碳纳米管的制备与应用
碳纳米管制备及其应用前沿

碳纳米管制备及其应用前沿碳纳米管是一种由碳原子构成的纳米管状结构,具有优异的物理和化学性质,在许多领域具有广泛的应用前景。
接下来将从制备方法和应用前沿两个方面进行介绍和探讨。
一、碳纳米管的制备方法目前,制备碳纳米管的方法主要包括电弧放电、激光脱附、化学气相沉积、碳原子沉积和碳纳米管模板法等。
其中,化学气相沉积是目前较为常用的制备方法。
化学气相沉积法是在高温下,使含碳气体在催化剂表面上裂解,生成碳纳米管,并通过合适的控制方法,调节管子的直径、壁厚等性质。
此外,在催化剂上引入其他金属元素,如铁、镍等,还可以得到多壁碳纳米管、碳纳米带和碳纳米球等不同形态的碳纳米材料。
二、碳纳米管的应用前沿(一)能源储存碳纳米管具有极高的表面积和优异的电化学性能,已被广泛地应用于电池、超级电容器等领域。
例如,在锂离子电池中,将碳纳米管作为电极,可以大幅提高电极的比表面积、导电性能和循环寿命。
在超级电容器中,由于碳纳米管具有高比表面积和优异的导电性能,被广泛应用于电容的电极材料。
(二)催化剂由于碳纳米管的高比表面积和优异的催化性能,已成为新一代高效的催化剂材料。
例如,在氢能源领域,碳纳米管可以作为催化剂在反应中转化氢气,从而推进氢能源的发展。
同时,碳纳米管还可以用于金属催化剂的支撑材料,以提高催化剂的催化效率和稳定性。
(三)生物传感器碳纳米管还可以用于生物传感器的制备,具有极高的灵敏度和选择性。
例如,在血糖检测中,将碳纳米管复合在臂带上,可以使用手机APP通过检测臂带的信号来进行血糖测量。
(四)纳米电子学由于碳纳米管的导电性能和尺寸效应,在纳米电子学领域也有广泛的应用。
例如,碳纳米管可以用作场效应管的电极材料,制备高性能的纳米电子器件。
总之,碳纳米管作为一种新型的纳米材料,在能源储存、催化剂、生物传感器、纳米电子学等领域都有着广阔的应用前景。
随着技术的不断成熟和进步,相信碳纳米管在更多领域将会有更广泛的应用。
碳纳米管的制备技术与应用

碳纳米管的制备技术与应用碳纳米管(Carbon nanotubes,CNTs)是一种以碳元素为原材料制备的一维纳米材料,由于其具有良好的力学性能、电学特性以及化学稳定性等特点,已经成为当今研究领域中最为热门的材料之一。
本文将介绍碳纳米管的制备技术以及其在各个领域的应用。
一、碳纳米管的制备技术碳纳米管的制备技术可以分为两种类型:单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)。
1. SWCNTs的制备技术SWCNTs是由单个碳原子组成的圆柱形分子,其直径只有1纳米左右,是碳纳米管中最小的一种。
目前SWCNTs的制备技术主要有以下几种:(1) 弧放电法:将石墨电极在惰性气体氛围下通电,随着通电时间的延长,在电极表面就会形成一个由碳原子组成的弧,此时就会产生SWCNTs。
(2) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生SWCNTs。
(3) 气味解法:将金属铝、镁等材料和碳合成物物质放入高温的石墨炉中加热,从而产生SWCNTs。
2. MWCNTs的制备技术MWCNTs是由许多个碳单层环形结构套在一起形成的管状结构,由于其具有较高的机械强度和导电性能,因此在材料科学等领域有着广泛的应用。
其制备主要有以下几种方式:(1) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生MWCNTs。
(2) 电磁纺丝法:将金属铜制成细丝,并加热到一定温度,然后向铜丝上喷射石墨或其它碳源,从而产生MWCNTs。
