高考数学不等式知识点及相关题型

高考数学不等式知识点及相关题型
高考数学不等式知识点及相关题型

高考数学不等式知识点

及相关题型

Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

等式

一、比较大小

作差法:作差后通过分解因式、配方等手段判断差的符号得出结果。 【例1】比较61x +和42x x +的大小,其中x R ∈ 【例2】设x R ∈,比较

1

1x

+与1x -的大小 作商法:常用于分数指数幂的代数式。

【例3】设0,0a b >>,且a b ≠,比较a b a b 与b a a b 的大小 二、不等式的性质:

①a b b a >?<; ②,a b b c a c >>?>; ③a b a c b c >?+>+;

④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+;

⑥0,0a b c d ac bd >>>>?>; ⑦()0,1n n a b a b n n >>?>∈N >;

)

0,1a b n n >>>∈N >.

【例4】若,a b R ∈且a b >,则下列不等式恒成立的是 【例5】下列命题中正确的是 三、性质的应用,待定系数法

【例6】不等式组1

24x y x y +≥??-≤?的解集记为D 。有下面四个命题:

其中的真命题是

四、不等式的解法,对题目条件的领悟

【例7】已知函数32()f x x ax bx c =+++且0(1)(2)(3)3f f f <-=-=-≤,则 ≤3 <c ≤6 <c ≤9 >9

【例8】已知()f x 是定义在R 上的奇函数,当x >0时,2()4f x x x =-,则不等式

()x f x >的解集用区间表示为:

五、不同形式不等式解法

1、一元一次不等式ax>b ,分别对a 、b 的正负情况进行讨论

2、一元二次不等式解法:图像法、因式分解法

(1)化成标准式:

20,(0)ax bx c a ++>>;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。 解含参数的一元二次不等式时,要把握好分类讨论的顺序 ①根据二次项系数的符号进行讨论

②根据一元二次方程的根是否存在,即?的符号进行讨论 ③在根存在时,根据根的大小进行讨论

【例8】已知不等式210ax bx -->的解集是11

(,)23

-,则不等式20x bx a --≥的解集是

3、简单的一元高次不等式的解法: 标根法步骤

(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;

(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 4、解分式不等式 不能轻意去分母

通常采用:移项(化一边为零)→通分→转化为整式不等式→化所有因式中的变量系数为正,(即不等式两边同除以变量系数,若它的符号不能确定即需要讨论)→“标根”(注意比较各个根的大小,不能比较时即需要讨论);

[特别关注] 求一个变量的范围时,讨论的也是这个变量,结果要并;讨论的若是另一个变量,结果不能并。

【例9】关于x 的不等式ax-b >0的解集是(1,+∞),则关于x 的不等式02

ax b

x +>-的解集是( )

A .(-∞,-1)∪(2,+∞)

B .(-1,2)

C .(1,2)

D .(-∞,1)∪(2,+∞) 【例10】解关于x 的不等式:

12

)

1(>--x x a 5、解绝对值不等式:关键是“去绝对值”, ①利用绝对值不等式的性质:若M>0则 |f(x)|>M ?f(x)>M 或f(x)<-M ; ②平方(不等式两边同正); ③讨论(绝对值内的式子为0)。

方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想; 方法二:利用“零点分段法”求解,体现了分类讨论的思想;

方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想。 方法四:两边平方。

【例11】设p :x 2

-x -20>0,q :2

12

--x x <0,则p 是q 的 ( )

(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件

6、分段函数形成的不等式一般分段解,再取并集;对较为复杂的分段函数问题可以借助于图象解决。

【例12】解不等式|1||1|32

x x +--≥

【例13】已知:函数,0(),0a x x f x a x -≤?=?>?(0>a ).解不等式:()

12f x x <-.

7、抽象函数的不等式

离不开函数的单调性。抽象函数的不等式反映出的函数值的大小,需借助于函数的单调性化归为自变量的大小,特别注意定义域。画抽象函数的“概念图”是化抽象为形象的有效途径;对某些有具体函数背景的抽象函数,可以从该具体函数中寻找解题线索。

【例12】已知奇函数f(x)在(,0)-∞为减函数,f(2)=0则不等式(x-1)f(x-1)<0的解集为:

【例13】已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x>0时,f(x)>2,f(3)=5,求不等式 f (a 2-2a -2)<3的解. 8、含参变量

无理不等式、含参变量的绝对值不等式、含参变量的指(对数)数不等式问题时常用数形结合。

【例14x a +在[-1,1]上恒成立,则a 的取值范围是

【例152(0)x a a <+>的解集是( )

A {}a x x <<0

B {}a x x ≤<0

C ??

