职高数学933平面与平面所成的角211
高中数学第一册(上)直线与平面所成的角

直线与平面所成的角教学目标:理解线面角概念,熟练运用三垂线定理及其逆定理找出线面角。
教学过程:1.直线和平面所成的角(1)平面的斜线和它在平面内的射影所成的锐角,叫做这条直线和平面所成的角。
(2)平面的垂线和平面所成的角是直角。
(3)平面的平行线和平面所成的角是︒0角。
(4)平面内的直线和平面所成的角是︒0角。
2.直线与平面所成的角的范围是{}︒≤≤︒900|θθ3.最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。
典型例题:例1 正方体ABCD —A 1B 1C 1D 1中,(1)分别指出对角线A 1C 与六个面所成的角;(2)E 、F 分别是直线AA 1、A 1D 1的中点,求直线EF 与平面ABCD 所成角的大小。
例2 正四面体ABCD 中,Q 是AD 的中点,求CQ 与平面DBC 所成的角的正弦值。
例3 AO 是平面OCB 的斜线,O 是斜足,AB ⊥平面OCB ,B 为垂足,⊂OD 平面OCB ,OD 与OB 不重合,α=∠AOB ,锐角β=∠BOD ,锐角γ=∠AOD ,求证:βαγcos cos cos ⋅=。
例4 线段AB 的两端点在平面α的同侧,斜线段AM 、BN 所在的直线分别与平面α成︒︒60,30角,且AM ⊥AB ,BN ⊥AB ,AM=6,BN=32,AB=6。
(1)求证:AB//α;(2)求MN 的长。
作业:1.从平面α外一点P 向平面α引垂线PO 和斜线PA 、PB ,垂足为O ,斜足为A 、B 。
若PA 、PB 与平面α所成的角的差为︒45,且在平面α上的射影长分别为2和12,试求P 到平面α的距离。
2.空间四边形ABCD 中,α⊂AB ,AB BC AD ⊥⊥,α,BC 与α成︒30角,AB=a,AD=BC=b 。
求直线CD 与α所成的角的正弦值。
3.直角三角形ABC 中,斜边AB 在平面α内,AC 、BC 与α所成的角分别为︒30、︒45,求斜边上的高CD 与α所成的角。
直线与平面平面与平面所成的角教学课件

n v
α,β的夹角为θ, n, v
cosn, v cos
n2
A
O
n1
B
n2
n1
cos | cos n1, n2 | cos | cos n1, n2 |
设平面α的法向量为n1,平面的法向量为n2,
若二面角α- l -β的大小为θ(0 ≤θ≤π),则:
cos | cosn1, n2 | n1 n2 .
1, 0), n1
BB1 ( x1,
y1
(0, 0,1) , z1)可得
1 x1 1 y1 0 z1 0 x1 1 y1 1 z1 0
0
x1
y1 , z1
y1
取 y1 =1,则 n1 (1,1, 1)
由图可知,直线 AC 平面 BDB1
可得 AC (1,1, 0) 即为平面 BDB1 的法向量
设 n1, AA1 所成角的大小为 2
cos2 cosn1, AA1 n1 AA1
n1 AA1
1 0 1 0 (1)1
3
12 12 (1)2 0DB-B1 的余弦值为 3
点评:利用空间向量求二面角的方法:设 n1 , n2 分别是平面 α, β 的法向量,则向量 n1 , n2 的夹角(或其补角)就是两个平面夹角的大
2
l
v
n
v, n
2
cos v, n cos( ) sin
2
设直线l的方向向量为v,平面α的法向量为n,且直线l与
平面α所成的角为θ(0 ≤θ≤π),则 2
vn
sin cosv, n
vn
探究点2 二面角
n
v
α,β的夹角为θ, n, v
cosn, v cos( ) cos
人教版中职数学教材基础模块下册全册教案B可编辑

