电磁干扰滤波器设计

合集下载

电源电磁干扰(EMI)滤波器详细讲解

电源电磁干扰(EMI)滤波器详细讲解

源端阻抗特性
表 1 滤波器选用的阻抗失配端接原则 应采用的滤波电路
负载端阻抗特性
高阻抗
高阻抗 π型
高阻抗 L型
低阻抗
低阻抗 L型
高阻抗
低阻抗 T型
低阻抗
一般情况下,电源的共模输入端(滤波器源端)多为低阻抗,KF 系列电源滤波器(除“专门用 途滤波器”中的某些类型外)均按此特征(如图 4 的共模等效电路中,接入源端一侧选用高阻抗特性 的 L 型滤波电路,满足“阻抗失配端接原则”)进行设计,设计人员只需根据负载端的阻抗特性合理 选用 EMI 电源滤波器。其余类型滤波器应注意使用条件,必须满足上述原则。
EMI 电源滤波器作为抑制电源线传导干扰的重要器件,在设备或系统的电磁兼容设计中具有极 其重要的作用。它不仅可抑制线上传导干扰,同时对线上辐射发射的抑制具有显著效果。
负载噪声源和电源网络的连接方式如图 2 所示。电源与负载网络具有相线(L)、中线(N)和地线 (E), 故将电源线上 EMI 噪声分解为两部分:L 与 N 为差模传导干扰 IDM,L(或 N)与 E 为共
传导干扰电平(dBuA)
100
90
GJB151A(A3类)
80
GJB151(A3类)
70
60
50
40
30
20
10
0
0.01
0.1
1
10
100
频率(MHz)
图 6 GJB151 和 GJB151A 中规定的电源线传导干扰发射极限值
90
80
70
传导干扰电平(dBuV)
60
50
40
GB9254(A级)
30
50Ω
信号 发生器
L

EMI滤波器的设计原理

EMI滤波器的设计原理

EMI滤波器的设计原理首先,要了解EMI滤波器的设计原理,我们需要了解电磁干扰的基本特性。

电磁干扰是指在电路中传输的电流和电压信号中引入噪声或干扰的现象。

电磁干扰可以分为传导干扰和辐射干扰两种类型。

传导干扰是指电磁干扰通过导线或电路板上的传输线传播的干扰信号,而辐射干扰则是指干扰信号通过电路中的元器件辐射到周围环境中。

为了抑制电磁干扰,EMI滤波器利用传输线理论来设计。

传输线理论是一种用于描述电磁波在导线或电缆中传播的理论。

根据传输线理论,电磁波在导线中的传播会受到电感和电容的影响。

因此,通过选择合适的电感和电容器,并将它们组合成适当的电路结构,可以实现对电磁干扰的滤波作用。

1.频率响应:根据电磁干扰的频率范围选择合适的滤波器类型。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

2.阻抗匹配:为了最大限度地抑制电磁干扰,滤波器需要具有与干扰信号源或受干扰设备之间的阻抗匹配。

阻抗匹配可以减少信号的反射和传输损耗。

3.电感和电容的选择:根据频率响应和阻抗匹配的要求选择合适的电感和电容器。

电感和电容器的数值越大,滤波器对干扰信号的抑制效果越好。

4.滤波网络的结构:根据具体的应用需求确定滤波器的电路结构。

常见的滤波器结构包括Pi型滤波器、T型滤波器、L型滤波器等。

在实际设计中,需要进行电路仿真和实验测试来评估滤波器的性能。

通过调整电感和电容的数值、调整滤波器的结构等方式,可以进一步优化滤波器的性能。

总结起来,EMI滤波器的设计原理是基于电磁干扰的特性和传输线理论,通过选择合适的电感和电容器,并将它们组合成适当的电路结构,来实现对电磁干扰的滤波作用。

在实际设计中,需要考虑频率响应、阻抗匹配、电感和电容器的选择以及滤波网络的结构等因素,通过电路仿真和实验测试来评估滤波器的性能并进行优化。

抗干扰滤波器在电磁兼容设计中的作用要点

抗干扰滤波器在电磁兼容设计中的作用要点

抗干扰滤波器在电磁兼容设计中的作用干扰滤波在电磁兼容设计中的作用大多数电子产品设计师对干扰滤波器的认识一般局限在:“电子产品要通过电源线传导发射试验和电源线抗扰度试验,必须在电源线上使用干扰滤波器”。

