中考数学复习指导:探究动点背景下的线段最值问题
动点问题中的最值、最短路径问题解析版

专题01 动点问题中的最值、最短路径问题动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何图形的长度及面积的最值,函数的综合类题目,无不包含其中.其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法.一、基础知识点综述1. 两点之间,线段最短;2. 垂线段最短;3. 若A 、B 是平面直角坐标系两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示);(1)单动点模型作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.(2)双动点模型P是∠AOB一点,M、N分别是边OA、OB上动点,求作△PMN周长最小值.作图方法:作已知点P关于动点所在直线OA、OB的对称点P’、P’’,连接P’P’’与动点所在直线的交点M、N即为所求.OBPP'P''MN5. 二次函数的最大(小)值()2y a x h k=-+,当a>0时,y有最小值k;当a<0时,y有最大值k.二、主要思想方法利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析)三、精品例题解析例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为例2.(2019·凉山州)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()x y A B C F D EO x=-5A .817B . 717C . 49D . 59例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点,若点Q (1,2Q b y +22AM QM +332时,求b 的值.例5. (2019·)如图,一副含30°和45°角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,12AC cm .当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,点D 运动的路径长为cm ;连接BD ,则△ABD 的面积最大值为2cm .例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值. ABC DH O M N专题01 动点问题中的最值、最短路径问题(解析)例1. (2019·凉山州)如图,正方形ABCD中,AB=12,AE=3,点P在BC上运动(不与B、C重合),过点P作PQ⊥EP,交CD于点Q,则CQ的最大值为【答案】4.【解析】解:∵PQ⊥EP,∴∠EPQ=90°,即∠EPB+∠QPC=90°,∵四边形ABCD是正方形,∴∠B=∠C=90°,∠EPB+∠BEP=90°,∴∠BEP=∠QPC,∴△BEP∽△CPQ,∴BE BP CP CQ=,∵AB=12,AE=3,∴BE=9,设CQ=y,BP=x,CP=12-x,(0<x<12)∴912xx y=-,即()()21216499x xy x-==--+,∴当x=6时,y有最大值为4,即CQ的最大值为4.【点睛】此题为“一线三直角模型”,解题方法为相似三角形性质求解,综合利用二次函数的性质求解最值问题.例2.(2019·)如图,已知A、B两点的坐标分别为(8,0),(0,8). 点C、F分别是直线x=-5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取最小值时,tan∠BAD=()A . 817B . 717C . 49D . 59【答案】B .【解析】解:S △ABE =142BE OA BE ⨯⨯=,当BE 取最小值时,△ABE 面积为最小值.设x =-5与x 轴交于点G ,连接DG ,因为D 为CF 中点,△CFG 为直角三角形,所以DG =152CD =,∴D 点的运动轨迹为以G 为圆心,以5半径的圆上,如图所示 xyABD E O x=-5G由图可知:当AD 与圆G 相切时,BE 的长度最小,如下图,xyABD E O x=-5G H过点E 作EH ⊥AB 于H ,∵OG =5,OA =8,DG =5,在Rt △ADG 中,由勾股定理得:AD =12,△AOE ∽△ADG , ∴AO AD OE DG =, 求得:OE =103, 由OB =OA=8,得:BE =143,∠B =45°,AB =82 ∴EH =BH =27223BE =,AH =AB -BH =1723, ∴tan ∠BAD =727317172EH AH ==, 故答案为B .【点睛】此题解题的关键是找到△ABE 面积最小时即是AD 与D 的远动轨迹圆相切的时刻. 进而构造以∠BAD 为角的直角三角形,利用勾股定理求出边长,代入三角函数定义求解.例3.(2019·)如图,矩形硬纸片ABCD 的顶点A 在y 轴的正半轴及原点上滑动,顶点B 在x 轴的正半轴及原点上滑动,点E 为AB 的中点,AB =24,BC =5,给出结论:①点A 从点O 出发,到点B 运动至点O 为止,点E 经过的路径长为12π;②△OAB 的面积的最大值为144;③当OD 最大时,点D 的坐标为)2626125,262625(,其中正确的结论是(填写序号).【答案】②③.【解析】解:根据题意可知:OE =12AB =12,即E 的轨迹为以O 为圆心以12为半径的四分之一圆(第一象限的部分),根据弧长公式,得点E 的路径长为:9012180π⨯⨯=6π,故①错误; 因为AB =24,当斜边AB 上的高取最大值时,△OAB 的面积取最大值,点O 在以AB 为直径的圆上(圆心为E ),当OE ⊥AB 时,斜边AB 上的高最大, 所以△OAB 的面积取最大值为:124122⨯⨯=144,故②正确;连接OE 、DE ,得:OD ≤OE +DE ,当O 、E 、D 三点共线时取等号,即OD 的最大值为25,如图,过点D 作DF ⊥y 轴于F ,过点E 作EG ⊥y 轴于G ,25DF OD 即:1225EG DF =,512AF AD EG AE ==, 即:51125AF EG DF ==,设DF =x ,在Rt △ADF 中,由勾股定理得:221255x x ⎛⎫+= ⎪⎝⎭,解得:x =26,在Rt △ODF 中,由勾股定理得:OF =26,即点D 的坐标为)2626125,262625(,故③正确.