?

???-<>a x x x 540或 D φ 9、含参不等式恒成立

通常采用分离参数法,转化为求某函数的最大值(或最小值)

具体地:g(a)>f(x)在x ∈A 上恒成立? g(a)>f(x)max ,g(a)

当参变量难以分离时,也可以用:f(a,x)>0在x∈A上恒成立?f(a,x)min>0, (x∈A)及f(a,x)<0在x∈A上恒成立?f(a,x)max>0, (x∈A)来转化;

还可以借助于函数图象解决问题。

特别关注:“不等式f(a,x)≥0对所有x∈M恒成立”与“不等式f(a,x)≥0对所有a∈M恒成立”是两个不同的问题,前者是关于x的不等式,而后者则应视为是关于a的不等式。

特别提醒:“判别式”只能用于“二次函数对一切实数恒成立”的问题,其它场合,概不适用。

【例16】定义在R上的函数f(x)为奇函数,且在[0,)

+∞为增函数,对任意θ∈R,不等式f(cos2θ-3)+f(2m-sinθ)>0恒成立,则实数m的取值范围是

【例17】设奇函数()

f x在[-1,1]上是增函数,且(1)1

f-=-,若函数

2

()21

f x t at

≤-+对所有的[1,1]

x∈-及所有的[1,1]

a∈-都成立,则t的取值范围

是;

不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)

1).恒成立问题

若不等式

()A

x

f>在区间D上恒成立,则等价于在区间D上()min

f x A

>

若不等式

()B

x

f<在区间D上恒成立,则等价于在区间D上()max

f x B

<

2).能成立问题

若在区间D上存在实数x使不等式

()A

x

f>成立,则等价于在区间D上()max

f x A

>

若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B

<.如 已知不等式

a

x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围____

(答:1a >) 3). 恰成立问题

若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .

【例18】已知函数22,0()ln(1),0x x x f x x x ?-+≤=?+>?,若()f x ax ≥,则a 的取值范围是

六、重要不等式

1.(1)若,a b R ∈,则2

2

2a b ab +≥ (2)若,a b R ∈,则22

2

a b ab +≤(当且仅当b a =时

取“=”)

2. (1)若*,a b R ∈,则2

a b

+≥ (2)若*,a b R ∈,则a b +≥(当且仅当b a =时取“=”)

(3)若*

,a b R ∈,则2

2a b ab +??≤ ???

(当且仅当b a =时取“=”) 3.若0x >,则1

2x x

+≥ (当且仅当1x =时取“=”); 若0x <,则1

2x x

+≤- (当且仅当1x =-时取“=”) 若0x ≠,则111

22-2x x x x x x

+

≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2a b

b a

+≥ (当且仅当b a =时取“=”)

若0ab ≠,则

22-2a b a b a b

b a b a b a

+≥+≥+≤即或 (当且仅当b a =时取“=”)

4.若R b a ∈,,则222()22

a b a b ++≤(当且仅当b a =时取“=”) 注:

(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” 一正:各项都是正数 二定:和或积为定值 三相等:等号能取到

(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.

+b 3

+c 3

≥3abc (a,b,c ? R +

), a +b +c 3 ≥3abc

(当且仅当a =b =c 时取等号);

6. 1n (a 1+a 2+……+a n )≥12n n

a a a (a i ? R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号;

变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ? R +) ; abc ≤( a +b +c

3 )3(a,b,c ? R +)

a ≤ 2a

b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2

2 ≤b.(0

7.浓度不等式:b -n a -n < b a < b +m

a +m ,a>b>n>0,m>0;

解题技巧: 技巧一:凑项 已知 54x <

,求函数14245

y x x =-+-的最大值。 技巧二:凑系数 当

时,求(82)y x x =-的最大值。

技巧三: 分离

求2710

(1)1

x x y x x ++=

>-+的值域。 技巧四:换元

求函数2710

1

x x y x ++=+的最值

技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数

()a

f x x x

=+

的单调性。

求函数2y =

的值域。

七、线性规划 常见的目标函数

(1) 截距型:形如z ax by =+,可以转化为a

z y x b b

=-+,利用直线在y 轴上的

截距大小确定目标函数的最值

【例】1、不等式组124x y x y +≥??-≤?的解集记为D 。有下面四个命题:

其中的真命题是

2、已知x ,y 满足约束条件0

20

x y x y y -≥+≤≥,若z ax y =+的最大值为4,则a=

(2) 点到点的距离型:形如22()()z x a y b =-+-,表示区域内的动点(x ,y )

到定点(a ,b )的距离的平方

【例】若变量x ,y 满足2

2390x y x y x +≤??

