定积分的换元法和分部换元法
合集下载
§3.3定积分换元法

π 2
0
sin n xdx = − ∫
π 2
0
sin n −1 xd (cos x )
π 2 0
= − sin n −1 x cos x
[
= (n − 1) ∫
π 2 0 π 2
]
π 2 0
+∫
cos xd (sin n −1 x )
cos 2 x sin n − 2 xdx
= (n − 1) ∫
0
8.已知 g ( x ) = ∫ t f ′( x − t )dt ,求 g′( x ) 。
0
x
g( x ) = ∫ t f ′( x − t )dt
0
x 0
x
令x−t=u
=
− ∫ ( x − u ) f ′(u )du
x
0
= ∫ ( x − u ) f ′(u )du = x
x
∫0 f ′(u )du − ∫0 uf ′(u )du
a a ∫ 0 f(− x) dx
0
f(x) dx =
+
a ∫0
f(x) dx = ∫ [ f(x) + f(− x)] dx.
0
a
续上
∴∫
a
−a
f(x) dx = ∫ [f(x) + f( − x)] dx ,
0
a
(2)∵ f ( x ) 为偶函数,即 f (− x ) = f ( x ) ,
∴∫
π 2 sin 2 t − 1 dt π sin t 6
6 cos t dt = π cos t sin t 2
∫
6 cos t dt π cos t ⋅ sin t 2
定积分的换元积分法和分部积分法

下一页
返回
例2 计算
x
ln 8
ln 3
1 e x dx .
ln(t2
2 td t - 1) , dx 2 . t 1
解 令 1 e t, 则 x =
x ln3 ln8 t 2 3
于是
3
ln 8
ln 3
1 e x dx 2
3 1 2t 2 dt dt 22 1 2 2 t 1 t 1
上一页 下一页 返回
例13 解
计算
1
0
(arcsinx )3dx.
先换元,再分部积分.
x 0 1 令 arcsinx = t, = sin t, dx = cos tdt, 则 x , t 0 2 1
0 2 0
于是
(arcsinx )3dx 2 t 3 cos tdt .
2 0
e 2 [e x cos x ]02 e x sin xdx
2 0
e 2 1 2 e x sin xdx
移项,解得
上一页
1 e x sin xdx (e 2 1) 2
下一页
0
返回
e x dx. 例10 计算 0
1
解 先换元,后分部积分.
1
解 令 x t,则 x = t2 ,dx = 2tdt,
于是
1 2t dx 0 1 x 0 1 t dt
x 0 1 , t 0 1
1
1 2 1 dt 0 1 t
1
2t ln | 1 t | 0 2 2 ln 2.
5.3 定积分的换元法和分部积分法

( 2 ) න (sin )d
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0
+ න () d
0
= න [(−) + ()] d
0
2 න () d , (−) = (),
=
0
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0
解
1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1
อ
第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .
= − න (π − )(sin(π − ))d
则 d = −d
0
0
π
= න (π − )(sin )d
0
π
π
= π න (sin )d − න (sin )d
0
π
0
π
= π න (sin )d − න (sin )d ,
0
+ න () d
0
= න [(−) + ()] d
0
2 න () d , (−) = (),
=
0
0,
− = − .
奇、偶函数在对称区间上的定积分性质 偶倍奇零
第三节 定积分的换元法和分部积分法
定积分
第五章
1
2 2 + cos
例6 计算 න
0
解
1
d.
( > 0)
π
令 = sin , d = cos d, = ⇒ = , = 0 ⇒ = 0.
2
π
2
cos
d
原式 = න
2
2
0 sin + (1 − sin )
=න
π
2
0
cos
1
d = න
sin + cos
1
=
6
6
1
อ
第三节 定积分的换元法和分部积分法
0
cos 5 sin d
= − න cos 5 d(cos )
= 0 ⇒ = 1.
原式 = − න
π
2
1
= .
定积分的换元法和分部积分法教学课件ppt