(3) 化学还原法:将单壁和多壁碳纳米管分散在水溶液中,然后将还原剂缓慢加入到溶液中,之后用超离心机或过滤器将沉淀的MWCNTs分离出来。
二、碳纳米管在材料科学中的应用碳纳米管因其高催化性能、热稳定性及导电性能等优异特点,将在材料科学领域中得到广泛的应用。
基于气相沉积的碳纳米管材料的制备与应用

基于气相沉积的碳纳米管材料的制备与应用近年来,随着科技的飞速发展,碳纳米管(Carbon Nanotube,CNT)材料得到了广泛的研究与应用。
碳纳米管具有优异的力学、电学、热学等性能,成为了研究者们关注的热点。
而碳纳米管的制备技术就显得尤为重要了。
其中,气相沉积是一种常见而有效的制备碳纳米管的方法,因此本文将讨论碳纳米管的制备与应用,探索其未来的发展前景。
一、气相沉积法制备碳纳米管气相沉积法(Chemical Vapor Deposition,CVD)是一种基于碳源的碳纳米管制备技术。
通常采用金属催化剂,如铁、镍或钴等,作为碳源的催化剂,使碳源在高温下与催化剂相互作用,生成碳纳米管。
碳纳米管的制备通常要经过以下几个步骤:1. 催化剂的制备。
在气相沉积过程中,催化剂的质量和形状都会对碳纳米管的性能产生影响。
通常,催化剂都是通过高温还原法来制备的。
2. 热处理。
在制备碳纳米管之前,需要进行前处理,如对催化剂进行高温热处理等,以提高催化剂的反应活性。
3. 碳源的供给。
常见的碳源包括乙烯、甲烷、丙烯等。
这些碳源按一定流量,在高温下向热处理后的催化剂表面提供碳源。
4.生长过程。
碳源被分解,产生碳原子并被吸附在催化剂表面形成碳纳米管。
二、碳纳米管在纳米科技领域的应用1. 碳纳米管在电学领域碳纳米管具有优异的电学性能。
它们的导电性与金属相当,也能作为半导体使用。
因此,在电极材料和电器元件方面有着广泛的应用。
例如,碳纳米管场发射显示器、柔性透明薄膜等。
2. 碳纳米管在机械领域碳纳米管的结构可作为纳米机械器件的构建单元,其高弹性和耐磨性属性则适合用来制作复杂的机械部件。
3. 碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能以及化学稳定性,它们被广泛应用于材料科学领域,例如复合材料、强化材料等。
三、碳纳米管的应用前景展望碳纳米管的制备技术不断完善,其在医疗领域、新能源领域的应用也变得越来越广泛。
例如,碳纳米管可被用于制作纳米传感器,检测体内病变变化,也可用于制作太阳能电池、锂离子电池等。
碳纳米管材料的制备与应用

碳纳米管材料的制备与应用碳纳米管(Carbon Nanotubes, CNTs)是一种具有特殊结构和优异性能的纳米材料,在诸多领域具有广泛的应用前景。
本文将探讨碳纳米管材料的制备方法以及其在不同领域的应用。
首先,我们将介绍碳纳米管的制备方法。
目前,碳纳米管的制备方法主要包括化学气相沉积法及其变种、电弧放电法、激光烧蚀法等。
其中,化学气相沉积法是一种较为常用的方法。
该方法通过在合适的温度下将碳源气体(如乙炔、甲烷等)导入反应室中,通过催化剂的作用,在金属衬底上生长碳纳米管。
此外,还可以通过电弧放电法在适当的实验条件下,将碳电极进行高温放电,从而制备碳纳米管。
激光烧蚀法是一种通过激光加热石墨杆或石墨粉,使其产生高温、高压等条件,从而生成碳纳米管的方法。
不同的制备方法可以得到不同形貌和尺寸的碳纳米管,满足不同应用需求。
接下来,我们将讨论碳纳米管在材料科学、电子学和生物医学等领域的应用。
在材料科学领域,碳纳米管因其高强度、良好的导电性和导热性等特性,可以用于制备高性能的复合材料。
例如,将碳纳米管与聚合物复合,可以显著提升复合材料的强度和导电性。
此外,碳纳米管也可以用作电极材料,应用于锂离子电池、超级电容器等能源领域。
