数值积分与数值微分习题课
数值分析课程第五版课后习题答案(李庆扬等)

数值分析课程第五版课后习题答案(李庆扬等)数值分析课程第五版课后习题答案(李庆扬等)第一章:数值分析导论1. 解答:数值分析是一门研究如何使用计算机来解决数学问题的学科。
它包括了从数学理论到计算实现的一系列技术。
数值分析的目标是通过近似的方式求解数学问题,其结果可能不是完全精确的,但是能够满足工程或科学应用的要求。
2. 解答:数值分析在实际应用中起着重要的作用。
它可以用于求解复杂的数学方程、计算机模拟及建模、数据的统计分析等等。
数值分析是科学计算和工程计算的基础,对许多领域都有着广泛的应用,如物理学、经济学、生物学等。
3. 解答:数值方法指的是使用数值计算的方式来求解数学问题。
与解析方法相比,数值方法一般更加灵活和高效,可以处理一些复杂的数学问题。
数值方法主要包括了数值逼近、插值、数值积分、数值微分、线性方程组的求解、非线性方程的求根等。
4. 解答:计算误差是指数值计算结果与精确解之间的差异。
在数值计算中,由于计算机的有限精度以及数值计算方法本身的近似性等因素,都会导致计算误差的产生。
计算误差可以分为截断误差和舍入误差两种。
第二章:数值误差分析1. 解答:绝对误差是指实际值与精确值之间的差异。
例如,对于一个计算出的数值近似解x和精确解x_0,其绝对误差为| x - x_0 |。
绝对误差可以衡量数值近似解的精确程度,通常被用作评估数值计算方法的好坏。
2. 解答:相对误差是指绝对误差与精确解之间的比值。
对于一个计算出的数值近似解x和精确解x_0,其相对误差为| (x - x_0) / x_0 |。
相对误差可以衡量数值近似解相对于精确解的精确度,常用于评估数值计算方法的收敛速度。
3. 解答:舍入误差是由于计算机的有限精度而引起的误差。
计算机中使用的浮点数系统只能表示有限的小数位数,因此在进行数值计算过程中,舍入误差不可避免地会产生。
舍入误差会导致计算结果与精确结果之间存在差异。
4. 解答:误差限度是指对于给定的数值计算问题,所能容忍的误差范围。
数值分析简明教程第二版课后习题答案(供参考)

数值分析简明教程第⼆版课后习题答案(供参考)0.1算法1、(p.11,题1)⽤⼆分法求⽅程013=--x x 在[1,2]内的近似根,要求误差不超过10-3.【解】由⼆分法的误差估计式311*10212||-++=≤=-≤-εk k k a b x x ,得到100021≥+k .两端取⾃然对数得96.812ln 10ln 3≈-≥k ,因此取9=k ,即⾄少需2、(p.11,题2)证明⽅程210)(-+=x e x f x在区间[0,1]内有唯⼀个实根;使⽤⼆分法求这⼀实根,要求误差不超过21021-?。
【解】由于210)(-+=x e x f x,则)(x f 在区间[0,1]上连续,且012010)0(0<-=-?+=e f ,082110)1(1>+=-?+=e e f ,即0)1()0(⼜010)('>+=x e x f ,即)(x f 在区间[0,1]上是单调的,故)(x f 在区间[0,1]内有唯⼀实根.由⼆分法的误差估计式211*1021212||-++?=≤=-≤-εk k k a b x x ,得到1002≥k .两端取⾃然对数得6438.63219.322ln 10ln 2=?≈≥k ,因此取7=k ,即⾄少需⼆分0.2误差1.(p.12,题8)已知e=2.71828…,试问其近似值7.21=x ,71.22=x ,x 2=2.71,718.23=x 各有⼏位有效数字?并给出它们的相对误差限。
【解】有效数字:因为11102105.001828.0||-?=<=-K x e ,所以7.21=x 有两位有效数字;因为12102105.000828.0||-?=<=-K x e ,所以71.22=x 亦有两位有效数字;因为3310210005.000028.0||-?=<=-K x e ,所以718.23=x 有四位有效数字;%85.17.205.0||111=<-=x x e r ε; %85.171.205.0||222=<-=x x e r ε; %0184.0718.20005.0||333=<-=x x e r ε。
数值微分和数值积分-总结复习+习题课(陈)共41页

fff(((xxxiii)12))21h2211h[h[[3ff(f(x(xix)ii))44fff(((xxxiii121)))]3hf6f2((xxfii22())]]2)hh3322
f(1) f(3)
西华大学计算机与软件工程学院
课堂练习B:用三点公式求
f
(x)
1 (1 x)2
在x=1.0,
1.1,1.2处的导数值,f (x)的函数值如下所示
西华大学计算机与软件工程学院
课堂练习C:已知
x0
14,x112,x2
3 4
(1)推导以这3个点作为求积节点在[0,1]上
的插值型求积公式。
(2)指明求积公式所具有的代数精度。
(3)用所求公式计算
1 x 2dx
0
。
西华大学计算机与软件工程学院
解:(1)
x0
14,x112,x2
3 4
A 00 1(( x x 0 x x 1 1 ) )x x 0 ( ( x x 2 2 ))d x 0 1( (x 1 4 1 1 2 2 ) )x 1 4 ( ( 4 3 4 3 ) )d 3 2 x
f(xi)fh(xi h)
xlj ixm i f(xxii)fxj(xj)
f(xih)2 hf(xih)
西华大学计算机与软件工程学院
3
1、向前差商截断误差
f ( x i h ) f ( x i) h f ( x i) h 2 ! 2f (i) x i i x i h
