放射性标记化合物

合集下载

同位素标记化合物

同位素标记化合物

同位素标记化合物同位素标记化合物是指在化合物中使用同位素进行标记的化合物。

同位素是指具有相同原子序数但质量数不同的原子。

同位素标记化合物在许多领域中被广泛应用,包括生物医学研究、环境科学、材料科学等。

同位素标记化合物在生物医学研究中起着重要的作用。

一种常用的同位素标记化合物是放射性同位素标记化合物。

放射性同位素具有放射性衰变的特性,可以通过测量其放射活性来研究化合物在生物体内的行为。

例如,放射性同位素碘-131可以用于标记甲状腺细胞摄取碘的研究,从而帮助诊断和治疗甲状腺疾病。

除了放射性同位素,稳定同位素也可以用于标记化合物。

稳定同位素标记化合物可以通过质谱仪等仪器进行检测,从而研究化合物的代谢途径、反应动力学等。

例如,稳定同位素碳-13可以用于标记葡萄糖分子,通过测量标记葡萄糖在人体内的代谢情况,可以了解人体糖代谢的相关信息,对糖尿病等疾病的研究具有重要意义。

同位素标记化合物在环境科学中也有广泛的应用。

通过使用同位素标记化合物,可以追踪和研究化合物在环境中的迁移和转化过程。

例如,氢氧化物的同位素标记化合物可以用于研究地下水的补给来源和流动路径,从而帮助保护地下水资源。

另外,氧-18同位素标记的水可以用于研究大气水循环和降水过程,对气候变化的研究具有重要意义。

在材料科学领域,同位素标记化合物也被广泛应用。

通过标记化合物中的特定原子,研究人员可以跟踪和研究材料的合成过程、性能改善等。

例如,同位素标记的金属离子可以用于研究催化剂的反应机理和表面活性。

此外,同位素标记化合物还可以用于研究材料的热稳定性、耐久性等性能。

同位素标记化合物的应用不仅限于上述领域,还涉及到许多其他领域,如食品科学、地质学等。

通过使用同位素标记化合物,研究人员可以更加深入地了解化合物的性质和行为,为科学研究和应用开发提供了有力的工具和方法。

同位素标记化合物在生物医学研究、环境科学、材料科学等领域中具有重要的应用价值。

通过使用同位素标记化合物,研究人员可以追踪和研究化合物的行为和性质,从而深入了解和解决各种科学问题。

标记化合物

标记化合物

间接法
• 避免了氧化剂和蛋白质的直接接触,对蛋 避免了氧化剂和蛋白质的直接接触,
白质的活性影响较小。 白质的活性影响较小。 • 载体主要是联结到蛋白质分子表面的赖氨 酸或蛋白质的N 末端, 酸或蛋白质的N-末端,可以用来标记缺乏 酪氨酸残基的蛋白质。 酪氨酸残基的蛋白质。 • 引入的载体要引起蛋白质分子的位阻效应, 引入的载体要引起蛋白质分子的位阻效应, 故不用于分子量<1万的蛋白质的标记。 <1万的蛋白质的标记 故不用于分子量<1万的蛋白质的标记。 • 碘的利用率和标记率均低于直接法。 碘的利用率和标记率均低于直接法。
• 4、选择适当的溶剂: 选择适当的溶剂: • 耐辐射、融解能力好、高度纯化 耐辐射、融解能力好、 • 5、纯化: 纯化: • 标记化合物长期储存时应定期纯化。 标记化合物长期储存时应定期纯化。
Байду номын сангаас
二、制备标记化合物的考虑因素
1、价格: 2、稳定性:化合物的稳定性 标记原子的稳定性 3、微量操作技术 4、预实验:冷实验
三、标记的基本方法
• 1、化学合成法: 化学合成法:
通过各种化学反应, 通过各种化学反应,将放射性核素引入到 待标记化合物特定位置上的标记方法。 待标记化合物特定位置上的标记方法。
• 2、降低比活度: 降低比活度: • 在不影响使用的前提下,降低标记化合物 在不影响使用的前提下,
的比放射性可以减少辐射自分解。 的比放射性可以减少辐射自分解。
• 3、清除氧自由基: 清除氧自由基: • 加入自由基清除剂如2%乙醇,并降温、避 加入自由基清除剂如2%乙醇,并降温、 2%乙醇
光保存。 光保存。
第四节 标记化合物的纯度鉴定
• 标记好以后的标记化合物一般要鉴定其纯