在电子学领域,碳纳米管的纳米尺寸和优异的电子输运性能使其成为一种理想的纳米电子器件材料。
碳纳米管场效应晶体管(CNT-FET)等器件因其极低功耗和高速运算能力,被广泛研究和应用于集成电路等领域。
在生物医学领域,碳纳米管具有较大的比表面积,具有良好的载药性能,被广泛应用于生物传感、药物输送等领域。
例如,通过功能化修饰,碳纳米管可以被用作药物的载体,实现精确控制的药物释放。
此外,碳纳米管还具有其他许多应用潜力。
例如,碳纳米管在环境污染治理方面有着重要的应用价值。
由于其独特的吸附性能和高比表面积,可以用于水体和空气中有害物质的吸附和分离。
此外,碳纳米管还可以作为催化剂载体,应用于化学催化等领域。
在机械强度方面,碳纳米管的强度远高于钢铁,因此也被广泛地研究应用于高强度材料的制备。
碳纳米管的制备方法和应用

碳纳米管的制备方法和应用碳纳米管是由纳米级的碳原子构成的一种纳米材料,具有独特的物理和化学性质,被广泛应用于各个领域。
本文将探讨碳纳米管的制备方法以及其在材料科学、电子学和生物医学中的应用。
一、碳纳米管的制备方法目前,常见的碳纳米管制备方法主要有化学气相沉积法、电化学沉积法、电弧放电法和碳热还原法等。
化学气相沉积法是制备碳纳米管最常用的方法之一。
该方法利用金属催化剂(如铁、铜等)和含碳的气体(如一氧化碳、甲烷等)在高温下反应,生成碳纳米管。
这种方法可以控制碳纳米管的尺寸和结构,制备出高质量的碳纳米管。
电化学沉积法是一种较为简单和经济的制备方法。
通过在电极表面施加电压,使金属离子在电极上还原并沉积成碳纳米管。
这种方法可以在常温下进行,对环境友好,但产出的碳纳米管质量较低。
电弧放电法是一种高温高压条件下制备碳纳米管的方法。
通过在金属电极之间施加高电压,形成电弧放电,使电极表面的碳物质蒸发并在高温高压下形成碳纳米管。
这种方法制备出的碳纳米管尺寸较大,结构较不规则。
碳热还原法是使用碳源将金属氧化物还原成金属,并在高温下生成碳纳米管。
这种方法能够制备出高纯度的碳纳米管,但操作条件较为复杂。
二、碳纳米管在材料科学中的应用由于碳纳米管具有优异的力学性能、导电性和热导性,因此在材料科学中有广泛的应用。
碳纳米管可以添加到复合材料中,提高材料的力学性能和导电性。
此外,碳纳米管还可以用于制备超级电容器和锂离子电池,因为其具有较大比表面积和良好的电化学性能。
另外,由于碳纳米管具有较高的比表面积和孔隙结构,可以用作吸附剂来去除水和气体中的有害物质。
碳纳米管的应用还延伸到柔性电子学和传感器领域,用于制备柔性显示器件和高灵敏度的传感器,如压力传感器和化学传感器等。
三、碳纳米管在电子学中的应用碳纳米管由于其独特的电子性质,被广泛应用于电子学领域。
碳纳米管可以用作场发射源,用于制备高亮度和高分辨率的显示器件。
此外,碳纳米管也可以用于制备柔性电子器件,如柔性电池和柔性晶体管等,具有重要的应用价值。
碳纳米管的制备方法和应用领域

碳纳米管的制备方法和应用领域碳纳米管(Carbon Nanotubes,简称CNTs)是一种由碳原子构成的纳米材料,具有独特的结构和特性,使其在科学研究和应用领域中具有巨大的潜力。
本文将简要介绍碳纳米管的制备方法和一些常见的应用领域。
碳纳米管的制备方法多种多样,其中较为常见的方法包括化学气相沉积法(Chemical Vapor Deposition,CVD)、电弧放电法(Arc Discharge)和激光热解法(Laser Ablation)。
CVD法是目前最常用的制备碳纳米管的方法之一,其原理是使用金属催化剂在特定温度和气氛下将碳气体进行催化裂解,从而生成碳纳米管。
而电弧放电法则是通过高压电弧放电在碳电极上产生高温和高压条件,使碳原子逸出并形成碳纳米管。