综上所述,答案为:②③. 例4.(2019·XX )已知抛物线2y x bx c =-+(b 、c 为常数,b >0)经过点A (-1,0),点M (m ,0)是x 轴正半轴上的动点.若点Q (1,2Q b y +)在抛物线上,当22AM QM +的最小值为3324时,求b 的值. 【答案】见解析. 【解析】解:∵2y x bx c =-+经过点A (-1,0),∴1+b +c =0,即21y x bx b =--- ∵点Q (1,2Q b y +)在抛物线2y x bx c =-+上, ∴324Q b y =--, 即13,224b Q b ⎛⎫+-- ⎪⎝⎭, ∵b >0,∴Q 点在第四象限,2222AM QM AM QM ⎛⎫+=+ ⎪⎝⎭所以只要构造出22AM QM ⎛⎫+ ⎪⎝⎭即可得到22AM QM +的最小值取N (1,0),连接AN ,过M 作MG ⊥AN 于G ,连接QM ,如图所示,△AGM 为等腰直角三角形,GM =22AM ,即当G 、M 、Q 三点共线时,GM +MQ 22QM +取最小值, 此时△MQH 为等腰直角三角形,∴QM=2QH=3224b⎛⎫+⎪⎝⎭,GM=22AM=()212m+∴()223332222=21222244bAM QM AM QM m⎛⎫⎡⎤⎛⎫+=++++=⎪⎢⎥⎪⎝⎭⎝⎭⎣⎦①∵QH=MH,∴324b+=12b m+-,解得:m=124b-②联立①②得:m=74,b=4.即当22AM QM+的最小值为3324时,b=4.【点睛】此题需要利用等腰直角三角形将22AM QM+转化为222AM QM⎛⎫+⎪⎝⎭,进而根据两点之间线段最短及等腰三角形性质求解.例5. (2019·)如图,一副含30°和45°角的三角板ABC和EDF拼合在个平面上,边AC与EF重合,12AC cm=.当点E从点A出发沿AC方向滑动时,点F同时从点C出发沿射线BC方向滑动.当点E从点A滑动到点C时,点D运动的路径长为cm;连接BD,则△ABD的面积最大值为2cm.【答案】24-1223623126;【解析】解:如图1所示,当E运动至E’,F滑动到F’时,DD'E'G图1过D ’作D ’G ⊥AC 于G ,D ’H ⊥BC 交BC 延长线于点H ,可得∠E ’D ’G =∠F ’D ’H ,D ’E ’=D ’F ’,∴Rt △E ’D ’G ≌Rt △F ’D ’H ,∴D ’G =G ’H ,∴D ’在∠ACH 的角平分线上,即C ,D ,D ’三点共线.通过分析可知,当D ’E ’⊥AC 时,DD ’的长度最大,随后返回初始D 点,如图2所示,D 点的运动路径为D →D ’→D ,行走路线长度为2DD ’;BD'图2∵∠BAC =30°,AC =12,DE =CD∴BC =CD =DE=由图知:四边形E ’CF ’D ’为正方形,CD ’=EF =12,∴DD ’=CD ’-CD =12-D 点运动路程为2DD ’=24-D'图3如图3所示,当点D 运动至D ’时,△ABD ’的面积最大,最大面积为:'''''''ABC AE D BD F E CF D S S S S ++-△△△正方形=(((211112222⨯+⨯--⨯+⨯=【点睛】准确利用全等、角平分线判定得到D 点的运动轨迹是关键,利用三角函数及勾股定理求解,计算较为繁琐,尤其是利用割补法求解三角形的面积时对学生计算能力要求较高,此题难度较大,新颖不失难度.例6. (2019·)如图,在菱形ABCD 中,连接BD 、AC 交于点O ,过点O 作OH ⊥BC 于点H ,以O 为圆心,OH 为半径的半圆交AC 于点M .(1)求证:DC 是圆O 的切线;(2)若AC =4MC ,且AC =8,求图中阴影部分面积;(3)在(2)的前提下,P 是线段BD 上的一动点,当PD 为何值时,PH +PM 的值最小,并求出最小值.BD【答案】见解析.【解析】(1)证明:过点O 作ON ⊥CD 于N , AC 是菱形ABCD 的对角线,∴AC 平分∠BCD ,∵OH ⊥BC ,ON ⊥CD ,∴OH =ON ,又OH 为圆O 的半径,∴ON 为圆O 的半径,即CD 是圆O 的切线.(2)由题意知:OC =2MC =4,MC =OM =2,即OH =2,在Rt △OHC 中,OC =2OH ,可得:∠OCH =30°,∠COH =60°,由勾股定理得:CH==23OCH OMHS S S π-=-△阴影扇形(3)作点M 关于直线BD 的对称点M ’,连接M ’H 交BD 于点P , 可知:PM =PM ’即PH +PM =PH +PM ’=HM ’,由两点之间线段最短,知此时PH +PM 最小, ∵OM ’=OM =OH ,∠MOH =60°,∴∠MM ’H =30°=∠HCM ,∴HM ’=HC=即PH +PM的最小值为在Rt △M ’PO 及Rt △COD 中,OP =OM ’ tan 30°=3,OD =OCtan 30°=3, 即PD =OP +OD=B D。
中考总复习+线段最值问题的方法技巧+++讲义+2023—2024学年人教版九年级数学下册+