-≤??≥?

,则22x y +的最大值是

(3) 斜率型:形如y b

z x a

-=

-,表示区域内的动点(x ,y )与定点(a ,b )连线的斜率

【例】已知x,y满足

20

30

10

y

x

x y

-≤

?

?

+≥

?

?--≤

?

,则

6

4

x y

x

+-

-

的取值范围是

(4)点到直线的距离型:形如z Ax By C

=++,表示区域内的动点(x,y)到

直线0

Ax By C

++=

补充:

1、x,y满足约束条件

20

220

220

x y

x y

x y

+-≤

?

?

--≤

?

?-+≥

?

,若z y ax

=-取得最大值的最优解不唯一,则实

数a的值

2、已知区域

10

10

330

x y

D x y

x y

-+≥

?

?

+-≥

?

?--≤

?

:的面积为S,点集{}

(,)|1

T x y D y kx

=∈≥+在坐标系中对

应区域的面积为,则k的值为

3、若不等式组

22

x y

x y

y

x y a

-≥

?

?+≤

?

?

?

?+≤

?

表示的平面区域的形状为三角形,则a的取值范围是

高考数学高考必备知识点总结精华版

高考前重点知识 第一章?集合 (一)、集合:集合元素的特征:确定性、互异性.无序性. 工集合的性质:①任何一个集合是它本身的子集,记为A胃A ; ②空集是任何集合的子集,记为。包A ; ③空集是任何非空集合的真子集; ①〃个元素的子集有2〃个.〃个元素的真子集有2〃 -1个.〃个元素的非空真子集有2〃-2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题。逆命题. ②一个命题为真,则它的逆否命题一定为真.原命题。逆否命题. 交:A,且x e B} 2、集合运算:交、并、补产AU6Q{xlxeA或xe* 未卜:或A o {% £ (/, 且x任A} (三)简易逻辑 构成复合命题的形式:p或q (记作〃pvq〃); p且q (记作〃p 八q〃);mEp(i己作、q〃) o 工〃或〃‘〃且"、"非"的真假判断 种命题的形式及相互关系: 原命题:若P则q;逆命题:若q则p; 否命题:若1 P则1 q ;逆否命题:若1 q则]Po ④、原命题为真,它的逆命题不一定为真。 i命题为真它的否命题不一定为真。

@、原命题为真,它的逆否命题一定为真。 6、如果已知p=q那么我们说,P是q的充分条件,q是P的必要条 件。 若p=q且q = p,则称p是q的充要条件,记为p<=>q. 一.函数的性质 (工)定义域:(2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:/(—x) = /(x),②奇函数:/(—x) = -/(X) ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点 对称;c.求/(-X);&比较/(T)与/(X)或/(T)与—/(X)的关系。 (4 )函数的单调性 定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值X1f X2, 。语当X1VX2时,都有f(XT)Vf(X2),则说f(X)在这个区间上是增函数; (2语当X1f(X)则说f(X)在这个区间上是减函数? 二.指数函数与对数函数 指数函数> = /(〃>。且"。1)的图象和性质

高考数学不等式知识点总结及解题思路方法

高考数学不等式知识点总结及解题思路方法 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ §06. 不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. - = < ? a< ? b ? > > - = - b ; 0b ; a a a b b a b a (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a >(对称性) ? a< b b (2)c ? > >,(传递性) a> c a b b (3)c + ? > >(加法单调性) c a+ a b b (4)d + > >,(同向不等式相加) a+ > ? d b c a c b

(5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>?<(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等 . ,3a b c a b c R +++∈≥(4)若、、则a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当a=b 时取等号) 2222(6)0||; ||a x a x a x a x a x a x a a x a >>?>?<->