第五章放射性核素标记化合物

第五章放射性核素标记化合物

3,基本操作 ①选择固定相 ②选择展开剂 ③点样和展开
4,测量结果 ①放射自显影 ②分段测量 ③放射性扫描
5,注意事项 ①要确认该层析条件能将样品中的各个组分有效的分 开 ②对于高比活度的标记化合物,点样前要加入适量的 载体,以减少或防止样品在层析固定相上的吸附 ③点样时,如果样品的放射性浓度较低,可多次重复 点样。 ④对于易氧化或易分解的样品,不可用热风吹干,要 用氮气吹干。
二、放射性核素标记化合物
(一)放射性核素标记化合物的特点 前提---不改变原有化合物的理化和生物学性质。除 此之外还包括: 示踪放射性核素与化合物的结合要牢固
有合适的放射性物理半衰期
能发射容易测量的放射线
(二)同位素标记与非同位素标记
同位素标记(isotopic labelling)-用化合物中原 有元素的同位素进行的标记。 如:各种有机物分子中必然存在的碳、氢原子,可 用14C或3H取代。 非同位素标记(non-isotopic labelling)-标记化 合物中的放射性核素不是原化合物中固有元素的同 位素。 如:用131I或125I标记蛋白质。
化合物特定位置上的标记方法。 优点:可以选择标记的核素、标记的位置、比放
射性可以严格控制,分离提纯容易。
2、同位素交换法: 利用同一元素的两种同位素之间的互相交换而
制得所需标记化合物的方法 。 方法简便,易于操作,适宜于稀有、结构复杂
的有机化合物的标记。 无进行定位标记,主链上的原子无法标记,标
记物的比放低。
④ 定位标记物中放射性核素发生位移等。
第二节、放射性核素标记化合物的 制备
放射性核素标记化合物的制备
(一) 标记方法的不同大致可以分为两类:
1、直接标记:用放射性原子取代分子中的某一原子 或原子团 优点:结构变化不大,理化性质和生物活性基本一 致。 缺点:标记核素不稳定

18f-fdopa显像原理

18f-fdopa显像原理

18F-FDOPA(6-氟-L-多巴,Fluorodopa)是一种放射性标记的氨基酸类化合物,在PET(正电子发射计算机断层显像)中用于神经内分泌肿瘤和帕金森病等疾病的诊断。

18F-FDOPA显像原理:
1. 摄取机制:
18F-FDOPA与人体内自然存在的多巴胺前体物质L-DOPA类似。

在体内,它可以通过血脑屏障进入脑细胞,并通过酪氨酸羟化酶(TH)的作用转化为18F-FDOPA-β-羧酸酯(18F-FDA),随后进一步脱羧变为18F-多巴胺。

这个过程对于正常和异常的多巴胺能神经元至关重要,特别是在帕金森病患者或神经内分泌肿瘤如嗜铬细胞瘤、肾上腺髓质增生症等疾病中,这些细胞通常具有高水平的TH活性。

2. 图像生成:
当18F-FDOPA在体内转化后被选择性地摄取并储存于特定的神经元内时,其发射出的正电子会与周围环境中的电子发生湮灭反应,产生一对方向相反的γ光子。