而对于干扰滤波器的其它作用了解很少,这就导致了产品设计完毕后,往往不能通过其它试验项目,例如辐射发射、辐射抗扰度、信号线上的传导敏感度等试验。

实际上,电磁干扰滤波器对于顺利大部分电磁兼容试验以及保证产品的功能都是十分重要一类器件。

当出现下面这些干扰问题时,往往是由于滤波措施不完善。

1.设备的机箱或机柜屏蔽十分完善,但是仍然产生超标的辐射发射;2.独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题;3.在信号电缆线上注入电快速脉冲时,出现故障;4.不能通过辐射抗扰度试验5.不能通过电缆束上的传导敏感度试验6.不能通过静电放电试验;7.电缆中的导线之间或电缆之间相互干扰,导致设备不能实现预定功能。

下面就如何用滤波器解决上述问题的方案作简单介绍。

1)虽然机箱或机柜屏蔽很好,但是辐射发射超标,或者不能通过辐射抗扰度试验这是由于机箱或机柜上的外拖电缆起着天线的作用。

天线的一个特性是互易性,也就是说:一个天线如果具有很高的辐射效率,那么它的接收效率也很高。

因此,设备的外拖电缆既能产生很强的辐射,也能有效的将空间电磁波接收下来,传进设备,对电路形成干扰。

由于某种原因,在外拖电缆上形成了干扰电流,这些电流从机箱内传导出来,并以电缆作为辐射天线辐射电磁波。

解决这种问题的方法就是在电缆的端口处安装一只滤波器,将干扰电流滤除掉。

2)独立的设备没有任何电磁干扰的问题(辐射发射和抗扰度完全合格),但是当连接上必要的外接电缆时,出现干扰问题;这个问题与第一类问题的本质相同,就是外拖电缆相当于天线。

当没有电缆时,相当于没有辐射天线和接收天线,因此容易通过辐射发射和抗扰度试验,但是当拖上电缆后,这些电缆作为辐射天线和接收天线,导致设备的辐射增强、对外界空间干扰的敏感度提高。