激光热解法则是利用激光加热碳源使其发生剧烈挥发,形成碳纳米管。
碳纳米管具有多种独特的物理和化学特性,使得其在许多应用领域都有广泛的应用。
在材料科学领域,碳纳米管可以作为增强剂加入到复合材料中,显著提高复合材料的机械强度和热导率。
同时,碳纳米管还可以用于制备导电膜、传感器、超级电容器等。
在能源领域,碳纳米管可以用作锂离子电池、燃料电池和超级电容器等的电极材料,具有高能量密度和良好的循环性能。
此外,由于碳纳米管具有良好的导电性和导热性,还在电子器件和导电性聚合物的领域有广泛的应用。
在生物医学领域,碳纳米管也具有潜在的应用价值。
由于其尺寸与细胞颗粒相似,并具有较好的生物相容性,在药物传输和生物成像等方面具有巨大的潜力。
例如,研究人员利用碳纳米管制备了具有良好药物控释效果的纳米药物载体,用于治疗癌症等疾病。
此外,碳纳米管还可以用于制备具有高灵敏度和高选择性的生物传感器,用于检测生物分子和细胞。
虽然碳纳米管在许多领域中具有广泛的应用潜力,但其制备方法仍然存在一些挑战和困难。
目前,制备具有高纯度和规模化的碳纳米管仍然是一个难题。
另外,碳纳米管的毒性和生物安全性问题也需要进一步研究和解决。
碳纳米管的制备方法与应用

碳纳米管的制备方法与应用碳纳米管是一种具有非常特殊性质的碳材料,它的制备方法和应用具有很大的研究价值。
本文将基于相关研究文献,探讨碳纳米管的制备方法和应用领域。
一、制备方法碳纳米管通常有两种制备方法,即“底上生长法”和“上下生长法”。
底上生长法是指在金属衬底上,利用热化学气相沉积(CVD)等方法,在高温下生长碳纳米管。
这种方法制备出的碳纳米管产量大,连续性好,但会造成衬底中金属杂质的污染。
上下生长法是指将金属催化剂沉积在碳纳米管基底上,然后在催化剂表面生长碳纳米管。
这种方法制备出的碳纳米管纯度高,但因为样品不连续,所以产量相对较低。
不同制备方法对碳纳米管的结构和性质会有所影响,因此,制备方法的选择取决于具体应用的需求。
二、应用碳纳米管在材料科学、生物医学、电子、能源等领域中具有广泛的应用。
材料科学领域中,碳纳米管可以用于制备高强度、高导电性、高导热性、高比表面积的复合材料,应用于汽车、航空、航天、建筑等领域。
碳纳米管也可以用于制备高性能电极材料,提高锂离子电池的性能。
生物医学领域中,碳纳米管可以用于制备纳米药物传递系统和纳米生物传感器,进行肿瘤治疗和疾病诊断。
电子领域中,碳纳米管可以用于制备高性能逻辑电路和摄像头,替代各种传统电子元器件。
能源领域中,碳纳米管可以用于制备高效率的太阳能电池和储能系统,减少能源的消耗和浪费。
三、未来展望随着人类对碳纳米管的认识不断加深,碳纳米管的应用领域也会不断扩展。
未来,碳纳米管可能会应用于烯烃加氢、催化还原、氧化反应等领域,成为一种重要的催化剂。
同时,碳纳米管还可以应用于激光、纳米传感器和量子计算等领域,开辟崭新的研究方向和应用前景。
四、结语作为一种前沿领域的材料,碳纳米管的制备方法和应用领域仍然具有很大的潜力。
未来,人类将会通过不懈的努力,探索碳纳米管更多的结构和性质,为人类社会的发展做出更大的贡献。
碳纳米管的合成和应用

碳纳米管的合成和应用碳纳米管(Carbon Nanotubes, CNTs)是由纯碳构成的一种纳米材料,以其独特的物理和化学性质,在材料科学、生物医学等众多领域都有重要的应用和研究价值。
本文将从碳纳米管的合成方法、结构特征以及应用等方面进行讨论。
一、碳纳米管的合成方法碳纳米管最早是由日本科学家Sumio Iijima于1991年发现,并提出了一种制备碳纳米管的方法——电弧放电法。
该方法是通过电弧放电在高温下制备,得到的碳纳米管平均直径为10-20nm。