定积分的换元法和分部积 分法教学课件ppt
xx年xx月xx日
目录
• 定积分的换元法 • 定积分的分部积分法 • 定积分的几何意义 • 定积分的物理应用 • 定积分的经济应用 • 定积分的优化方法
01
定积分的换元法
换元法的定义与性质
换元法的定义
将一个定积分中的被积函数或积分区间变换 成另一个函数或区间,以求得定积分的值。
THANKS
谢谢您的观看
总结词
功率的概念、能量转换的效率、机械能与热能的转换
详细描述
首先介绍功率的概念,然后通过分析能量转换的效率 和机械能与热能的转换关系,说明功率在不同能量转 换中的重要作用。同时,还介绍如何利用功率公式求 解机械能与热能转换等问题。
05
定积分的经济应用
需求价格弹性
需求价格弹性定义
需求价格弹性是衡量商品需求量 对价格变动敏感程度的指标,用 需求量变动百分比与价格变动百 分比的比值来表示。
成本函数表示企业在一定时期内生产一定数量产品所需投入的成本的函数关系。
收益函数与成本函数的关系
收益函数和成本函数之间存在一定的关系,当销售量增加时,收益增加,但成本也会增加,因此需要找到一个最优的生产 量和销售量组合,使得企业获得最大利润。
利润函数与最优生产量
利润函数定义
利润函数表示企业在一定时期内销售产品 所获得的收益减去生产成本的函数关系。
换元法应用
将复杂的积分区间变换成简单的积分 区间,简化计算。
将非标准形式的积分转换成标准形式的积 分,以便使用积分的性质和公式进行计算 。
将难以求导的被积函数变换成容易 求导的函数,以便使用微积分基本 定理进行计算。
02
定积分的分部积分法
xx年xx月xx日
目录
• 定积分的换元法 • 定积分的分部积分法 • 定积分的几何意义 • 定积分的物理应用 • 定积分的经济应用 • 定积分的优化方法
01
定积分的换元法
换元法的定义与性质
换元法的定义
将一个定积分中的被积函数或积分区间变换 成另一个函数或区间,以求得定积分的值。
THANKS
谢谢您的观看
总结词
功率的概念、能量转换的效率、机械能与热能的转换
详细描述
首先介绍功率的概念,然后通过分析能量转换的效率 和机械能与热能的转换关系,说明功率在不同能量转 换中的重要作用。同时,还介绍如何利用功率公式求 解机械能与热能转换等问题。
05
定积分的经济应用
需求价格弹性
需求价格弹性定义
需求价格弹性是衡量商品需求量 对价格变动敏感程度的指标,用 需求量变动百分比与价格变动百 分比的比值来表示。
成本函数表示企业在一定时期内生产一定数量产品所需投入的成本的函数关系。
收益函数与成本函数的关系
收益函数和成本函数之间存在一定的关系,当销售量增加时,收益增加,但成本也会增加,因此需要找到一个最优的生产 量和销售量组合,使得企业获得最大利润。
利润函数与最优生产量
利润函数定义
利润函数表示企业在一定时期内销售产品 所获得的收益减去生产成本的函数关系。
换元法应用
将复杂的积分区间变换成简单的积分 区间,简化计算。
将非标准形式的积分转换成标准形式的积 分,以便使用积分的性质和公式进行计算 。
将难以求导的被积函数变换成容易 求导的函数,以便使用微积分基本 定理进行计算。
02
定积分的分部积分法
定积分第三节定积分的换元法和分部积分法

2
解
4
0
sin
xdx
x0 t,tx0,;dxx22t,d tt202tsitndt
42
202tdcots
2tcot0 2s202cotdst
2sint02 2
例4 计算
1 0
l(n2(1x)x2)dx.
解
1
0
l(n2(1x)x2)dx
01ln1 ( x)d2 1x
ln2(1xx)10012 1xdln1(x)
f[ ( t ) ] ( t ) dt
说明:
b
af(x)d x f[ ( t ) ] ( t ) dt
1) 当 < , 即区间换为[,]时,定理 1 仍成立 .
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
f[
( t ) ]
( t ) dt
b
f (x)dx
0 2 fx 1 d 0 1 x fx 1 d 1 2 x fx 1 dx
1ex1dx 21dx
0
1x
01ex1dx1121 xdx
ex 11 0ln x1 211 eln 2
二、分部积分公式
设函数u( x)、v( x)在区间a, b上具有连续
导数,则有
b
a udv
例9 计算 01xscionsx2 xdx .
解 积分区间为 0,,被积函数为 xfsixn
型,利用定积分公式⑥得
0 1 xs cix o 2x n ds x 20 1 scix o 2n xdsx
20 1c1o 2xd scoxs 2arccta oxn s 042
例11
设f
第4节 定积分的换元法与分部积分法