PET扫描仪可以探测到这些光子,并利用它们的相对位置重建出体内多巴胺能神经元的功能影像。

3. 临床应用:
在帕金森病中,18F-FDOPA PET可用于评估纹状体区域多巴胺能神经元的残存数量和功能状态。

在神经内分泌肿瘤中,由于这类肿瘤往往过量表达TH,因此能够摄取并积累18F-FDOPA,从而在PET图像上显示出明显的放射性浓聚,帮助医生定位和评估肿瘤。

请注意,虽然您提到的是18F-FDG(氟代脱氧葡萄糖),但上述内容是关于18F-FDOPA的显像原理,两者在PET成像中有不同的应用领域和显像原理。

标记化合物

标记化合物

2、化学合成法:以简单的放射化合物作原料,通过一定的化学反 应后,把放射性原子结合在指定的位置上,得到所需要的,带放射 性的化合物。该法是放射标记化合物制备的主要方法。
3、生物合成法:是将简单的放射性化合物在体内或体外置于生物 (动植物或微生物)生长的环境中,利用生物体在代谢过程中对它的 吸收利用而制得某些标记化合物。它又分为全生物合成与酶促合成 两种方法。 (1)全生物合成:常采用细菌、绿藻、酵母等低等生物来进行,这 些低等生物很容易在实验室内培育,且代谢活泼,繁殖迅速,因而 制备效率高,成本很低。
γ- 32P-ATP而制得。
放射性标记化合物的纯化与鉴定
标记率: 指放射性核素被标记到待标记化合物上的量占放射性投 入量的百分比,即: 标记率(%)=标记物的放射性/投入的总放射性×100%。 标记物的分离纯化:色谱法,又叫层析法,范围很广,主要有纸层 析、薄板层析、柱层析等,另外还有透析法、电泳法。其中柱层析 法中的凝胶过滤法是一种高效、温和的纯化方法,在蛋白和肽类的 标记化合物的纯化中得到广泛的应用。
4、放射性核素纯度:是指特定的放射性核素的放射性活度占总 放射性活度的百分比。
放射性核纯度(%)=(特定放射性核素的活度)/(样品的总放射性 活度)×100% 一般要求放射性核素纯度要达到99%以上。 5、化学纯度(chemical purity):指某一化学形式存在的物质量 在该样品的总重量中所占的百分比。
影响辐射自分解的因素
1、与标记化合物吸收射线能量的效率有关:不同种类的射线,电 离密度不同,电离密度越大,吸收射线能量的效率越高。
2、与标记化合物的比活度有关:标记化合物的比活度愈高,化合 物分子集中,相互间愈易受到自身射线的照射而使辐射自分解加重。
3、与标记化合物的纯度有关:杂质的存在,特别是那些容易被电 离辐射所激发、分解、产生自由基的杂质,可加速辐射自分解,且 随着时间的延长而逐渐加快。

放射性标记化合物的制备及其应用优质内容

放射性标记化合物的制备及其应用优质内容

高级培训
4
(3)标记化合物的若干基本概念 1)同位素标记与非同位素标记 同位素标记:
化合物中的原子被其同位素的原子所取代,由于 取代后化合物在物理、化学和生物学性质上不会引起 显著差异,因此亦称理想标记。131I→ 127I;3H → 1H; 14C → 12C等。
高级培训
5
非同位素标记(非理想标记): 用组成化合物以外的原子进行标记,非同位素标
有两大类:全生物合成法和酶促合成法。
高级培训
23
全生物合成法 是利用完整的生物或其某一个器官的生理代谢过
程来进行标记的。 常用的生物有:细菌、绿藻、酵母等低等生物。 14C-标记物。
高级培训
24
海绿藻合成14C均匀标记的多种氨基酸: 1、海绿藻避光24h,造成“光饥饿”; 2、通入14CO2,光照36h,使14CO2随光合作用
或其原子团所置换而达到标记目的的方法。 此法常用于氚和放射性碘的标记。
RX T2 催化剂,碱性溶液 RT TX RH 2131I 氧化剂R131I H 131I
高级培训
20
4)间接标记法: 把放射性核素先标记在某种易与欲标记物反应的
试剂,然后再与欲标记物偶联;
借助于具有双功能基团的螯合剂进行标记,先把某 种双功能螯合剂结合到欲标记分子上,再将放射性核 素核素标记到此螯合剂上,由此形成稳定的放射性核 素-螯合剂-欲标记化合物复合物。
4、标记、测量、鉴定的方法是否容易; 5、实验周期的长短,核素本身和杂质的毒性以 及价格等要进行考虑。
高级培训
12
表 几种重要的放射性标记核素
核素 T1/2
无载体时的比活度 主要射线种类及能量,MeV
3H 14C 32P 35S 99Tcm 123I 125I 131I

碳14标记化合物

碳14标记化合物

碳14标记化合物
“碳14标记化合物是指用放射性核素碳14(C)取代化合物中它的稳定同位素碳12(C),并以碳14作为标记的放射性标记化合物。


碳14是继发现氚后,于1940年2月由S.鲁宾和M.D.卡门利用加速的氘核打石墨靶,通过13C(d,p)14C核反应发现的,从而改变了当时人们认为氢和碳都没有半衰期足够长的放射性同位素可供应用的看法。