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用 一.基本不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2 +12x 2 (2)y =x +1x 解:(1)y =3x 2 +12x 2 ≥2 3x 2 ·12x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。

高考数学高考必备知识点总结

高考数学高考必备知识点 总结 Jenny was compiled in January 2021

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补. {|,}{|} {,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。 ③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。

若p ?q 且q ?p,则称p 是q 的充要条件,记为pq. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:偶函数: )()(x f x f =-,奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求 )(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 x 且对数函数y=log a x (a>0且a ≠1)的图象和性质:

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

2017-18全国卷高考真题 数学 不等式选修专题

2017-2018全国卷I -Ⅲ高考真题 数学 不等式选修专题 1.(2017全国卷I,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集; (2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围. 【答案解析】 解:(1)当1a =时,()24f x x x =-++,是开口向下,对称轴12 x = 的二次函数. ()211121121x x g x x x x x >??=++-=-??-<-?,,≤x ≤,, 当(1,)x ∈+∞时,令242x x x -++= ,解得x =()g x 在()1+∞, 上单调递增,()f x 在()1+∞,上单调递减 ∴此时()()f x g x ≥ 解集为1? ?? . 当[]11x ∈-, 时,()2g x =,()()12f x f -=≥. 当()1x ∈-∞-, 时,()g x 单调递减,()f x 单调递增,且()()112g f -=-=. 综上所述,()()f x g x ≥ 解集1?-??? . (2)依题意得:242x ax -++≥在[]11-, 恒成立. 即220x ax --≤在[]11-, 恒成立. 则只须()()2211201120 a a ?-?-??----??≤≤,解出:11a -≤≤. 故a 取值范围是[]11-, .

2.(2017全国卷Ⅱ,文/理.23)(10分) [选修4-5:不等式选讲](10分) 已知0a >,222ba b +==2.证明: (1)()22()4a b a b ++≥; (2)2a b +≤. 【答案解析】 3.(2017全国卷Ⅱ,文/理.23)(10分) [选修4—5:不等式选讲](10分) 已知函数f (x )=│x +1│–│x –2│. (1)求不等式f (x )≥1的解集; (2)若不等式f (x )≥x 2–x +m 的解集非空,求m 的取值范围. 【答案解析】 解:(1)()|1||2|f x x x =+--可等价为()3,121,123,2--??=--<

2020高考理科数学不等式问题的题型与方法

专题三:高考数学不等式问题的题型与方法(理科) 一、考点回顾 1.高考中对不等式的要求是:理解不等式的性质及其证明;掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用;掌握分析法、综合法、比较法证明简单的不等式;掌握简单不等式的解法;理解不等式│a│-│b│≤│a+b│≤│a│+│b│。 2.不等式这部分内容在高考中通过两面考查,一是单方面考查不等式的性质,解法及证明;二是将不等式知识与集合、逻辑、函数、三角函数、数列、解析几何、立体几何、平面向量、导数等知识交汇起来进行考查,深化数学知识间的融汇贯通,从而提高学生数学素质及创新意识. 3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰. 4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.在近几年全国各省市的高考试卷中,不等式在各种题型中都有出现。在解答题中,不等式与函数、数列与导数相结合,难度比较大,使用导数解决逐渐成为一般方法6.知识网络

其中:指数不等式、对数不等式、无理不等式只要求了解基本形式,不做过高要求. 二、 经典例题剖析 1.有关不等式的性质 此类题经常出现在选择题中,一般与函数的值域,最值与比较大小等常结合在一起 例1.(xx 年江西卷)若a >0,b >0,则不等式-b <1 x 1b D.x <1b -或x >1a 解析:-b <1x 1 a 答案:D 点评:注意不等式b a b a 1 1>? <和适用条件是0>ab 例2.(xx 年北京卷)如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 解析:正数a b c d ,,,满足4a b cd +==,∴ 4=a b +≥,即4ab ≤,当且仅当a =b =2时,“=”成立;又4=2 ( )2 c d cd +≤,∴ c+d ≥4,当且仅当c =d =2时,“=”成立;综上得ab c d +≤,且等号成立时a b c d ,,,的取值都为2 答案:A 点评:本题主要考查基本不等式,命题人从定值这一信息给考生提供了思维,重要不等式可以完成和与积的转化,使得基本不等式运用成为现实。 例3.(xx 年安徽)若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是 (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 解析:若对任意∈x R ,不等式x ≥ax 恒成立,当x ≥0时,x ≥ax ,a ≤1,当x <0时,