R ( x i) f( x i) f( x i h h ) f( x i) h 2 f( ξ i) O ( h )
f(x )f(x i) f(x i 1 ) f(x i 1 ) f(x i),
数值分析 习题课2

I ≈ 0.5555556 × [ f (−0.7745967) + f (0.7745967)] + 0.8888889 × f (0) ≈ 10.9484
用n=3的高斯-勒让德公式计算积分:
I ≈ 0.3478548 × [ f (−0.8611363) + f (0.8611363)] +0.6521452 × [ f (−0.3399810) + f (0.3399810)] ≈ 10.95014
x+5 y= 4
,则
作变换
1
y=
1 I2 = ∫ dx, −1 x + 7 1 f ( x) = , x+7 I 2 ≈ f (−0.5773503) + f (0.5773503) ≈ 0.2876712
x+7 4
,则
作变换
1
1 1 1 I4 = ∫ dx, I3 = ∫ dx, −1 x + 11 −1 x + 9 1 1 , f ( x) = , f ( x) = x + 11 x+9 I ≈ f ( −0.5773503) + f (0.5773503) ≈ 0.1823204 I 3 ≈ f (−0.5773503) + f (0.5773503) ≈ 0.2231405 4
R( f ) = − ≤
b − a b − a 4 (4) ( ) f (η ) 180 2
1 1 × 4 × e0 = 0.00035,η ∈ (0,1) 180 2
数理学院
SCHOOL OF MATHEMATICS AND PHYSICS
解:采用复化梯形公式时,余项为
现代科学工程计算基础课后答案

现代科学工程计算基础课后答案《现代科学与工程计算基础》较为详细地介绍了科学与工程计算中常用的数值计算方法、基本概念及有关的理论和应用。
全书共分八章,主要内容有误差分析,函数的插值与逼近,数值积分与数值微分,线性代数方程组的直接解法与迭代解法,非线性方程及非线性方程组的数值解法,矩阵特征值和特征向量的数值解法,以及常微分方程初、边值问题的数值解法等。
使用对象为高等院校工科类研究生及理工科类非“信息与计算科学”专业本科生,也可供从事科学与工程计算的科技工作者参考。
《现代科学与工程计算基础》讲授由浅人深,通俗易懂,具备高等数学、线性代数知识者均可学习。
基本信息出版社: 四川大学出版社; 第1版 (2003年9月1日)平装: 378页语种:简体中文开本: 32ISBN: 7561426879条形码: 9787561426876商品尺寸: 20 x 13.8 x 1.6 cm商品重量: 399 g品牌: 四川大学出版社ASIN: B004XLDT8C《研究生系列教材:现代科学与工程计算基础》是我们在长期从事数值分析教学和研究工作的基础上,根据多年的教学经验和实际计算经验编写而成。
其目的是使大学生和研究生了解数值计算的重要性及其基本内容,熟悉基本算法并能在计算机上实现,掌握如何构造、评估、选取、甚至改进算法的数学理论依据,培养和提高读者独立解决数值计算问题的能力。
目录第一章绪论§1 研究对象§2 误差的来源及其基本概念2.1 误差的来源2.2 误差的基本概念2.3 和、差、积、商的误差§3 数值计算中几点注意事项习题第二章函数的插值与逼近§1 引言1.1 多项式插值1.2 最佳逼近1.3 曲线拟合§2 Lagrange插值2.1 线性插值与抛物插值2.2 n次Lagrange插值多项式2.3 插值余项§3 迭代插值§4 Newton插值4.1 Newton均差插值公式4.2 Newton差分插值公式§5 Hermite插值§6 分段多项式插值6.1 分段线性插值6.2 分段三次Hermite插值§7 样条插值7.1 三次样条插值函数的定义7.2 插值函数的构造7.3 三次样条插值的算法7.4 三次样条插值的收敛性§8 最小二乘曲线拟合8.1 问题的引入及最小二乘原理8.2 一般情形的最小二乘曲线拟合8.3 用关于点集的正交函数系作最小二乘拟合8.4 多变量的最小二乘拟合§9 连续函数的量佳平方逼近9.1 利用多项式作平方逼近9.2 利用正交函数组作平方逼近§10 富利叶变换及快速富利叶变换10.1 最佳平方三角逼近与离散富利叶变换10.2 快速富利叶变换习题第三章数值积分与数值微分§1 数值积分的基本概念1.1 数值求积的基本思想1.2 代数精度的概念1.3 插值型求积公式§2 等距节点求积公式2.1 Newton—CoteS公式2.2 复化求积法及其收敛性2.3 求积步长的自适应选取§3 Romberg 求积法3.1 Romberg求积公式3.2 Richardson外推加速技术§4 Gauss型求积公式4.1 Gauss型求积公式的一般理论4.2几种常见的Gauss型求积公式§5 奇异积分和振荡函数积分的计算5.1 奇异积分的计算5.2 振荡函数积分的计算§6 多重积分的计算6.1 基本思想6.2 复化求积公式6.3 Gauss型求积公式§7 数值微分7.1 Taylor级数展开法7.2 插值型求导公式习题第四章解线性代数方程组的直接法§1 Gauss消去法§2 主元素消去法2.1 全主元素消去法2.2 列主元素消去法§3 矩阵三角分解法3.1 Doolittle分解法(或LU分解)3.2 列主元素三角分解法3.3 平方根法3.4 三对角方程组的追赶法§4 向量范数、矩阵范数及条件数4.1 向量和矩阵的范数4.2 矩阵条件数及方程组性态习题第五章解线性代数方程组的迭代法§1 Jacobi迭代法§2 Gauss-Seidel迭代法§3 超松弛迭代法§4 共轭梯度法习题第六章非线性方程求根§1 逐步搜索法及二分法1.1 逐步搜索法1.2 二分法§2 迭代法2.1 迭代法的算法2.2 迭代法的基本理论2.3 局部收敛性及收敛阶§3 迭代收敛的加速3.1 松弛法3.2 Aitken方法§4 New-ton迭代法4.1 Newton迭代法及收敛性4.2 Newton迭代法的修正4.3 重根的处理§5 弦割法与抛物线法5.1 弦割法5.2 抛物线法§6 代数方程求根6.1 多项式方程求根的Newton法6.2 劈因子法§7 解非线性方程组的Newton迭代法习题……第七章矩阵特征值和特征向量的计算第八章常微方分程数值解法附录参考文献欢迎下载,资料仅供参考!!!