线段最值问题的方法技巧模型介绍:几何最值中比较常见的是线段最值与线段和差最值,主要来源于两个公理,一是两点之间线段最短,二是垂线段最短,由这两个公理衍生出一些基本定理和基本图形.常用到的定理是:三角形两边之和大于第三边,两边之差小于第三边.解题思路:利用平移、对称或旋转来变换线段和点的位置,使动点变定点,或找出动点的运动轨迹( 经常在某直线或某圆周上) ,使之符合基本定理或基本图形来求线段最值或线段和差最值.类型1 平移变换方法技巧基本型平移变换线段AB平移,注意线段AB不能发生旋转,与定点或动点(一般情况下在直线上移动)之间连线组成线段和差最值,利用平行四边形的对边平行且相等来变换线段的位置.例1、如图,已知直线b‖c,点A,B分别在直线b,c 上,且AB⊥b,C,D是平面内的两点,DE‖AB,CE‖b,若AB=2,DE=6,CE=3,求DA+AB+BC的最小值.练习题1、如图,OA 是⊙O的半径,OA=3,AD⊥OA,AD=7,B是⊙O上一动点,过点B作CB‖AD,且CB=1(点C 在点B 的上方),连接DC,求DC的最小值和最大值.2、如图,直线b‖c,且两条平行线间的距离是2,C是直线b,c外一点,且点し均且线c的距离CG=4,点A,B分别在直线b,c上,且AB与直线b所夹的锐角是45°,E是直线c上一点,EG=8,且过点E的直线EF与直线c 所夹的锐角是30°,M是EF上一点,连接AM,求BC+AM 的最小值.类型2 对称变换方法技巧基本型对称变换一个点或多个点在同一条直线上移动或在不同直线上移动,利用垂直平分线上的点到线段两端点的距离相等来变换线段的位置.例1、如图,P是直线l上任意一点,A,B是直线l上方的两点,A,B两点到直线l 的距离分别是1,4即AM=1,BN=4,已知AB=5,求PA+PB的最小值.练习题1、如图,AB=4,P 为AB 的中点,顶点为P 且在AB 上方的两条射线PM,PN形成的夹,求CD的最大值. 角∠MPN=120°,C是PM 上一点,D是PN上一点,且AC=3,BD=432、如图,在矩形ABCD和矩形CEFG中,AD=2AB=6,E是DC上一点,G是BC上一点,CD=3CE,BC=2CG,M是BC上一动点,连接AM,N是AM的中点,连接ND,NF,求D N−FN 的最大值.3、问题提出(1)如图1,点A,B分别在直线l的两侧,分别过点A,B作直线l的垂线,垂足分别为M,N,AM=2,BN=3,MN=5,P是直线l上一点,求PA+PB的最小值.问题探究(2)如图2,点A,B分别在直线l的同一侧,分别过点A,B作直线l的垂线,垂足分别为M,N,AM=3,BN=4,MN=7,P是直线l上一点,求PA+PB的最小值.问题解决(3)如图3,某市进行河滩治理,将原来一条废弃的小河通过规划后建成一条集旅游、休闲、餐饮于一体的景点.如图,OM,ON是两条互相垂直的旅游大道,A,B是位于河中的两座休闲小岛,且岛A与OM的距离为20m,与ON的距离为30m,岛B与OM的距离为40m,与ON的距离为20m.现计划在旅游大道OM处选一点P,修建桥梁PA,PB,通往A,B两岛,并修建桥梁AB,将A,B两岛连起来,计算所修建的所有桥梁的最短长度.(结果保留根号)类型3旋转变换方法技巧基本型旋转变换通过旋转变换,把由三角形内一点发出的三条线段(星型线) 转化为两定点之间的折线(化星为折),再利用“两点之间,线段最短”求最小值(化折为直).例1、问题提出:如图1,△ABC是边长为 1 的等边三角形,P 为△ABC 内部一点,连接PA,PB,PC,求PA+PB+PC 的最小值.方法分析:通过旋转,可把所求问题中的PA,PB,PC 由分散变为集中,再利用“两点之间,线段最短”求最小值.问题解决:如图2,将△BPA绕点B逆时针旋转60°至,△BP′A′,过点A′作A′E⊥CB交CB的延长线于点E,连接PP′,A′C,设A′C与AB相交于点D,易知BA′=BA=BC=1,∠A′BC=∠A′BA+∠ABC=120°,由BP′=BP,∠P′BP=60°,知△P′BP为等边三角形,因此,PB=P′P,故PA+PB+PC=P'A'+P'P+PC,当点A′,P′,P,C共线时,PA+PB+PC最小,最小值是,A′C的长,再在Rt△A'BE 和Rt△A′CE中解直角三角形,即可求出A′C的长.学以致用:(1)如图3,在△ABC 中,∠BAC=30°,AB=4,CA=3,P 为△ABC 内部一点,连接PA,PB,PC,则PA+PB+PC 的最小值为;(2)如图4,在△ABC中,∠BAC=45°,AB=2√2,CA=3,P为△ABC 内部一点,连接PA,PB,PC,则√2PA+PB+PC的最小值为 .练习题【问题背景】数学活动小组在学习《确定圆的条件》时,曾遇到这样一个问题:如图1,草原上有三个放牧点,要修建一个牧民定居点,使得定居点到三个放牧点的距离相等,那么如何确定定居点的位置?(1)请用无刻度的直尺和圆规在图2中画出定居点O的位置,使点O到点A,B,C的距离相等.(不写作法,保留作图痕迹)【问题探索】聪明的小智在解决这个问题之后,继续提出新的问题,如图3,在平面内是否存在一点P,使点P到△ABC三个顶点的距离之和最小?通过不断探究,小智发现可以借助旋转的思想解决这个问题,如图4,把△APC绕点A逆时针旋转60°,得到△AP'C',连接PP',可知△APP′为等边三角形,因此PA+PB+PC=PP'+PB+P'C',由两点之间,线段最短,可知PA+PB+PC的最小值即为点B,P,P′,C′共线时线段BC′的长.【类比探究】(2)如图5,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点P为△ABC内一点,连接AP,BP,CP,求PA+PB+PC的最小值.【实际应用】(3)如图6,现要在矩形公园ABCD内,选择一点P,从点P铺设三条输水管道PB,PC,PE,要求PE⊥AD.若AB=4,BC=6,请直接写出输水管道长度的最小值.。
中考数学教学指导:求解线段最值问题的常用方法

求解线段最值问题的常用方法求线段的最值问题经常出现在各地中考试卷中.解决这类问题的关键是要结合题意,借助相关的概念、图形的性质,将最值问题转化为相应的数学模型.如,函数增减性、线段公理、垂线段定理、三角形三边关系等进行分析与突破.现对这类问题作一个归类整理.一、利用“将军饮马”数学模型,求线段和的最小值或差的最大值“将军饮马”模型为:在一条定直线上求一点,使得该点到这条直线同侧的两个定点的距离之和最小.其实质是根据“两点之间线段最短”求最短距离的一个数学模型.“将军饮马”问题可变化为以下几种情形:情形一如图1,A、B为直线MN同侧的两点,在直线MN上求作一点P,使P A+PB-最大(图1 (2)).最小(图1 (1)),或使PA PB情形二如图2,A、B为直线MN异侧的两点,在直线MN上求作一点P,使P A+PB-最大(图2 (2)).最小(图2 (1)),或使PA PB情形三如图3,点P是∠MON内一点,分别在边OM、ON上求点A、B,使P AB的周长最小.