高考数学主要考查哪些知识点

2019年高考数学主要考查哪些知识点 第一,函数与导数。主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用。这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用。这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式。主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计。这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 第七,解析几何。是高考的难点,运算量大,一般含参数。 “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”

为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。针对数学高考强调对基础知识与基本技能的考查我们一定要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。 对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时与数学知识相结合。 对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

高考数学必备知识点总结

2019年高考数学必备知识点总结 1、混淆命题的否定与否命题 命题的“否定”与命题的“否命题”是两个不同的概念,命题p 的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。 2、忽视集合元素的三性致误 集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。 3、判断函数奇偶性忽略定义域致误 判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数。 4、函数零点定理使用不当致误 如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)0时,不能否定函数y=f(x)在(a,b)内有零点。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题。 5、函数的单调区间理解不准致误 在研究函数问题时要时时刻刻想到“函数的图像”,学会从函

数图像上去分析问题、寻找解决问题的方法。对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。 6、三角函数的单调性判断致误 对于函数y=Asin(ωx+φ)的单调性,当ω0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x 的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sinx的单调性相反,就不能再按照函数 y=sinx的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决。对于带有绝对值的三角函数应该根据图像,从直观上进行判断。 7、向量夹角范围不清致误 解题时要全面考虑问题。数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b0时,a与b的夹角不一定为钝角,要注意θ=π的情况。 8、忽视零向量致误 零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。

上海高考数学知识点重点详解

{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 高考前数学知识点总结 1. 对于集合,一定要抓住集合的元素一般属性,及元素的“确定性、互异性、无序性”。 中元素各表示什么? 2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或文氏图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.已知集合A 、B ,当A B ?=?时,你是否注意到“极端”情况:A =?或B =?; 4. 注意下列性质:(1) 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为n 2,n 21-, n 21-, n 2 2.- ()若,;2A B A B A A B B ??== (3):空集是任何集合的子集,任何非空集合的真子集。 5. 学会用补集思想解决问题吗?(排除法、间接法) 6.可以判断真假的语句叫做命题。 若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 7. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。 8.注意四种条件,判断清楚谁是条件,谁是结论; 9. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域) 10. 求函数的定义域有哪些常见类型? 11. 如何求复合函数的定义域? 12. 求一个函数的解析式或一个函数的反函数时,需注明函数的定义域。 13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗?(①反解x ,注意正负的取舍;②互换x 、y ;③反函数的定义域是原函数的值域) 14. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称;②保存了原来函数的单调性、奇函数性;

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

2019高考数学不等式真题汇总

(2019?上海7)若x ,y R +∈,且 123y x +=,则y x 的最大值为 . 【解答】 解:132y x = +… ∴298 y x =?; 故答案为:98 (2019?上海5)已知x ,y 满足002x y x y ????+? ……?,则23z x y =-的最小值为 . 【解答】解:作出不等式组002x y x y ????+? ……?表示的平面区域,由23z x y =-即23x z y -=,表示直线在y 轴上的截距的相反数的13 倍,平移直线230x y -=,当经过点(0,2)时,23z x y =-取得最小值6-,故答案为:6-. (2019?浙江3)若实数x ,y 满足约束条件340,340,0,x y x y x y -+??--??+? …?…则32z x y =+的最大值是( ) A .1- B .1 C .10 D .12 【解答】解:由实数x ,y 满足约束条件3403400x y x y x y -+??--??+? …?…作出可行域如图,联立340340x y x y -+=??--=?,解得(2,2)A ,化目标函数32z x y =+为3122y x z =-+,由图可知,当直线3122 y x z =-+过(2,2)A 时,直线在y 轴上的截距最大,z 有最大值:10. 故选:C .