资料仅供参考!!!资料仅供参考!!!。
数值积分与数值微分习题课

数值积分与数值微分习题课一、已知012113,,424x x x ===,给出以这3个点为求积节点在[]0.1上的插值型求积公式解:过这3个点的插值多项式基函数为()()()()()()()()()()()()()()()()120201020212101201222021120,0,1,2k k x x x x l x x x x x x x x x l x x x x x x x x x l x x x x x A l x dx k --=----=----=--==⎰()()()()()()()()()()()()111200001021102100101210120202113224111334244131441113324241142x x x x x x A dx dx x x x x x x x x x x A dx dx x x x x x x x x x x A dx x x x x ⎛⎫⎛⎫-- ⎪⎪--⎝⎭⎝⎭===--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫-- ⎪⎪--⎝⎭⎝⎭===---⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫-- ⎪--⎝⎭⎝==--⎰⎰⎰⎰⎰102313134442dx ⎪⎭=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎰ 故所求的插值型求积公式为()1211123343234f x dx f f f ⎛⎫⎛⎫⎛⎫≈-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰二、确定求积公式()()(11158059f x dx ff f -⎡⎤≈++⎣⎦⎰ 的代数精度,它是Gauss 公式吗?证明:求积公式中系数与节点全部给定,直接检验依次取()23451,,,,,f x x x x x x =,有[](111112151815191058059dx xdx --==⨯+⨯+⨯⎡⎤==⨯+⨯+⨯⎣⎦⎰⎰((((221221331331441441551551215805391058059215805591058059x dx x dx x dx x dx ----⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎰⎰⎰⎰本题已经达到2n-1=5。
数值分析第三版课本习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:*****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式11783100n n Y Y -=-( n=1,2,…)计算到100Y .若取783≈27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字(783≈27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2?10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若02 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12. 计算6(21)f =-,取2 1.4≈,利用下列等式计算,哪一个得到的结果最好?36311,(322),,9970 2.(21)(322)--++13. 2()ln(1)f x x x =--,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式22ln(1)ln(1)x x x x --=-++计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令200011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x - ,且101101()(,,,)()()n n n n V x V x x x x x x x ---=-- .2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3. 给出f (x )=ln x 的数值表用线性插值及二次插值计算ln 0.54 的近似值.x 0.4 0.5 0.6 0.7 0.8 ln x -0.916291-0.693147-0.510826-0.357765-0.2231444. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x x k n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)kf x k m ∆≤≤是m k -次多项式,并且()0(m lf x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n nn n f x a a x a x a x --=++++ 有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x = ;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+ .16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦ 及0182,2,,2f ⎡⎤⎣⎦ . 17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限.19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差. 24. 给定数据表如下:j x 0.25 0.30 0.39 0.45 0.53 j y0.50000.54770.62450.67080.7280试求三次样条插值()S x 并满足条件i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n == ,式中i x 为插值节点,且01n a x x x b =<<<= ,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =.3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一? 9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nTx 是在[]0,1上带权21x x ρ=-的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()x f x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n nF x H ∈也是奇(偶)函数.17. 求a 、b 使[]220sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.[]2sin (1)arccos ()1n n x u x x +=-是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin2f x x =在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26. 用最小二乘法求一个形如2y a bx =+的经验公式,使它与下列数据拟合,并求均方误差.i x 19 25 31 38 44 i y19.032.349.073.397.827. 观测物体的直线运动,得出以下数据:时间t (秒) 0 0.9 1.9 3.0 3.9 5.0 距离s (米) 010305080110求运动方程.28. 在某化学反应里,根据实验所得分解物的浓度与时间关系如下:时间 0 5 10 15 20 25 30 35 40 45 50 55 浓度0 1.272.162.863.443.874.154.374.514.584.624.64用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度: (1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)91,4xdx n =⎰; (4)260sin ,6dx n π-ϕ=⎰.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分1x e dx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2baf f x dx b a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰.6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8. 用龙贝格方法计算积分12x e dxπ-⎰,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是22201()sin cS a d a π=-θθ⎰,这里a 是椭圆的半长轴,c是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误差.()f x 的值由下表给出:x1.0 1.1 1.2 1.3 1.4 ()f x0.25000.22680.20660.18900.1736第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。
数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。
[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。
3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。