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计

EMI滤波器电路原理及设计EMI滤波器(Electromagnetic Interference Filter)是一种用于抑制电磁干扰的电路。

电磁干扰是指电子设备之间相互干扰产生的电磁辐射或者干扰信号,会对设备的正常操作和性能产生负面影响。

EMI滤波器通过选择性地传递或者屏蔽指定频率范围内的信号,从而实现对电磁干扰的抑制。

一般来说,低通滤波器是指可以通过低于其中一特定频率的信号,而对高于该特定频率的信号进行滤波的电路。

低通滤波器常用于消除高频电磁干扰。

一个常见的低通滤波器电路是RC滤波器,由电容器和电阻器组成。

电容器对于高频信号具有很大的阻抗,从而将高频信号绕过电路,实现滤波作用。

选择合适的电容和电阻大小可以实现对于特定频率的信号滤波。

相比之下,高通滤波器是指可以通过高于其中一特定频率的信号,而对低于该特定频率的信号进行滤波的电路。

高通滤波器常用于消除低频电磁干扰。

一个常见的高通滤波器电路是RL滤波器,由电感器和电阻器组成。

电感器对于低频信号具有很大的阻抗,从而将低频信号绕过电路,实现滤波作用。

选择合适的电感和电阻大小可以实现对于特定频率的信号滤波。

除了RC和RL滤波器,还有其他各种类型的EMI滤波器电路,比如LC滤波器、二阶滤波器、传输线滤波器等,可以根据具体应用的需求进行选择和设计。

在EMI滤波器电路的设计中,首先需要确定需要滤波的频率范围,然后根据频率范围选择合适的滤波器类型。

其次,需要根据滤波器的阻抗特性和传输线的特性来选择适当的元件值。

还需要注意电路的功率和电流容量,以确保电路能够在正常工作范围内工作。

在实际应用中,EMI滤波器电路通常需要与其他电路结合使用,比如与电源、传输线路、信号线路等进行连接。

因此,需要特别注意电路的布局和接线,以减少电磁干扰的传播路径。

总之,EMI滤波器电路是一种用于抑制电磁干扰的重要电路,通过选择性地传递或者屏蔽指定频率范围内的信号,实现对电磁干扰的抑制。

在设计EMI滤波器电路时,需要根据具体应用需求选择合适的滤波器类型,并根据电路的阻抗特性和传输线的特性选择适当的元件值。

抑制开关电源高频噪声的电磁干扰滤波器设计方法

抑制开关电源高频噪声的电磁干扰滤波器设计方法
u d r t e sa d r n i o r u d r t e p a tc lee to g n e h t a d c dt n o n e h r ci lc r ma — n o i a
负载端
源端
n t mpt it ( MC)t tAf rtevri t ntru h ec i c ai ly E o bi s e . t h eic i ho g e f o a
根据图 2 3 可以用参数 A 来描述滤波器在这 、,
时 的滤 波器 选用 方法 。
元器 件 以及插 入损耗 的计算方法 。通 过理论 计算, 对标准 情 况和实际 电磁 兼容 测试 情况下 滤波器 的插入 损耗进 行 了 比
较。并通过试验验证 , 在抑 制 高频 噪声 时, 直接参 考滤 波 可
1 E 滤波器 的插入 损耗 MI
根 据 产生 的机理 不 同 , 关 电源 向 电源 上 发 开 射 的 电磁 噪声 中同 时存 在 着 差 模 干 扰 和 共模 干扰 。
E 滤波器 的作用是抑制开关 电源对外发射 的 MI 传导 干扰 。对 于电源 线上 的差模 和共模 噪声 ,MI E 滤 波器的等效电路是不一样的, 如图 23 、 所示。
T n iUnv r t ,0 3 1 S a g a, h a o gi i s y 2 0 3 , h h iC i ei n n
0 前 言
开关 电源 由 于 在 体 积 、 量 、 率 等 方 面 的优 重 效
点, 已经广泛 地应 用在 城 市轨 道交 通 的 电子 电路 中。

图 2 滤波器抑制差模干扰 的等 效电路
但 由于开关 电源 中开关 器 件 的快 速 通 断 , 关 电源 开

电源电路emi设计

电源电路emi设计

电源电路emi设计一、概述电源电路的EMI(电磁干扰)设计是确保电子设备稳定运行的关键环节。

以下介绍电源电路EMI设计的各个方面,包括输入滤波器设计、输出滤波器设计、接地设计、屏蔽设计、布局设计、电缆设计、去耦电容设计、电源模块选择、传导干扰抑制和辐射干扰抑制。

二、输入滤波器设计输入滤波器的主要目的是减小电源线上的传导干扰。

设计时应考虑使用低通滤波器,以减小高频率的噪声。

同时,要选择适当的元件参数,以在不影响正常工作电流的情况下,有效滤除噪声。

三、输出滤波器设计输出滤波器的目的是减小设备对外的电磁辐射。

应使用适当阶数和元件参数的滤波器,并根据设备的工作频率和可能的辐射频率来确定滤波器的特性。

四、接地设计良好的接地是EMI设计的关键。

应选择适当的接地方式,如单点接地、多点接地或混合接地,以减小接地阻抗,降低因地线导致的电压降,从而减小共模电流。

五、屏蔽设计屏蔽是减少电磁辐射的有效方法。

可以使用金属屏蔽材料对电源线和电源组件进行屏蔽,以减少外部电磁场对设备的影响和设备对外部的电磁辐射。

六、布局设计电源电路的布局设计对于EMI控制至关重要。

应合理安排电源电路中各元件的位置,尽量减小元件间的电磁耦合,降低噪声的传播。

七、电缆设计电缆是电磁干扰的主要传播途径之一。

应选择低阻抗、低感抗的电缆,并进行合理的电缆布局和捆扎,以减小电缆对电磁干扰的传播。

八、去耦电容设计去耦电容可以减小电源中的噪声,提高电路的稳定性。

在电路板上的关键元件附近应合理放置去耦电容,并选择适当的电容值和耐压值。

九、电源模块选择在电源模块的选择上,应优先考虑具有良好EMI性能的模块。

这可以大大简化EMI设计的难度,提高系统的稳定性。

十、传导干扰抑制传导干扰可以通过在设备的输入端加装滤波器来抑制。

根据干扰的频率和强度,可以选择使用各种不同类型的滤波器,如π型滤波器、级联滤波器等。

此外,合理选择和使用电容器、电感器等元件,也可以有效地抑制传导干扰。

整机EMC设计之滤波器设计技术

整机EMC设计之滤波器设计技术

整机EMC设计之滤波器设计技术一、滤波器的基本原理滤波器是用于在电路中表现出不同频率传输特性的组件。

在整机EMC设计中,滤波器主要用于抑制电源线、信号线和天线等传输媒介上的电磁干扰。

基本原理是通过选择合适的电容、电感和电阻组合,使目标频率的干扰信号在滤波器中产生衰减,从而减少传输线上的干扰。

二、滤波器的设计方法1.确定干扰源和电磁敏感器:通过电磁相容性测试和电磁干扰源分析,确定需要进行干扰抑制的信号源和敏感器。

2.确定滤波器类型:根据信号特性和抑制要求,选择合适的滤波器类型。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

