数列的通项公式更具有一般性. n m n m a q a -=, 1 1 a a q n n= -,n n q a a- ? =1 1 ②n n q p a? =(* ,,0,0, p q q p n N ≠≠∈ 是常数) ③由 n S的定义, () () ? ? ? ? ? ≥ = = - 2 1 1 1 n S S n S a n n n (* n N ∈)

相关文档
最新文档