X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。
若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值积分与数值微分习题课一、已知012113,,424x x x ===,给出以这3个点为求积节点在[]0.1上的插值型求积公式解:过这3个点的插值多项式基函数为()()()()()()()()()()()()()()()()120201020212101201222021120,0,1,2k k x x x x l x x x x x x x x x l x x x x x x x x x l x x x x x A l x dx k --=----=----=--==⎰()()()()()()()()()()()()111200001021102100101210120202113224111334244131441113324241142x x x x x x A dx dx x x x x x x x x x x A dx dx x x x x x x x x x x A dx x x x x ⎛⎫⎛⎫-- ⎪⎪--⎝⎭⎝⎭===--⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫-- ⎪⎪--⎝⎭⎝⎭===---⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫-- ⎪--⎝⎭⎝==--⎰⎰⎰⎰⎰102313134442dx ⎪⎭=⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭⎰ 故所求的插值型求积公式为()1211123343234f x dx f f f ⎛⎫⎛⎫⎛⎫≈-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰二、确定求积公式()()(11158059f x dx f f f -⎡⎤≈++⎣⎦⎰的代数精度,它是Gauss 公式吗?证明:求积公式中系数与节点全部给定,直接检验依次取()23451,,,,,f x x x x x x =,有[](111112151815191058059dx xdx --==⨯+⨯+⨯⎡⎤==⨯+⨯+⨯⎣⎦⎰⎰((((221221331331441441551551215805391058059215805591058059x dx x dx x dx x dx ----⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎡⎤==⨯+⨯+⨯⎢⎥⎣⎦⎰⎰⎰⎰本题已经达到2n-1=5。
故它是Gauss 公式。
三、试应用复合梯形公式计算积分2112I dx x=⎰要求误差不超过310-,并把计算结果与准确值比较。
解:复合梯形公式的余项为()2,()()12b n n ab a R f T f x dx T h f η-''=-=-⎰11()()2()2n n k k b a T f a f b f x n -=-⎡⎤=++⎢⎥⎣⎦∑,,0,1,2,,k b ax a kh h k n n -=+==本题()12f x x =,()[]()231,21,max 1x f x M f x x ∈''''=== 本题余项为()[]2221,221,()max ()121212n x h h R f T h f f x η∈-''''=-≤=要使()23,1012n h R f T -≤≤,得 0.109545h ≤,取0.1h = 得100.1b a n h ==-2-1=于是有 101111112...0.346886210242 1.12 1.22 1.9I T ⎡⎤⎛⎫≈=+++++= ⎪⎢⎥⨯⨯⨯⨯⎝⎭⎣⎦ 检验: 4310101ln 2 3.1211110102I T T ---=-=⨯<四、证明 若函数()[]1,f x C a b ∈,则其上的一阶差商函数是连续函数,并借助此结果用Newtong 插值余项证明梯形求积公式的余项为()()()()()()31212b ab a b aR f f x dx f a f b f --''=-+=-η⎡⎤⎣⎦⎰证明:不妨设一阶差商函数为[],f x a ,[]0,x a b ∀∈,有[]()()()()()()()()()()[]000000000000000lim ,lim lim lim ,h h h h f x h f a f x h a x h a f x f h f a x h a f x f a f h f x f a f x a x h ax h a x a ξξ→→→→+-⎛⎫+= ⎪+-⎝⎭'+-⎛⎫= ⎪+-⎝⎭'--⎛⎫=+== ⎪+-+--⎝⎭由0x 的任意性,可知一阶差商函数是连续函数。
由插值特点,显然有()()()()()()()111b baaR f f x L x dx f x N x dx =-=-⎰⎰线性插值的Newton 余项公式为()()[]()()1,,f x N x f x a b x a x b -=-- 故有()[]()()1,,ba R f f x ab x a x b dx =--⎰由[][][][][][][][]000,,lim ,,lim lim ,,,,,,h h h f x h a f a b f x h a b x h b f x h a f a b f x a f a b f x a b x b x b→→→⎛⎫+-+= ⎪+-⎝⎭+--===--可知[],,f x a b 是变量x 在[],a b 上的连续函数,而函数()()x a x b --在[],a b 上可积,不变号,根据积分中值定理,存在(),a b ξ∈,使()()()[]()()1,,b baaf x N x dx f a b x a x b dx -=ξ--⎰⎰由差商性质,存在[],a b η∈,使[](),,2f f a b ''ηξ=。