(2019?天津文10)设x R ∈,使不等式2320x x +-<成立的x 的取值范围为 . 【解答】解:2320x x +-<,将232x x +-分解因式即有: (1)(32)0x x +-<;2(1)()03 x x +-<; 由一元二次不等式的解法“小于取中间,大于取两边” 可得:213 x -<<; 即:2{|1}3x x -<<;或2(1,)3 -; 故答案为:2(1,)3 -; (2019?天津文理13)设0x >,0y >,25x y += 的最小值为 . 【解答】解:0x >,0 y >,25x y +=, 则===; 由基本不等式有: = 当且仅当=时,即:3xy =,25x y +=时,即:31x y =??=?或232x y =???=??时;等号成立, 故答案为:

(完整版)高考数学高考必备知识点总结精华版

高考前重点知识回顾 第一章-集合 (一)、集合:集合元素的特征:确定性、互异性、无序性. 1、集合的性质:①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; ①n 个元素的子集有2n 个. n 个元素的真子集有2n -1个. n 个元素的非空真子集有2n -2个. [注]①一个命题的否命题为真,它的逆命题一定为真.否命题?逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题?逆否命题. 2、集合运算:交、并、补.{|,} {|}{,} A B x x A x B A B x x A x B A x U x A ?∈∈?∈∈?∈?I U U 交:且并:或补:且C (三)简易逻辑 构成复合命题的形式:p 或q(记作“p ∨q ” );p 且q(记作“p ∧q ” );非p(记作“┑q ” ) 。 1、“或”、 “且”、 “非”的真假判断 4、四种命题的形式及相互关系: 原命题:若P 则q ; 逆命题:若q 则p ; 否命题:若┑P 则┑q ;逆否命题:若┑q 则┑p 。 ①、原命题为真,它的逆命题不一定为真。 ②、原命题为真,它的否命题不一定为真。

③、原命题为真,它的逆否命题一定为真。 6、如果已知p ?q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。 若p ?q 且q ?p,则称p 是q 的充要条件,记为p ?q. 第二章-函数 一、函数的性质 (1)定义域: (2)值域: (3)奇偶性:(在整个定义域内考虑) ①定义:①偶函数:)()(x f x f =-,②奇函数:)()(x f x f -=- ②判断方法步骤:a.求出定义域;b.判断定义域是否关于原点对称;c.求)(x f -;d.比较)()(x f x f 与-或)()(x f x f --与的关系。 (4)函数的单调性 定义:对于函数f(x)的定义域I 内某个区间上的任意两个自变量的值x 1,x 2, ⑴若当x 1f(x 2),则说f(x) 在这个区间上是减函数. 二、指数函数与对数函数 指数函数)10(≠>=a a a y x 且的图象和性质

高考数学一轮复习不等式知识点讲解

2019年高考数学一轮复习不等式知识点讲 解 不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用。下面是不等式知识点讲解,请考生掌握。 1。解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化。在解不等式中,换元法和图解法是常用的技巧之一。通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰。 2。整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法。方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用。课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。为什么?还是没有彻底“记死”的缘故。要解决这个问题,方法很简单,每天花3-5分钟左右的时间记一条成语、一则名言警句即可。可以写在后黑板的“积累专栏”上每日一换,可以在每天课前的3分钟让学生轮流讲解,也可让学 生个人搜集,每天往笔记本上抄写,教师定期检查等等。这样,一年就可

记300多条成语、300多则名言警句,日积月累,终究会成为一笔不小的财富。这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会随心所欲地“提取”出来,使文章增色添辉。 3。在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰。 观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。看得清才能说得正确。在观察过程中指导。我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。有的孩子说“乌云跑得飞快。”我加以肯定说“这是乌云滚滚。”当幼儿看到闪电时,我告诉他“这叫电光闪闪。”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。雨后,我又带幼儿观察晴朗的天空,朗诵自编

高考数学之基本不等式

基本不等式 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤????a +b 22(a ,b ∈R ); (4)a 2+b 22≥????a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为 a + b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 22 ab ≤????a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥????a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们.

三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是( ). A .0 B .1 C .2 D .3 解析 ①②不正确,③正确,x 2+1x 2+1=(x 2+1)+1x 2+1 -1≥2-1=1. 答案 B 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.12 B .1 C .2 D .4 解析 ∵a >0,b >0,a +2b =2, ∴a +2b =2≥22ab ,即ab ≤12 . 答案 A 4.(2011·重庆)若函数f (x )=x +1x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2 +2≥2 (x -2)×1x -2+2=4,当且仅当x -2=1x -2 (x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 答案 C 5.已知t >0,则函数y =t 2-4t +1t 的最小值为________. 解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,当且仅当t =1时取等号. 答案 -2

相关文档
最新文档