4 1 0
1 0
1 x
1 0
ax dx
a 4
4
即
a
1 0
f ( x )d x
3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设
解
f (x)
x 1
2
sin t t
2 2
dt ,
2
求
2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x
,
x 1
3
f ( t ) d t ln x ,
求
x 1
3
f (e ) 。
3
解
ln x
3
1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f
令
u x ,
得
f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?
1 0
1 x
1 0
ax dx
a 4
4
即
a
1 0
f ( x )d x
3
7/9/2013 12:56 AM
第6章
函数的积分
7. 设
f (x)
F 是连续函数, ( x ) 是 f ( x ) 的原
函数,则( A )
(A) (B ) (C ) (D) F 当 f ( x ) 是奇函数时, ( x ) 必是偶函数 F 当 f ( x ) 是偶函数时, ( x ) 是奇函数
dx )
8(e 2e 2
7/9/2013 12:56 AM
x
) 8(e 2 )
第6章
函数的积分
例9 设
解
f (x)
x 1
2
sin t t
2 2
dt ,
2
求
2
1
x f ( x )d x
0
f ( x ) 2 x
x f ( x )d x
2 1 0
sin x x
,
x 1
3
f ( t ) d t ln x ,
求
x 1
3
f (e ) 。
3
解
ln x
3
1
3 ( t ) d t f ( x ) f (1 ) f ( x ) f
令
u x ,
得
f ( u ) ln
3
u
1 3
ln u
f (e )
3
思考 是否还有其它方法?
§5.3_定积分的换元法与分部法

2
20
定积分的换元法和分部积分法
3
例
e4
dx
e x ln x(1 ln x)
d( ln x) 1 1 d ln x 2 ln x
3
e4
解 原式
d(ln x)
e ln x(1 ln x)
3
3
e4
d(ln x)
e4 d ln x
2
e ln x (1 ln x)
e 1 ( ln x)2
2 arcsin(
ln x )
3
e4 e
.
6
21
定积分的换元法和分部积分法
a
1
dx (a 0)
0 x a2 x2
解 令 x a sint, dx a cos tdt
x0t0
x a t
2
原式
2
0
a
sin
t
a cost a 2 (1
则
b
a f ( x)dx F(b) F(a)
N--L公式
由于 d dt
F (t) F(t)(t)t) (t)的原函数, N--L公式
则
f [ (t)](t)dt
F ( )
b
a
所以 f (a b x)dx f (t)(dt)
a
b
b
b
a f (t)dt a f (x)dx
所以,原命题成立。
10
例
计算
4 dx .
0 1 x
解 用定积分换元法.
令
x
t, 则
§3.3定积分换元法11