碳14是纯β-衰变核素,β-射线的最大能量为0.155兆电子伏,在空气中的最大射程为22厘米。

碳14的半衰期为5730年。

3.7×107贝可的碳14重0.224毫克。

碳14属低毒性核素,主要亲和脂肪,对人体的有效半减期为10天,在人体中的最大容许积存量为1.48×107贝可。

碳14在放射性工作场所空气中和露天水源中的最大容许浓度分别为1.48×102和3.7×103贝可/升。

自然界的碳14是宇宙射线与大气中的氮反应产生的。

但碳14不仅存在于大气中,随着生物的吸收代谢(包括经食物链进入活的动物和人体)也存在于一切生物体中。

由于碳14一面在生成、一面又以一定的速率衰变,所以它在自然界的含量和它对碳12的比值基本保持不变。

但是随着矿物燃料的使用,产生大量非放射性二氧化碳,使大气中碳14对碳12的比值有所下降;核试验开始以后,又使自然界的碳14含量和碳14对碳12的比值有所增高。

1。

放射性核素标记技术

放射性核素标记技术

2)非定位标记:标记分子中标记的原子没有特定的位置。
3)均匀标记:以"U"表示,指标记放射性原子在标记物分子中的 分布,相对于分子中所有碳原子而言具有统计学均一性.如U-14C葡 萄糖。 4)全标记:以"G"表示,通常指在氚标记的分子中所有的氢原子 位置均被氚所取代,它和均匀标记的区别是:前者指"C"而后者指 氚,前者仅表示统计学的均一性,而后者则是完全或随机取代.如G3H-胆固醇。
五.标记方法 原料为简单化合物如3H2,Ba14CO3,Na125I等 1) 同位素交换法
2)化学合成法
3)生物合成法
多肽或蛋白质的碘化标记
125I-Na在氧化剂的作用下氧化成碘分子,与蛋白质或 多肽分子中的酪氨酸残基发生碘化作用,从而使蛋白或多 肽碘化.所以只要含有酪氨酸或人为的接上酪氨酸的化合 物均可用放射性碘标记,除此而外组氨酸,色氨酸残基也可 生成碘化物.碘化标记有一氯化碘法,氯胺-T法,过氧化物酶 法,Iodogen法,电解标记法,连接标记法等这里仅介绍常用 的后四种方法.
而用量过大不仅无助于提高标记率反而会明显降低标记化合物的 免疫和生物活性。氯胺-T的用量是一实验值,由于氯胺-T水溶液 遇光和空气很不稳定,所以要新鲜配制。 4)温度对标记的影响:如图所示:温度的增加不仅可提高反 应达平衡的时间,而且在不同温度下反应有着不同平衡常数K值. 一般选用20℃,过高的温度往往造成纯品失活。有人用4℃标记是 为了降低氯胺-T的副作用。 5)反应体积的影响:通常要小于100μl,目的是提高可被碘化 的蛋白浓度;以提高碘化率。 6)反应时间:在某一固定的条件下,反应达到平衡的时间是 比较衡定的,氯胺-T法反应时间一般在一分钟以内;和氯胺-T用 量一样增加反应时间非但不能提高碘化率,反而会因为碘源,氧化剂 等因素而加大标记化合物的损伤;把反应时间控制在最小是合理 的。 7)关于终止反应:可通过扩大反应体积或用还原剂如偏重亚 硫酸钠,其用量为氯胺-T用量的1-2倍.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、放射性核素标记技术 (radionuclide labeling technique):
就是将放射性核素以一定的化学形式引入到物质的分子之 中,使之成为物质分子中的重要组成成分的一门技术。它 包括放射性核素的标记、分离、纯化和鉴定等步骤。
(一)标记常用方法
同位素交换法、 化学合成法、 生物化学合成法 热原子反冲标记法。
放射性核素 — 非放射性载体
(示踪) (导向)
②治疗用放射性药物
(Therapeutic Pharmaceutical )
能够高度选择性浓集在病变组织产生局部电离辐射生物效应, 从而抑制或破坏病变组织发挥治疗作用的一类体内放射性药物。
治疗用放射性药物主要利用的是: 放射性核素发出射线产生的生物效应的机制达到治疗目
3. 放射性浓度(radioactive concentration) 是指单位体积的溶液中含有的放射性活度,以
Bq/L或Bq/ml表示。
4. 同位素标记与非同位素标记
同位素标记(isotopic labeling)
利用与分子中原有原子相同元素的放射性同位素所进行 的标记。同位素标记所产生的放射性标记化合物可保持原有化 合物的性质。
的。
要求: β- 射线 T1/2 较长 如 32P(1711 keV,14天) 131I(336 keV,8天)
适宜的射线能量和在组织中的射程是选择性集中照射病变 组织而避免正常组织受损并获得预期治疗效果的基本保 证。
特点
放射性药物的辐射作用有一定的范围,即使不直接进入 病变细胞内,也可对邻近的病变细胞产生致死杀伤作用。
医用回旋加速器(cyclotron)和其它各种正电子显像仪器的 问世及推广应用,11C、13N、15O和18F等短半衰期放射性核素 的应用也逐年增多,在研究人体生理、生化、代谢、受体等 方面显示出独特优势 。
常用的正电子放射性核素的制备
2、反应堆生产:
99Mo 3H
125I
89Sr
131I
间隔和洗脱液放置时间增长而增高。 4. 放化纯度 用快速纸层析法测定,应>98%。
99mTc核性能优良,为纯γ光子发射体,能量140keV,T1/2 为6.02 h、方便易得、几乎可用于人体各重要脏器的形态 和功能显像。
99Mo-99mTc 发生器配套药盒
含带有络合基团的药物、还原剂SnCl2、保证pH值的缓冲物质、 辅剂的冻干品。
一、医用放射性核素的来源
临床应用的放射性核素可通过加速器生产、反应堆生产、从裂 变产物中提取和放射性核素发生器(generator)淋洗获得。
1、加速器生产: 11C 13N 15O 18F 67Ga 201Tl
18O (p, n) 18F 贫中子核素,无载体,价格高
RDS Eclipse 回旋加速器
功能测定 eg. Na131I, 测定甲状腺功能
热区:111In-McAb, 直肠癌 功能显像
冷区:11C-棕榈酸,心肌显像