情形四如图4,点P、Q是∠MON内两点,分别在边OM、ON上求点A、B,使四边形P ABQ的周长最小;上述几种情形都利用了轴对称的性质,不妨把情形一、二简称为“两点一线”,情形三为“一点两线”,情形四为“两点两线”.例1如图5,在平面直角坐标系中,Rt△OAB的顶点A在x轴正半轴上.顶点B的坐标为(3,3),点C的坐标为(12,0.),点P为斜边OB上的一个动点,则P A+PC的最小值为.例2如图6,已知A (12,y1),B (2,y2) 为反比例函数y=1x图像上的两点,动点P在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是.例3如图7,在平面直角坐标系中,已知点A (-1,0),B (4,0),C (2,-3),P (3,-2),当P、C同时向左平移t个单位时得到的对应点分别为P1,C1,则当四边形AB P1C1的周长最小时t的值为.简析例1是“两点一线”(定点A、C和直线OB) 模型,P A+PC的最小值为312.例2延长线段AB交x轴可得P (2.5,0).例3实际为“两点(点A、B) 一线(过点P平行x轴的直线l ) 一平移(平移距离和方向均为PC)”模型.如图7,过点A作AA1∥PC,AA1=PC,作点A1关于直线l的对称点A2,连结A2B,交直线l于点P1,作P1C1∥PC,P1C1=PC,四边形ABP1C1的周长即为最小,求得t =PP1=0.6.或过点B用类似作法一样可求,此时“一线”应是过点C平行x轴的直线.二、构造三角形求不定线段的最大值若P A、PB是两条定长线段,AB是一条不定的线段,由三角形三边关系PA PB≤AB ≤P A+PB (等号当且仅当P、A、B三点一直线时成立),求得不定线段AB的最大值或最小值.例4如图8,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上一动点,将△AMN沿MN所在的直线翻折得到△A'MN,连结A'C.则A'C长度的最小值是简析因为A'M=AM,所以A'M、MC为定长线段,当A'、M、C三点共线时,最小值A'C72.例5如图9,△ABC中,∠C=90°,AC=6,BC=3,点A、C分别在x轴、y轴正半轴上.当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,求点B到原点的最大和最小距离.简析取AC中点D,连结BD、OD,则BD、OD为定长线段.当点B在第一象限,且B、O、D三点共线时,最大值BO=3柜+3;当点j5}在第三象限,j!}、D、D三点共线时,最小值BO = 32-3.例6如图10,在△ABC中,AB=3,BC=4,∠ACB=30°,将△ABC绕点B按逆时针方向旋转得到△A1BC1.如图,点E为线段AB中点,点P是线段AC上的动点,在△ABC 绕点B按逆时针方向旋转的过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.简析EB为定长线段,当点P1在A1C1上运动时,BP1的最长距离为BC1= 4,最短距离为垂线段长2.当按E、B、C1顺序并且三点共线时,最长EP1=4 + 1.5 = 5.5;类似地,最短EP1=2-1.5 = 0.5.在上述三个问题中,找到定长的两条线段很重要,需要根据题意,结合图形特征,熟悉图形性质.例如,定圆的半径为定值,斜边一定的直角三角形斜边中线为定值,两平行线间的距离为定值等.要仔细分析,有时需要添加适当的辅助线.三、利用“垂线段最短”求线段的最值“两点之间线段最短”,最短距离为“点点距”,指的是点到点的距离;“垂线段最短”,最短距离为“点线距“,指的是直线外一点到直线的距离.利用“垂线段最短“求线段最值,需要运用动态的观点,结合图形性质,多数情况下要构造直角三角形,利用直角三角形性质 解决问题.例7 如图11,在Rt △AOB 中,OA=OB=32,⊙O 的半径为1,点P 是AB 边上的动点.过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .简析 由切线性质得PQ =22OP OQ ,OQ 为定值.当OP 最小,即OP 为AB 边上的垂线段时,PQ 最小,最小值PQ =22.例8 如图12,在△ABC 中,AB =10,AC =8,BC =6,经过点C 且与边AB 相切的动圆与CA 、CB 分别相交于点P ,Q ,则线段PQ 长度的最小值是 .简析 ∠C 是直角,则PQ 为直径.连结CD ,当C D ⊥AB 且CD 成为直径时,最小值PQ=CD =4.8.四、建立函数模型求线段最值一些动态问题的两个变量之间存在着某种函数关系,建立函数关系式,在自变量取值范围内利用函数性质求线段最值.数形结合,把几何问题代数化,以达到快捷解决最值问题的目的.例9 如图13,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且cos α=45,求CE的最大值.简析先求得BC=16,由△ABD~△DCE,得CEBD=DCAB.设BD=x,CE=(16)10x x,当x=8时,最大值CE=6.4.综上,线段的最值问题需要在动态情形中对图形特殊位置作出深入的探索,既要寻找合适的模型,又要具体问题具体分析,这样才能达到顺利解决问题之目的.。
2020年重庆中考复习数学课件 “线段最值问题”漫谈(56张PPT)

y
B
M1
O
点M1为最值点, P1D1为所求线段 M
x
D1
H
P1
P
D C
“阿氏圆”问题
【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点 A、B, 则所有满足PA/PB=k(k≠1)的点 P 的轨迹是一个圆,这个轨迹 最先由古希腊数学家阿波罗尼斯发现,故称“阿波罗尼斯圆”简称 “阿氏圆”.如下图所示,其中PA:PB=OP:OB=OA:OP=k.
小伙子从A走到P,然后从P折往B,可望最早到达B。
问 题 : 若 在 驿 道 上 行 走 的 速 度 为 v1=8km/h , 在 沙 地 上 行 走 的 速 度 为
v2=4km/h.(1)小伙子回家需要的时间可表示为 (2)点P选择在何处他回家的时间最短?