3.计算滤波器参数:根据目标频率、通带衰减和阻带衰减要求,计算滤波器的参数。

主要参数包括截止频率、通带衰减、阻带衰减和滤波器阶数。

4.设计电感:根据滤波器的截止频率和电感的选择范围,计算所需的电感值。

常见的电感包括线绕型电感、磁性元件和电感矩阵。

5.设计电容:根据滤波器的截止频率和电容的选择范围,计算所需的电容值。

常见的电容包括电感电容、铝电解电容和陶瓷电容。

6.封装和布局:根据滤波器的封装形式和电路布局要求,确定滤波器的安装位置和连接方式。

封装形式可以选择表面贴装或插件式。

7.电路仿真和优化:使用电磁场仿真软件验证滤波器设计的性能,并根据仿真结果对滤波器进行优化。

三、常见的滤波器类型1.低通滤波器:用于抑制高频信号,让低频信号通过。

常见的低通滤波器包括RC低通滤波器和LC低通滤波器。

2.高通滤波器:用于抑制低频信号,让高频信号通过。

常见的高通滤波器包括RC高通滤波器和LC高通滤波器。

3.带通滤波器:用于抑制低频和高频信号,让中频信号通过。

常见的带通滤波器包括RLC带通滤波器和陶瓷带通滤波器。

4.带阻滤波器:用于抑制特定频率的信号,让其他频率的信号通过。

常见的带阻滤波器包括RLC带阻滤波器和陶瓷带阻滤波器。

四、滤波器设计中的注意事项1.尽量减少信号线的长度和走向,避免信号线成为天线或干扰源。

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究

开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。

EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。

EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。

EMI滤波器的原理是基于电流和电压的相位关系来实现的。

开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。

EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。

设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。

根据具体的应用环境和要求,选择合适的滤波器工作频率范围。

2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。

常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。

3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。

过渡区域越宽,滤波器的性能越好。

过渡区域的宽度需要根据具体要求进行设计。

4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。

在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。

设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。

常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。

其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。

总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。

通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁干扰滤波器设计
随着电子产品集成度愈来愈高,所包含的功能愈来愈多,且售价愈来愈低,电子产品所遇到电磁干扰的问题自然也就更加严重。

电子产品为实现重量轻、体积超薄、小巧的目标,以迎合消费者易于携带的需求,在电路板的设计上以高集成度为设计导向:采用相同功能、但体积或面积更小的组件,拿掉原本用作电磁干扰防护的金属屏蔽、改用更细的地线或更小块的地平面(ground plane)用作接地等。

这些措施不仅能达到使产品外形轻巧的目的,更能节省许多产品开发的费用以及量产后的成本,但却极不利于电磁干扰问题的解决。

 为有效解决电子产品电磁干扰的问题,并能兼顾静电放电(ESD)防护的功用,可以采用具有静电放电防护功能的电磁干扰滤波器(EMI+ESD filter)。

图1所示即为常见的π型低通滤波器。

在Input及Output端点之间的组件,可以是电阻或是电感组件。

是采用电阻还是电感,应视产品的实际应用所需而定。

 由于电磁干扰滤波器多应用于电子产品的输出入端口,π型(π-model)低通滤波器架构中的Input端点及Output端点对GND的电容,一般会采用静电放电防护组件,以兼做静电放电防护之用。

 晶焱科技(Amazing Microelectronic Corp.)在静电放电防护技术上已累积了丰富的经验与技术。

公司开发的应用于液晶显示器的电磁干扰滤波器产品基本架构如图2所示。

由图2电路示意图可知:π型低通滤波器的Input与Output 之间是采用电阻(RI/O)组件桥接,Input端点及Output端点对GND的电容则是采用双向导通(bi-directional)的瞬时电压抑制器(TVS)。

因此,该系列产品。

相关文档
最新文档