高考理科数学专题复习题型选填题的解法研究

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题型1选填题练熟练稳少丢分

第1讲选填题的解法研究

一选择题、填空题在高考中的地位

选择题、填空题在当今数学高考(全国卷)中,题目数量多且占分比例高(选择12题,填空4题,共16题,共计80分,其中选择题60分,填空题20分,占全卷总分的53.3%).

二选择题、填空题难度及排序规律

就一套试卷而言,选择题1~10题相对较简单,考查知识点明显,学生比较容易入手,11,12题对思维要求较高,重视对数学素养的考查,学生需要综合运用多种数学思想方法才能解决.填空题13~15题难度比较低,很常规,主要考查基础知识,解题思路清晰,16题难度相对较大,同样重视对数学素养的考查.今年的高考题设置了组合型选择题.为实现设置多选题过渡,填空题出现了一题双空,难度增加,思维量加大.

三选择题、填空题特点及考查功能

从解答形式上看,选择题、填空题都不要过程,形式灵活,选择题还有选项可以提供额外的信息;从考查知识点上看,选择题、填空题都能在较大的知识范围内,实现对基础知识、基本技能和基本思想方法的考查;从运算因素上看,选择题、填空题都对运算要求较低,呈现多想少算的特点.

四选择题、填空题解答策略

选择题、填空题的结构特点决定了解答选择题、填空题的方法,除常规方法外,还有一些特殊的方法.解答选择题、填空题的基本原则是:“小题不大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断.

数学选择题的求解,一般有两种思路:一是从题干出发考虑,探求结果;二是从题干和选项联合考虑,或从选项出发探求是否满足题干条件,由此得到做选择题的几种常用方法:直接法、排除法、构造法、特例法、代入验证法、数形结合法等.填空题虽然没有选项提供参考,但依然可以根据其特点,考虑直接法、构造法、特例法等.

五选择题、填空题答题禁忌

选择题、填空题答题时,一定要注意认真审题,理解清楚题意后再作答.选择题确定选项后,其余选项也应该看一看,弄清楚它们错在哪里.不要一味图快,还是要以保证正确率为主.

如果某题不太好解答,应及时调整策略,去解答下一题.切忌在某一道题上

花费过多时间.这样很容易影响答题的心理状态,产生紧张、焦虑等负面情绪.另外涂答题卡时,要注意题号排列规律,不要出现答串行等低级失误.选择题要修改的话,一定要先把原有选项擦除干净,再用2B铅笔涂黑新选项.

方法汇总选填通用方法一直接法

直接法是指直接从题目条件出发,利用已知的条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨的推理、准确的运算、合理的验证,从而直接得出正确结论的解题方法.解答选择题、填空题时,此方法一般都会是考生最先考虑的方法,也是解题最常用的方法之一.但是此种方法并没有充分利用选择题、填空题的题型特点,因此多用于解答一些比较容易的选、填题.

题型一(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为()

A.33

4B.

23

3C.

32

4D.

3

2

思维启迪首先利用正方体的棱是3组且每组有互相平行的4条棱,所以与12条棱所成的角相等,只需与从同一个顶点出发的3条棱所成的角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.

解析根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCD -A1B1C1D1中,平面AB1D1与线AA1,A1B1,A1D1所成的角是相等的,所以平面AB1D1与正方体的每条棱所在的直线所成的角都是相等的,同理,平面C1BD也满足与正方体的每条棱所在的直线所成的角都是相等的,要求截面面积最大,则截面的位置为夹在两个面AB1D1与C1BD中间的,且过棱的中点的正六边形,边长为

22,所以其面积为S =6×12×32×⎝ ⎛⎭⎪⎫222=334,故选A .

答案 A

特教评析

该题考查的是有关正方体被平面所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.

题型二 设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.

思维启迪 本题以数列为背景,综合考查等比数列的通项公式,幂的运算性质,等比数列求和公式等多个知识点.数列是高中数学的一个重要模块,对数列的考查,在历年全国卷中都能见到.此类问题,多直接利用题目条件,结合数列的相关公式计算解决.

本题中首先根据题目的两个条件,结合等比数列的通项公式,可以列出方程,解出首项及公比,进而可以将a 1a 2…a n 表示为关于n 的函数,利用函数的相关知识求解其最大值.

解析 解法一:由题可得⎩⎨⎧ a 1+a 1q 2=10,a 1q +a 1q 3=5,

两式相除,解得q =12,a 1=8,则a n =⎝ ⎛⎭⎪⎫12n -4,所以a 1a 2…a n =⎝ ⎛⎭⎪⎫12-3×⎝ ⎛⎭⎪⎫12-2×…×⎝ ⎛⎭⎪⎫12n -4=⎝ ⎛⎭

⎪⎫12(n -7)n 2. 由于指数函数y =⎝ ⎛⎭

⎪⎫12x 单调递减,因此当n (n -7)2最小时,a 1a 2…a n 最大,即n =3或n =4时,a 1a 2…a n 有最大值26=64.

解法二:同解法一,解得a n =⎝ ⎛⎭

⎪⎫12n -4.设b n =a 1a 2…a n , 由⎩⎨⎧ b n ≥b n +1,b n ≥b n -1,得⎩⎨⎧

a n +1≤1,a n ≥1,

解得3≤n ≤4. 所以当n =3或4时,b n 有最大值b 3=b 4=64.

答案 64

特教评析

本题是根据题目条件,利用数列的相关公式,直接解决数列的最值问题.解法一是从数列是特殊函数这个角度予以求解的,解法二是利用数列本身的一些特性予以求解.这两种都是直接解决数列最值问题的常用方法.

相关文档
最新文档