AP P; B
84
1 4
1 2
PA
PB
PA最长 PB最短
⑦圆圆之间,连心线截距最短(长)
基本图形
E
A
O
C
B DM
F
结论
AB最长 CD最短
解决策略
复杂的几何最值问题都是在基本图形的基础上进行变式 得到的,在解决这一类问题的时候,常常需要通过几何变换 进行转化,逐渐转化为“基本图形”,再运用“基本图形” 的知识解决。常运用的典型几何变换有: (1)平移------“架桥选址” (2)翻折------“将军饮马“ (3)旋转------“费马点问题“ (4)相似------“阿氏圆问题“ (5)三角------“胡不归问题“ (6)多变换综合运用
解题要点:
将定点沿定长方向平移
定长距离 将军饮马
B1
B1
架桥选址类
【例20】如图,在矩形ABCD中,AB= 3 ,BC=1,将△ABD
中考数学复习指导:探究动点背景下的线段最值问题(20200709211212)

5
最小值为
12
.
5
例 4 如图 6,在圆 O 上有定点 C 和动点 P 位于直径 AB 的异侧,过点 C 作 CP 的垂线,
与 PB 的延长线交于点 G .已知 :圆 O 半径为 5 , tan ABC
4 ,则 CG 的最大值是 (
).
2
3
(A) 5
15
(B)
4
25
(C)
3
20
(D)
3
分析 点 P 在 AB 上运动时, PC 的位置和大小会随之变化,但
又∵ OP
CB , OB
1 AB
3,
ABC
30 ,
2
∴ OP 3 2
由勾股定理,得
PQ
32
(
3 )
2
33
2
2
即 PQ 长的最大值
3
3
.
2
二、从动点产生的特殊线段入手
在图形中, 点的运动会引起相应线段位置和长度大小的变化, 位置的变化会使线段成为
具有某种特殊性质抓住这些线段变化的特殊性
:如三角形的高、中线、圆的直径等,往往会
探究动点背景下的线段最值问题
图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问
题,常常使学生感到比较为难 .本文谈谈破解这类问题的方法 .
动点背景下线段长度的最值问题一般有两种解法
:
1、代数解法 .通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方 程判别式、解不等式来求解 .
此时,由勾股定理知 BD 6 ,所以 EF 长度的最大值为 3 .
例 2 如图 3,在⊙ O 中,直径 AB 6 , BC 是弦, ABC 30 ,点 P 是 BC 上的 一个动点,点 Q 在⊙ O 上,且 OP PQ .求 PQ 长的最大值 .
中考数学动点最值问题归纳及解法

中考数学动点最值问题归纳及解法最值问题是初中数学的重要内容,也是一类综合性较强的问题,它贯穿初中数学的始终,是中考的热点问题,它主要考察学生对平时所学的内容综合运用,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)。
利用一次函数和二次函数的性质求最值。
动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
“坐标几何题”(动点问题)分析动点个数两个一个两个问题背景特殊菱形两边上移动特殊直角梯形三边上移动抛物线中特殊直角梯形底边上移动考查难点探究相似三角形探究三角形面积函数关系式探究等腰三角形考点①菱形性质②特殊角三角函数③求直线、抛物线解析式④相似三角形⑤不等式①求直线解析式②四边形面积的表示③动三角形面积函数④矩形性质①求抛物线顶点坐标②探究平行四边形③探究动三角形面积是定值④探究等腰三角形存在性特点①菱形是含60°的特殊菱形;△AOB是底角为30°的等腰三角形。
②一个动点速度是参数字母。
③探究相似三角形时,按对应角不同分类讨论;先画图,再探究。
④通过相似三角形过度,转化相似比得出方程。
⑤利用a、t范围,运用不等式求出a、t的值。
①观察图形构造特征适当割补表示面积②动点按到拐点时间分段分类③画出矩形必备条件的图形探究其存在性①直角梯形是特殊的(一底角是45°)②点动带动线动③线动中的特殊性(两个交点D、E是定点;动线段PF长度是定值,PF=OA)④通过相似三角形过度,转化相似比得出方程。
⑤探究等腰三角形时,先画图,再探究(按边相等分类讨论)近几年共同点:①特殊四边形为背景;②点动带线动得出动三角形;③探究动三角形问题(相似、等腰三角形、面积函数关系式);④求直线、抛物线解析式;⑤探究存在性问题时,先画出图形,再根据图形性质探究答案。
2020年中考数学复习 动点最值专题
动点最值专题动点最值专题近几年有关“线段最值”的中考试题层出不穷,形式多样,往往综合了几何变换、函数等方面的知识,具有一定的难度,具有很强的探索性,通过研究发现,这些问题尽管形式多样、背景复杂、变化不断,但都可以通过几何变换转化为常见的基本问题.最值题目类型多:作图、计算;有求差最大,求和最小;求周长最小、求时间最短;求最值、已知最值求待定系数等;对称载体多:几乎涉及到初中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、抛物线、圆、坐标轴).我们知道“对称、平移、旋转”是三种保形变换。
通过这三种几何变换可以实现图形在保持形状、大小不变的前提下而使其位置发生变化,具有更紧凑的位置关系或组合成新的有利论证的基本图形.通过几何变换移动线段的位置是解决最值问题的有效手段,题目是千变万化的,但是运用几何变换把最值问题转化为基本问题却是不变的。
数学问题是千变万化的,几何变换的应用也不是单一的,有些问题需要多种变换的组合才能解决,看看以下策略对解决问题能否奏效。
(1)去伪存真。
刨去不变的线段,看清楚究竟是几段和的最小值问题,必须仔细研究题目的背景,搞清楚哪些是动点、哪些是定点、哪些是定长。
(2)科学选择。
捕捉题目的信号,探索变换的基础,选择变换的手段.平移把不“连”的线段“接”起来,旋转把“碰头”的线段“展”开来重“接”,对称把在同侧的线段翻折过去重组,因此“不连——平移、碰头——旋转、同侧——对称”是一般的思路;对称变换的基础是轴对称图形,平移变换的基础是平行线,旋转变换的基础是等线段,所以选择哪种几何变换还要看题目中具备何种变换的基础信息。
(3)怎么变换?对称变换一般以动点所在直线为对称轴,构建定点(直线)的对称点(直线),如有多个动点就必须作多次变换;平移一般是移动没有公共端点的两条线段中的某一条,与另一条对“接”;旋转变换一般以定点为旋转中心旋转60°或90°。
(4)怎么求值?几何变换成了“两折线”或“三折线”后,根据“两点之间线段最短”或“垂线段最短”把“折线”转“直”,找出最短位置,求出最小值。
中考数学动点最值问题
动点最值问题【考查知识点】“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。