所以 ()()()()()()()()13212bba a f f x N x dx x a xb dx b a f η''-=---''=-η⎰⎰结论得证。
五、导出中矩形公式()()2b aa b f x dx b a f +⎛⎫≈- ⎪⎝⎭⎰的余项。
解:将()f x 在a b x +=处进行泰勒展开[]b a ,∈ξ。
对上式两边在[]b a ,上积分,有中矩形公式的余项()()()221'''2222bM a bb aa ab R f x dx b a f a b a b a b f x dx f x dx ξ+⎛⎫=-- ⎪⎝⎭+++⎛⎫⎛⎫⎛⎫=-+- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰⎰()()()()()232320'0;221''22''''''2222324ba ba b aba ab a b f x dx a b f x dx f f f b a a b x dx t ξηηη-++⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭+⎛⎫- ⎪⎝⎭-+⎛⎫=-=⨯=⎪⎝⎭⎰⎰⎰()()[]3'',,24M f R b a a b ηη∴=-∈六、设数值求积公式1()d ()nbk k ak f x x A f x =≈∑⎰,代数精度至少为n-1的充分必要条件是它为插值型求积公式. 证:充分性.设原式是插值型求积公式,则式中的求积系数()bk kn aA l x dx =⎰()111()()()()()()n nb n k k knka k k n bb kn k n a a k I A f x l x dx f x l x f x dx L x dx =====⎛⎫== ⎪⎝⎭∑∑⎰∑⎰⎰余项为()()()()!n b n n n af R f I I x dx n ξω=-=⎰由知代数精度至少为n-1 必要性.设原式代数精度至少为n-1,则对次数不超过n-1的多项式()(1)r p x r n ≤-原式成立等号,特别地取Lagrange 插值基函数()kn l x ,有111()(),1,2,,nbkn j kn j a j lx dx A l x k n --===∑⎰因为11,,()0,.kn j i k l x j k -=⎧=⎨≠⎩所以()bk kn aA l x dx =⎰故原式为插值型求积公式.七、令P(x)是n 次实多项式,满足()0,0,, 1.bk aP x x dx k n ==-⎰证明P(x)在开区间(a,b )中有n 个实单根.证明:因为()0ba P x dx =⎰,所以P(x)在[a,b ]上至少有一个零点。
若P(x)有k(≥1)个零点i x ,i=1,2,…,k 在[a,b ]上,则有()12()()()()()()k k P x x x x x x x g x Q x g x =---=()0,()0g x g x ><或,12()()()()k k Q x x x x x x x =---11100(),(1)kkk i k k k i i Q x a x a xa x a a x k n --==++++=≤-∑及()0,0,1,,1bk a P x x dx k n ==-⎰ ,所以()()()()0k kbbbii k i i aaai i P x Q x dx P x a x dx a P x x dx =====∑∑⎰⎰⎰若零点个数1k n ≤-,有2()()()()0bbk k aaP x Q x dx g x Q x dx =≠⎰⎰矛盾,因此k n ≥,即()P x 在[a,b ]至少有n 个零点,但P(x)是n 次实多项式,故k=n 。
八、已知点(,(),())a f a f a '和(,(),())b f b f b ',用该信息计算定积分()ba f x dx ⎰。
解:记3()H x 为()f x 关于节点,a b 的Hermite 插值多项式:30101()()()()()()()()()H x h x f a h x f b g x f a g x f b ''=+++()()()()3011()()()()()()()()()()b b b baaaabbaaf x dx H x dx h x dx f a h x dx f bg x dx f a g x dx f b ≈=+''++⎰⎰⎰⎰⎰⎰20()122bba a x a xb b a h x dx dx b a a b ---⎛⎫⎛⎫=+= ⎪⎪--⎝⎭⎝⎭⎰⎰ 21()122bba a xb x a b a h x dx dx b a b a ---⎛⎫⎛⎫=+= ⎪⎪--⎝⎭⎝⎭⎰⎰ ()()220()12bba ab a x b g x dx x a dx a b --⎛⎫=-= ⎪-⎝⎭⎰⎰()()221()12bbaab a x a g x dx x b dx b a --⎛⎫=-=-⎪-⎝⎭⎰⎰所以有误差为九、验证Gauss 型求积公式00110()()()x e f x dx A f x A f x +∞-≈+⎰求积系数及节点分别为A =,1A =, 02x =,12x =。