随后,人们发现在碳纳米管形成的高温条件下,化学气相沉积法(Chemical Vapor Deposition, CVD)也可以用来合成碳纳米管。
通过CVD法合成的碳纳米管平均直径可以达到数纳米级别。
此外,离子束辅助CVD、体积扩散法、等离子炮击法等方法也被用来合成碳纳米管。
这些方法各有优缺点,可以根据具体应用需求选择合适的方法。
二、碳纳米管的结构特征碳纳米管分为单壁碳纳米管(Single-Walled Carbon Nanotubes, SWNTs)和多壁碳纳米管(Multi-Walled Carbon Nanotubes, MWNTs)两种。
SWNTs是由一个或几个碳原子层叠而成的单层碳纳米管,直径在1-2nm左右;MWNTs则是由多层碳原子管叠加在一起构成的,直径在10-30nm左右。
SWNTs的结构主要包括芳香环、周边的螺旋结构以及端部的官能团等。
SWNTs具有高比表面积和高机械性能,同时还有超疏水性、高导电性和热导率等重要的物理和化学性质。
MWNTs的壁层数越多,直径越大,内壁和外壁之间的距离也越大。
MWNTs的直径越大,其比表面积也越小,但其机械性能就越强。
MWNTs和SWNTs相比,其电导率、热导率和力学性能都要略低。
同时,MWNTs相较于SWNTs更便于分散处理,应用更为广泛。
除了单壁和多壁两种结构外,根据碳纳米管的管径、手性和烯结构等进一步可将碳纳米管细分为不同类型,如外径为几百纳米的纳米线状碳纳米管和手性控制的带有特定电学性质的碳纳米管等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
碳纳米管西装 ——防弹衣
2 碳纳米管的应用
在电磁学领域的应用
金纳米团簇-多壁 碳纳米管修饰电极
碳纳米管电 化学传感器
2 碳纳米管的应用
在催化剂材料领域的应用
在储氢材料领域领域的应用
在碳纳米管中组装纳米催化剂
碳纳米管储氢2 碳纳米管的源自用力学领域+电磁学
Science, Vol. 101, No. 11, 2008
3.3.1 化学气相沉积法(CVD)
利用纳米尺度的过渡金属或其氧化物为催化剂,在相对较低的 温度 (500-1200℃)下热解碳源气体(甲烷、乙炔、乙烯、丙烯、 苯和一氧化碳等)来合成碳纳米管
优势:产量大 生产方法简单 重复性高
劣势:杂质多
3.3.2 等离子体增强化学气相沉积工艺 (Plasma-enhanced CVD, PECVD)
不锈钢 凯夫拉纤维
杨氏模量( TPa) ~1 (from 1 to 5) 0.94 0.94 0.92 0.2-0.95 0.186-0.214 0.06-0.18
抗拉强度( GPa) 13-53 126.2 94.5
11-160 0.38-1.55
3.6-3.8
断裂伸长率( %) 16 23.1
16.6-17.6
a
(a)石墨层间夹杂的金属纳米粒子 透射电镜图
(b)a中纳米粒子部分放大图
J. Phys. Chem. B, Vol. 101, No. 11, 1997
3.2 激光烧蚀法
优点:所得碳纳米管品质高, 结构完整,缺陷较少,适合生 长SWNT 缺点:成本高,收率低
10nm
单壁碳纳米管束
SCIENCE VOL. 273 26 JULY 1996
1. Ali Eatemadi, Hadis Daraee, Hamzeh Karimkhanloo, et al. Carbon nanotubes: properties,
synthesis, purification, and medical application 2. K. Tohji, H. . Takahashi, Y Shinoda, et al. Purification Proced