原型----“饮马问题”,“造桥选址问题”。
考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。
【解题思路】找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查.求线段和的最小值需要用到三个基本知识:两点之间,线段最短;轴对称的性质;线段垂直平分线上的点到线段两端点的距离相等.常见情况有三种:“两点一线”型、“一点两线”型和“两点连线” 型.平面上最短路径问题:(1)归于“两点之间的连线中,线段最短”。
凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。
(2)归于“三角形两边之差小于第三边”。
凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。
(3)平面图形中,直线同侧两点到直线上一点距离之和最短问题。
【方法归纳】在平面几何的动态问题中,求几何量的最大值或最小值问题常会运用以下知识:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点之间线段最短;③连接直线外一点和直线上各点的所有线段中,垂线段最短;④定圆中的所有弦中,直径最长;⑤利用对称的性质求两条线段之和最小的问题,解决此类问题的方法为:如图,要求线段l上的一动点P 到点A、B距离和的最小值,先作点A关于直线L的对称点A′,连接A′B,则A′B与直线L的交点即为P点,根据对称性可知A′B的长即为PA+PB的最小值,求出A′B的值即可.【典型例题】一、将军饮马基础1.如图,周长为16的菱形ABCD中,点E,F分别在边AB,AD上,AE=1,AF=3,P为BD上一动点,则线段EP +FP 的长最短为( )A .3B .4C .5D .62.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是( )A .30°B .15°C .20°D .35°3. 如图:等腰△ABC 的底边BC 长为6,面积是18,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则△CDM 周长的最小值为( )A .6B .8C .9D .104.如图,等腰三角形ABC 底边BC 的长为4 cm ,面积为12 cm 2,腰AB 的垂直平分线EF 交AB 于点E ,交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一点,则△BDM 的周长最小值为( )A .5 cmB .6 cmC .8 cmD .10 cm二、平面直角坐标系中的最值1.如图,在R t A B O 中,90O B A ∠=︒,()4,4A ,点C 在边A B 上,且13A CC B =,点D 为O B 的中点,点P 为边O A 上的动点,当点P 在O A 上移动时,使四边形P D B C 周长最小的点P 的坐标为( )A .()2,2B .55,22⎛⎫ ⎪⎝⎭C .88,33⎛⎫ ⎪⎝⎭D .()3,32.在平面直角坐标系中,Rt △AOB 的两条直角边OA 、OB 分别在x 轴和y 轴上,OA=3,OB=4.把△AOB 绕点A 顺时针旋转120°,得到△ADC .边OB 上的一点M 旋转后的对应点为M′,当AM′+DM 取得最小值时,点M 的坐标为( )A .(0,335 ) B .(0,34) C .(0,35) D .(0,3)3.直线y =x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时点P 的坐标为( ).A .(-3,0)B .(-6,0)C .(-,0)D .(-,0)三、双动点最值问题1. 如图,A B C ∆是等边三角形,13A D A B =,点E 、F 分别为边A C 、B C 上的动点,当D E F ∆的周长最小时,F D E ∠的度数是______________.2. 如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O 的动点,则△PMN周长的最小值是()A.362B.332C.6 D.33.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为( )A.130°B.120°C.110°D.100°4.如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为( ).A.50°B.60°C.70°D.80°四、与圆有关的最值1. 如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD 的最大值为___.2.如图,已知点A 是以MN 为直径的半圆上一个三等分点,点B 是弧A N 的中点,点P 是半径ON 上的点.若⊙O 的半径为l ,则AP+BP 的最小值为( )A .2B .3C .2D .1 3.如图,A C 是O 的弦,5A C =,点B 是O 上的一个动点,且45A B C ∠︒=,若点,M N 分别是,A C B C 的中点,则M N 的最大值是_____.五、角平分线有关的最值1.如图,∠AOB =60°,点M ,N 分别是射线OA ,OB 上的动点,OP 平分∠AOB ,OP =8,当△PMN 周长取最小值时,△OMN 的面积为_____.2.如图,在R t A B C ∆中,90A C B ∠=︒,3A C =,4B C =,A D 是B A C ∠的平分线.若P ,Q 分别是A D 和A C 上的动点,则P C P Q +的最小值是__________.3.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.六、最值与特殊角1.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M 是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为______.。
中考数学专题复习-例说线段的最值问题 (共62张)
MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
中考数学复习指导:利用数学模型探求“线段最值”