治疗
体外治疗
敷贴法: 90Sr, ,表皮毛细血管瘤 60Co针:治疗食道癌
Na131I, ,治疗甲状腺癌
体内治疗
32P-Na3PO4, , 白血病、淋巴瘤 BNCT, 10B(n,)7Li, 脑神经胶质瘤
放射性核素发生器 (radionuclide generator)
从放射性核素母子体系中周期性地分离出放射性子体的装置。又称 “母牛”。
99Mo-99mTc发生器:99Mo(T1/2=2.7d) → 99mTc (T1/2=6h) → 99Tc
裂变型发生器: Al2O3
凝胶型发生器: ZrMoO3
由于放射性药物的选择性靶向作用,在体内可达到高的 靶/非靶比值,明显减少对正常组织的损伤。
放射性药物持续照射释放超分割的剂量,可以更有效地 杀伤肿瘤和减少正常组织的损伤。
3、应用:
诊断
体外诊断
放射免疫分析 免疫放射分析 受体的放射配基结合分析 放射性自显影
核医学
体内诊断 照相,SPECT, PET
99Mo-99mTc 发生器
洗脱液的质量控制
1. 99Mo含量测定 99Mo可增加对病人的辐射吸收剂量、影响显像质量,其
含量应低于0.1%。 2. Al含量测定 Al可影响放射性药物的标记和体内分布,如可使某些放
射性药物在肝脾中浓聚,Al含量应低于10 g/ml。
3. 载体含量 载体99Tc可由99Mo和99mTc衰变产生,其含量随淋洗时间
1、定义: 分子中含放射性核素原子的化合物
2、分类: 放射性试剂 放射性药物(诊断用放射性药物和治疗用放射性药物)
(1)放射性试剂(radioactive agent)
(2)放射性药物 (radiopharmaceuticals)
定义:
凡引入体内用作诊断和治疗的放射性核素及其标记化合物。
①诊断用放射性药物
(Diagnostic Pharmaceutical )
用于获得体内靶器官或病变组织的影像或功能参数,进行疾病 诊断的一类体内放射性药物。也称为显像剂(imaging agent)或 示踪剂(tracer)。
诊断用放射性药物多采用发射γ光子的核素及其标记物。
诊断用药 ——显像剂(示踪剂) 要求: γ射线,能量100-300Kev T1/2:10小时左右 组成: 放射性核素与被标记物 例: 99mTc – MDP
133Xe
32P
186Re
14C
153Sm
98Mo(n,) 99Mo
富中子核素,有载体,价格低
3、裂变产物提取 99Mo 131I 133Xe
4、放射性核素发生器:
99Mo-99mTc发生器 188W-188Re发生器 82Sr-82Rb发生器 68Ge-68Ga发生器 81Rb-81mKr发生器
(二)几个常用的概念
1. 放射化学纯度(radiochemical purity) 是指以一定化学形式存在的放射性核素标记化合物的放
射性活度占uclide purity)
是指以某一放射性核素活度占标记化合物体系中的 总放射性活度的百分比。
相关文档
最新文档