2001. Cambridge: Cambridge University Press.
3.4 其它制备方法
? 固相热解法 ? 水热晶化法 ? 太阳能法 ? 电解法 ? 溶胶凝胶法
……
4 碳纳米管的纯化
合成产物中,常伴有大量杂质,如无定型碳、富勒烯、 金属催化剂等
4 碳纳米管的纯化
物理方法: 离心分离法 电泳纯化法 过滤纯化法 色谱层析法
+复合材料 +载体 纳米管阵列 二维、三维 排列组合 ……
3 碳纳米管的制备
碳纳米管的制备方法:
?电弧法
?激光蒸发法
常用
?化学气相沉积法( CVD法)
增强等离子热流体化学蒸气分解沉积法( PECVD )
高压一氧化碳合成工艺( HiPCO)
?其它制备方法
3.1 电弧法
石墨电弧法(传统电弧法)
以石墨为电极,在惰性气体环境 中,电弧放电,消耗阳极石墨, 在阴极上生成碳纳米管 电压 - 12~25 V; 电流 - 50~120 A; 电极间隙 - ~1 mm; 最早应用的碳纳米管合成方法 可生产SWNT和MWNT
化学方法:
电化学氧化法
+
微波加热氧化法 液相氧化法
氢化作用提纯法
Nat.Mater. 2015,14:1087-1098.
挑战与展望
? 碳纳米管生长机理还不够明确,影响碳纳 米管的产量、质量及产率的因素也不清楚
? 优化目前的生产、分离和提纯工艺 ? 高纯度、高比表面积和长度、螺旋角等可
控
主要参考文献
碳纳米管的制备与应用
汇报成员:周孝禹 小组成员:皇甫常欣、任小敏、 阮成飞、黄帅、尹力、曹娜、 石芳、万宁波、王潇、魏泽宇、 石明、陈雯雯、贺敏
目录
01 碳纳米管的结构与特性 02 碳纳米管的应用 03 碳纳米管的制备 04 碳纳米管的纯化 05 挑战与展望
1 碳纳米管的结构与特性
定义:径向尺寸为纳米量级,轴向尺寸为微米量级的, 管状一维量子材料。
管壁由单石墨片层卷绕而成, 两侧由富勒烯半球封端
1 碳纳米管的结构与特性
根据卷绕方式( n, m)的不同,可分为
? 椅式管 armchair n = m
? 锯齿型管 zigzag n = 0
? 手性管 chiral
n ≠ m, m ≠ 0
单石墨片层
armchair 型SWNT
zigzag型SWNT
石墨电弧法制备纳米碳管装置图
3.1 电弧法
复合电极电弧催化
掺有过渡金属其氧化物(如Fe, Co, Ni, Mo等)的石墨为电极
优势: 产物为SWNTs 副产物少 纯度高
催化剂粉末
劣势:产物中掺有少 量催化剂
复合电极电弧催化制备纳米碳管装置图 1.冷却水 2.真空 3.氦气
3.1 电弧法
b
纯化的SCNTs扫描电 子显微镜图
chiral型SWNT
1 碳纳米管的结构与特性
多壁碳纳米管 可视为“同轴多层碳圆柱体的组装体”– Russian doll 层间距~0.34 nm 多层碳圆柱体间由弱的Van de Waals力提供绑缚力
单壁碳纳米管 SWNTs
多壁碳纳米管 MWNTs
2 碳纳米管的应用
在力学领域的应用
材料 单壁碳纳米管 椅式单壁碳纳米管 Z型单壁碳纳米管 手性单壁碳纳米管 多壁碳纳米管
发现: 发现人:日本科学家饭岛澄男(Sumio Iijima) 时 间:1991年 手 段:高分辨透射电镜(HRTEM) 意 义:开辟了碳家族的又一同素异构体和纳米材 料研究的新领域。
1 碳纳米管的结构与特性
管状的碳分子,sp2杂化 碳-碳σ键结合起来 形成由六边形组成的蜂窝状结构作为 碳纳米管的骨架
优势:等离子体增强反应活性 外加电场控制生长方向
Science. 1998. 282 (5391): 1105–7.
3.3.3 高压一氧化碳合成工艺(HiPCO, High-pressure carbon monoxide synthesis)
将冷的含有羰基铁Fe(CO)5的高压CO气体,和预先加热到1200℃ 的CO气体相混合,使含有催化剂的高压CO气体,在不到1毫秒的 时间内加热到1000℃。这时羰基铁分解出的Fe原子相互碰撞形 成 铁纳米颗粒,铁纳米颗粒进而和 CO反应生成CO2并留下一个 碳原子