利用数学模型探求“线段最值”教学中发现学生在解决“线段最值”问题时,困难主要有两个方面:一是对解决这类问题常用的几种数学模型认识不充分,掌握不到位;二是这类问题一般是以动态形式呈现的,学生难以掌握运动中的数量关系而导致无法入手.本文主要谈谈如何利用数学模型求线段最值的问题.笔者归纳出最常用的三种数学模型:从“形”的角度构造“两点之间线段最短”和“垂线段最短”这两种几何模型;从“数”的角度建立函数模型来进行分析.现举例加以分析.类型一、运用“两点之间线段最短”模型【基本模型】如图1,两定点A、B在直线l的同侧,在直线l上找一点P,使得AP +BP值最小.作点A关于直线l的对称点A',易知AP=A'P,根据“两点之间线段最短”这一原理可知当点P运动到点E(点A'、E、B共线)所在位置时,AP+BP=A'B,值最小.这是初中几何教学中一个及其重要的基本模型.在教学中不仅要使学生知道如何解决问题,而且要使学生体会到解决问题所用的数学思想是转化思想和模型思想,所用的数学方法是对称的方法,模型思想与其他数学思想的综合应用是解决问题的关键.【问题载体】多为轴对称载体,几乎涉及初中数学中全部的轴对称图形(角、线段、等腰三角形、等腰梯形、菱形、正方形、圆、抛物线、双曲线、坐标轴等).【常用方法】利用翻折变换,构建定点关于动点所在直线的对称点,在不改变线段长度的前提下改变其位置,化同侧为异侧,化折为直,找出相应位置,并求出最小值.例1 如图2,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值是多少?分析由题意可知BE=1为定值,要使BEQ周长的最小值,只要使QE+QB最小即可.作点B关于AC所在直线的对称点,即点D,连结DE,交AC于点Q.利用勾股定理求得DE=5,根据轴对称性及两点之间线段最短可知,这时QE+QB的值最小(即QE+QB=DE=5),所以,△BEQ周长的最小值为6.纵观近几年中考试题的变化,为了命题的新颖性和难度的需要,有的问题需要通过平移变换、旋转变换或两种变换相结合来转化处理问题.但万变不离其宗,关键是抓住“两点之间线段最短”这一基本模型,合理运用图形变换转化有关线段来解决问题.例2 如图3,已知∠MON=90°,矩形ABCD的顶点A、B分别在OM、ON上,当点B在ON边上运动时,点A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,AD=1,求运动过程中点D到点O的最大距离.分析经分析发现点D的运动轨迹不是常见图形,而且很难用其他量来表示线段DO 长,但任何运动问题中或多或少存在着“数”的关系或“形”的不变性,既然在“数”的关系上难以突破,不妨在“形”上深入观察.从运动的相对性来看:在运动过程中AB边的中点E相对于点O和点D是不动点(即线段OE、OD长度保持不变),而这三点正好构成一个三角形,根据“两点之间线段最短”可知当OD经过点E时OD取最大值为OE+ED,易求OE=1,DE=,故运动过程中点D到点O的最大距离为+1.类型二、运用“垂线段最短”模型例3 如图4,已知Rt△ABC中,∠ACB=90°,AC=BC=C的半径为1,点P是线段AB上一动点,过点P作⊙C的切线PQ,切点为Q,求切线PQ长的最小值.分析如图4,由PQ是⊙C的切线很自然想到连结CQ,则CQ⊥PQ,于是点P、Q、C构成了一个直角三角形,由于CQ=1为定值,由勾股定理可知PQ==,从这一关系式中不难看出PQ随PC的减小而减小,所以当PC 取最小值时PC最小.由“垂线段最短”原理易知当CP⊥AB是CP长最小,此时PC=3,代入上述关系式中求得PQ的最小值为类型三、建立函数模型探究运动问题中的一些量是有关联的,运动中总隐有常量和变量,可以通过函数来捕捉运动中的各个量,建立函数模型来准确刻画量与量之间的关系.例4 如图5,在梯形ABCD中,AD∥BC,∠ABC=60°,AB=DC=2,AD=1,R、P分别是BC、CD上的动点(点R与B不重合,点P与C不重合),点E、F分别是AP、RP的中点,求线段EF的取值范围.分析如图5,由点E、F分别是线段AP、RP的中点,不难想到连结AR构造三角形中位线的基本图形,发现线段EF的长为线段AR的一半,所以题中两个动点P、R其实对EF长有影响的只是动点R,这样就把求线段EF长的取值问题转化成线段AR的长的取值问题来研究.再由条件∠ABC=60°,AB=2想到作梯形的高线,构造Rt△ABG和Rt△AGR,则线段AG、BG为定值.在Rt△AGR中,通过勾股定理可以用线段GR来表示线段AR的长,从而可以建立线段AR长关于变量线段GR长的函数关系式.简解连结AR,过点A作AG⊥BC于点G,设BR=x,EF=y易求BG=1,AG GR=x-1.在Rt△ARG中,∵AR2=AG2+GR2.化简得y由题意,可知0<x≤3,所以当x=1,即点R与点G重合时,y;当x=3,即点R与点G重合时,y≤EF“模型思想”新课程标准新增的核心概念,“模型思想”作为十个核心概念之一,第一次以“基本数学思想”的身份出现,并且明确被冠以“学生体会和理解数学与外部世界联系的基本途径”.这意味着“建立数学模型”这一意识和要求被明显强化,模型思想作为一种基本的数学思想更是会与目标、内容、考查紧密关联,所以,在解题中要高度重视模型思想的教学,要突出建模过程,让学生深刻体会模型思想,让学生经历数学模型的“形成——建立——求解”的全过程,在过程中体会和掌握和数学中常用的、重要的基本模型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究动点背景下的线段最值问题
图形运动问题是中考数学命题的热点题型,其中有一类动点背景下线段长度的最值问题,常常使学生感到比较为难.本文谈谈破解这类问题的方法.
动点背景下线段长度的最值问题一般有两种解法:
1、代数解法.通过设未知量,建立函数关系或列方程列不等式等,用函数最值、二次方程判别式、解不等式来求解.
2、几何方法.常通取特殊点,如线段中点、端点;与动点的特殊位置相关的特殊线段,如三角形的高、中线、圆的直径等;特殊图形,如直角三角形、等边三角形、矩形等,用几何公理、定理来求解.
一般而言,用几何方法抓住特殊情形处理,比代数方法更有独特魅力.
一、从动点所在特殊位置入手
图形中动点的运动有一定的范围,其较为特殊的位置有:线段上动点的两端点、线段中点等;若点在线段外运动,则与某线段共线就是特殊位置.这些特殊位置正是产生最值的关键点.
例1 如图1,在四边形ABCD 中,90A ∠=︒,AB =3AD =,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 .
分析 DM ,MN 的长度随点M ,N 分别在线段BC ,AB 上运动而变化,点E ,F 分别为DM ,MN 的中点却保持不变.题设中EF 与不变量A ∠,AB ,AD 无直接数量关
系,但连结DN ,则由三角形的中位线定理可知12
EF DN =
,如图1所示,从而可知DN 最大时,EF 最大.因为N 在线段AB 上,当点N 与其端点B 重合时DN 最大,如图2所示.此时,由勾股定理知6BD =,所以EF 长度的最大值为3.
例2 如图3,在⊙O 中,直径6AB =,BC 是弦,30ABC ∠=︒,点P 是BC 上的一个动点,点Q 在⊙O 上,且OP PQ ⊥.求PQ 长的最大值.