8
x 令 =t 2
7 5 3 1 π 35 = 4 = π . 8 6 4 2 2 64
13. 例 13 . 设
x 2 t 2 f ( x )= e dt 1
∫
, 求 ∫ x f ( x )dx .
0
x4
1
解 : f ( x )= ∫
1
x 2 t 2 e dt 1
, f ′( x ) = 2 xe
则
∫ a f ( x )dx = ∫ α f [(t )]′(t )dt 。
b
β
证:设 F ( x ) 是 f ( x ) 在 [a , b] 上的一个原函数,则 设 上的一个原函数,
上的一个原函数。 F [( t )] 是 f [( t )]′( t ) 在 [α ,β ] 上的一个原函数 。
由牛顿— 由牛顿—莱布尼兹公式得
∫
b b udv =[uv ]a a a
b
∫
vdu 。
例 8.计算定积分(1) ∫ 1 .计算定积分( )
2
π
1 2
(1+ x )arcsin x 1 x 2
dx 。
(2) ∫ e 2 x cos xdx
2
0
n 例 10.计算 I n = ∫ sin xdx ( n ∈ N + ) .
π 2
(1) ∫
π
2
0
6 4 2 16 sin xdx = 1 = . 7 5 3 35
7
π
2
5 3 1 π 5π (2) π cos xdx = 2∫ 0 cos xdx = 2 = 6 4 2 2 16 2
∫
6
π
2Leabharlann 6(3) π∫π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则
(t) (t)
满足:
机动 目录 上页 下页 返回 结束
(t) (t)
说明:
1) 当 < , 即区间换为[ ,]时, 定理 1 仍成立 .
2) 必需注意换元必换限 , 原函数中的变量不必代回 .
3) 换元公式也可反过来使用 , 即
(t) (t)
b
f (x)d x
(令 x (t) )
a
或配元
(t) (t)
例4.
偶倍奇零
(1) 若
则 a a
f
( x) dx
a
20
f
( x) dx
(2) 若
则 a f (x) dx 0 a
证:
a
0
a
f (x)dx f (x)dx f (x)dx
a
a
0
a
a
0 f (t) d t 0 f (x) dx
a
0[ f (x) f (x)]dx
令 x t
f (x) f (x)时
(t) d(t)
配元不换限
机动 目录 上页 下页 返回 结束
例1. 计算
解:
令 x asin t ,
t
2
,
2
则dx a cos t d t , 且
当 x 0 时, t 0;
x
a
时,
t
2
.
y
∴
原式 =
a2
2 cos 2 t d t
0
y a2 x2
a2
2 (1 cos 2t) d t
解
1
0
ln(1 (2
x
x) )2
dx
1 0
ln(1
x)d
2
1
x
ln(1 x 2 x
)1 0
1
0
2
1
x
d
ln(1
x)
ln 2 1 1 1 dx
3 0 2 x 1 x
1 1 1 x 2 x
ln 2 3
ln(1
x)
ln(2
x)10
5 ln 2 3
ln
3.
内容小结
换元积分法 基本积分法
0
2
f
sin
2
t
dt
2 f (cos t)dt 2 f (cos x)dx;
0
0
(2)
xf (sin x)dx
f (sin x)dx
.
0
20
由此计算
0
1
x
sin x cos2
x
dx
.
二、定积分的分部积分法
定理2. 设u(x), v(x) C1[a , b] , 则 b a
第三节
第五章
定积分的换元法和
分部积分法
不定积分 换元积分法 分部积分法
换元积分法 定积分
分部积分法
一、定积分的换元法
二、定积分的分部积分法
机动 目录 上页 下页 返回 结束
一、定积分的换元法
定理1. 设函数
单值函数
1) (t) C1[ , ], ( ) a , ( ) b;
2) 在[ , ] 上
(1
1
x2
)dx
4
1
40
1 x2dx
单位圆的面积
4 .
例 5 若 f ( x)在[0,1]上连续,证明
(1) 2 f (sin x)dx 2 f (cos x)dx;
0
0
证 (1)设 x t dx dt,
2
x 0 t , x t 0,
2
2
2 0
f (sin x)dx
23
1
机动 目录 上页 下页 返回 结束
3
e4
dx
例3
计算 e x
. ln x(1 ln x)
3
解
原式 e4 e
d(ln x) ln x(1 ln x)
3
3
e4
e
d(ln x)
e4
ln x (1 ln x) 2 e
3
2 arcsin(
ln x)
e4 e
. 6
d ln x 1 ( ln x)2
f (x) f (x)时
机动 目录 上页 下页 返回 结束
例4’
计算
1 2x2 x cos x dx. 1 1 1 x2
解
原式
1
1
1
2x2 1
x2
dx
1
1
x cos x 1 1 x2
dx
偶函数
奇函数
1
40 1
x2 1
x2
dx
1
40
x
2(1 1 (1
1
x x2)
2
)
dx
1
40
机动 目录 上页 下页 返回 结束
例6. 计算
1
1
解: 原式 = x arcsin x 2 2
00
x dx 1 x2
1
1
2(1
x
2
)
1 2
d
(1
x
2
)
12 2 0
(1
x
2
)
1 2
1 2
12
0
3 1
12 2
机动 目录 上页 下页 返回 结束
1 ln(1 x)
例7 计算 0 (2 x)2 dx.
分部积分法
换元必换限 配元不换限 边积边代限
机动 目录 上页 下页 返回 结束
20
o
ax
a2
(t
1 sin 2t )
2
22
0
机动 目录 上页 下页 返回 结束
例2. 计算
解: 令 t 2x 1,则 x t 2 1, dx t d t , 且 2
当 x 0 时, t 1; x 4 时, t 3 .
∴
原式 =
3
t
2 1 2
2
t
d
t
1t
1 2
3
1
(t
2
3)
d
t
1(1t3 3t) 3