分析 点P 在BC 运动时,OP ,PQ 的位置和大小都变化,但OP PQ ⊥,圆的半径不变,连结OQ ,则OPQ ∆保持直角三角形不变.
在Rt OPQ ∆中,
P Q P =,
所以OP 最小时PQ 的长的最大.由垂径定理知,此时点P 正好是CB 的中点,如图4所示,Q 点与C 点重合.
分析 连结OQ .
∵OP PQ ⊥,
∴OPQ ∆为直角三角形.
又∵OP CB ⊥,132OB AB =
=,30ABC ∠=︒, ∴32
OP = 由勾股定理,得
2
PQ ==
即PQ . 二、从动点产生的特殊线段入手
在图形中,点的运动会引起相应线段位置和长度大小的变化,位置的变化会使线段成为具有某种特殊性质抓住这些线段变化的特殊性:如三角形的高、中线、圆的直径等,往往会找到最值的答案.
例3 如图5,在直角ABC ∆中,90C ∠=︒,3AC =,4BC =,P 为AB 上(不与AB 重合)一动点,过点P 分别作PE AC ⊥于点E ,PF BC ⊥与F ,则EF 的最小值 .
分析 因为点P 在AB 上运动时,PE AC ⊥于点E ,PF BC ⊥与F ,90C ∠=︒,所以四边形CFDE 是矩形,且这些关系不变.连结PC ,则EF CP =,要求EF 的最小值,
就是求CP 的最小值.显然当CD AB ⊥,即CD 是斜边AB 的高时,
CD 最小.又由勾股定理,得5AB =,根据三角形面积不变,得AC BC CD AB ⨯=⨯,解得125CP =
,所以EF 的最小值为125
. 例4 如图6,在圆O 上有定点C 和动点P 位于直径AB 的异侧,过点C 作CP 的垂线,与PB 的延长线交于点G .已知:圆O 半径为52,4tan 3
ABC ∠=,则CG 的最大值是( ). (A)5 (B)154 (C)253 (D)203
分析 点P 在 AB 上运动时,PC 的位置和大小会随之变化,但CAB CPG ∠=∠,90ACB PCG ∠=∠=︒保持不变,故有
ABC PGC ∆∆ , ∴BC AC CG PC =,即BC CG PC AC
= , 由3tan 4AC ABC PC ∠==,知43
CG PC =,当PC 最大时,CQ 取到最大值 易知,当PC 经过圆心,即PC 为圆O 的直径时,PC 最大(此时CG 是圆O 的切线).
∵圆O 半径为52
, ∴PC 的最大值为5, ∴315544
CG =⨯=. ∴CG 的最大值154
,故选B.
三、抓住动点问题的特性,从构造特殊图形入手
某些动点问题中,难以找到图形变化时与相关线段最值的特殊情形若要用几何解法,应联系整个问题所含条件添加辅助线,构造特殊图形,然后借助特殊图形的性质将问题进行有效转化.
例5 如图7,ABC ∆中,45B ∠=︒,60BAC ∠=︒,AB =D 是BC 上的一个动点以AD 为直径画圆与AB ,AC 相交于E ,F 两点,求EF 的最小值.
分析 点D 在BC 上运动,AD 的位置改变引起圆O 的位置和大小变化,而所求EF 的 值与不变量B ∠,BAC ∠以及AB 的关系不明显.
连结OE ,OF ,构造含120︒角的特殊等腰三角形,如图8所示,过O 点作OH EF ⊥垂足为H ,由圆周角定理可知
1602
EOH EOF BAC ∠=∠=∠=︒.
在Rt EOH ∆中,由垂径定理可知2EF EH ==.所以当OE 最小时,EF 的值
最小,而12
OE AD =
,由垂线段的性质可知,当AD 为ABC ∆的边BC 上的高时,直径AD 最短,此时线段EF 最小.
在Rt ADB ∆中,
45ABC ∠=︒,AB =
∴2AD BD ==,即此时圆的直径为2.
在Rt EOH ∆中,
sin 1EH OE EOH =∠==
∴2EF EH =
即EF 四、从图形运动中相对保持不动的点入手
若图形中的动点不止一个,这种情形相对单一动点问题要复杂一般会引起变化的量增加或整个图形发生运动,难以找到原图中保存不变的量,这时可着眼于图中的相对不变量.相对不变量是指在整个图形运动变化中,保持某种特性不变的量与动点下线段最值所对应的仍是图中特殊相对不变量透过图形运动的整体,抓住特殊相对不变量才是解题的关键.
例6 如图9,在ABC ∆中,90ACB ∠=︒,3BC =,8AC =,点A ,C 分别在x 轴、y 轴的正半轴上.当点A 在x 轴上运动时,点C 随之在y 轴上运动,在运动中OB 的最大值是多少?
分析 当点A 在x 轴上运动时,点C 随之在y 轴上运动,这样改变了ABC ∆的位置,点B 的位置也随之改变,OB 的长度随之发生变化.虽然BC 、AC 的长度不变,但些相对不变的量与OB 没有直接的关系.
仔细观察图9,AC 是Rt COA ∆的斜边,AC 长度不变,则点O 与其中点D 的连线段OD 的长度保持不变,这个隐含的相对不变的特殊量与OB 有关.
于是,连结DB ,则OB DB OD <+,
所以,当O 、D 、B 三点共线时OB 值最大,即BO OD DB =+.
在Rt BCA ∆中,4CD =,3CB =,5DB =.
则OB 的最大值为549+=:.
综上可知,解决动点背景下线段长度的最值问题时,一般可用几何方法从特殊情形出发考虑.
1、在分析动点位置变化的同时,重点抓住图形中不变的量,不变的关系和性质,以不变应万变,动中求静.
2、线段的最大值和最小值,常与下列知识相关:两点之间线段最短,垂线段最短,直径是圆中最大的弦,三角形中任意两边之和大于第三边,任意两边之差小于第三边等等.所以要抓住特殊情形,联系与问题相关的结论进行有效转化.。