人教版中职数学教材-基础模块下册全册教案B人教版中职数学教材基础模块下册全册教案目录第六章数列 1611 数列的定义 1612 数列的通项 5621 等差数列的概念9622 等差数列的前n 项和15631 等比数列的概念19632 等比数列的前n 项和2364 数列的应用26第七章平面向量29711 位移与向量的表示29712 向量的加法33713 向量的减法3772 数乘向量41731 向量的分解45732 向量的直角坐标运算 48741 向量的内积55742 向量内积的坐标运算与距离公式5975 向量的应用63第八章直线和圆的方程66811 数轴上的距离公式与中点公式 66812 平面直角坐标系中的距离公式和中点公式69 821 直线与方程73822 直线的倾斜角与斜率75823 直线方程的几种形式一78823 直线方程的几种形式二81824 直线与直线的位置关系一86824 直线与直线的位置关系二91825 点到直线的距离94831 圆的标准方程 96832 圆的一般方程 988 4 直线与圆的位置关系10285 直线与圆的方程的应用 105第九章立体几何107911立体图形及其表示方法107912 平面的基本性质110921空间中的平行直线 113922 异面直线117923 直线与平面平行120924 平面与平面的平行关系124931 直线与平面垂直129932 直线与平面所成的角132 933 平面与平面所成的角135 934 平面与平面垂直138941 棱柱141942 棱锥144943 直棱柱和正棱锥的侧面积146 944 圆柱圆锥一149944圆柱圆锥二152945 球155946 多面体与旋转体的体积一158 946多面体与旋转体的体积二161 第十章概率与统计初步165 1034 一元线性回归165101 计数原理169102 概率初步1731031 总体样本和抽样方法一177 1031 总体样本和抽样方法二180 1031 总体样本和抽样方法三183 1032 频率分布直方图1861033 用样本估计总体190第六章数列611 数列的定义教学目标1 理解数列的有关概念和通项公式的意义2 了理解数列与函数的关系培养学生观察分析的能力3 使学生体会数学与生活的密切联系提高数学学习的兴趣教学重点数列的概念及其通项公式教学难点数列通项公式的概念教学方法这节课主要采用情景教学法利用多媒体在教师的引导下根据学生的认知水平设计了创设情境引入概念观察归纳形成概念讨论研究深化概念即时训练巩固新知等环节各步骤环环相扣层层深入引导学生体会数学概念形成过程中所蕴涵的数学方法使之获得内心感受教学过程环节教学内容师生互动设计意图导入 1讲故事感受数列2提出问题引入新课我国有用十二生肖纪年的习俗每年都用一种动物来命名12年轮回一次2009年农历乙丑年是21世纪的第一个牛年请列出21世纪所有牛年的年份教师讲述古印度传说故事《棋盘上的麦粒》学生倾听故事认识数列教师提出问题学生分组讨论找出问题的答案创设情境让学生认识数列激发学生的好奇心增强学生的学习兴趣提出和本节课密切相关的问题让学生思考充分发挥学习小组的作用展开讨论新课新课新课1数列的定义把21世纪所有牛年的年份排成一列得到2 0092 0212 0332 0452 0572 0692 0812 093 ①像①这样按一定次序排列的一列数叫做数列数列中的每一个数都叫做这个数列的项各项依次叫做这个数列的第1项或首项第2项第n项比如2 009是数列①的第1项或首项2 093是数列①的第8项举出一些数列的例子大于3且小于11的自然数排成一列45678910 ②正整数的倒数排成一列1 ③精确到1010010001的近似值排成一列1141411414 ④-1的1次幂2次幂3次幂4次幂排成一列-11-11-1⑤无穷多个2排成一列2222⑥这些都是数列2数列的分类项数有限的数列叫做有穷数列项数无限的数列叫做无穷数列练习1已知数列则3是它的第项2已知数列1--1n1那么它的第10项是A-1 B1C-D3数列的一般形式数列从第一项开始按顺序与正整数对应所以数列的一般形式可以写成 a1a2a3an其中an是数列的第n项叫做数列的通项n叫做an的序号整个数列可记作an4数列的通项公式如果ann123与n之间的关系可用an f n来表示那么这个关系式叫做这个数列的通项公式其中n的取值是正整数集的一个子集由此可知数列的通项可以看成以正整数集的子集为定义域的函数例如数列1可记作其通项公式为an n N如果数列通项的定义域是正整数集定义域通常略去不写教师在学生探究的基础上给出问题的答案教师板书定义教师出示一组数列的例子师数列45678910与10987654是不同的数列而集合45678910与10987654是相同的集合强调数列的有序性集合元素的无序性教师利用上面举过的例子讲解数列的分类请学生指出上述数列中的有穷数列和无穷数列①②是有穷数列③④⑤⑥是无穷数列同桌之间讨论完成练习教师巡视指导观察数列1教师提出问题数列的每一项与这一项的序号是否有一定的对应关系这一关系可否用一个公式表示学生分组讨论对于上面的数列第一项与这一项的序号有这样的对应关系项 1↓↓↓↓序号 1234这个数列的每一项与这一项的序号可用公式an来表示其对应关系强调数列的有序性使学生对数列定义有更深刻的认识又为后面学习数列的通项公式埋下伏笔重视举例这一环节调动学生的思维发挥学生的主动性加深对数列定义的理解观察实例培养学生分类能力通过练习让学生进一步掌握数列的定义培养学生的观察能力和由特殊到一般的归纳能力小结本节课主要学习了以下内容1数列的定义2数列的分类3数列的通项公式学生阅读课本P3P5上半部分畅谈本节课的收获教师引导梳理总结本节课的知识点培养学生自己归纳总结的学习习惯作业教材P4探索与研究学生课后完成巩固拓展612 数列的通项教学目标1 理解数列的通项公式的意义能根据通项公式写出数列的任意一项以及根据其前几项写出它的一个通项公式2 了解数列的递推公式会根据数列的递推公式写出前几项3 培养学生积极参与大胆探索的精神培养学生的观察分析归纳的能力教学重点数列的通项公式及其应用教学难点根据数列的前几项写出满足条件的数列的一个通项公式教学方法本节课主要采用例题解决法通过列举实例进一步研究数列的项与序号之间的关系通过三类题目使学生深刻理解数列通项公式的意义为以后学习等差数列与等比数列打下基础教学过程环节教学内容师生互动设计意图导入⒈数列的定义按一定次序排列的一列数叫做数列注意1数列中的数是按一定次序排列的2同一个数在数列中可以重复出现2 数列的一般形式数列a1a2a3an可记作 an3 数列的通项公式如果数列 an 的第n项an与n之间的关系可以用一个公式来表示那么这个公式就叫做这个数列的通项公式教师引导学生复习为学生进一步理解通项公式应用通项公式解决实际问题做好准备新课新新课课如果已知一个数列的通项公式则可依次用限定的正整数123去代替公式中的n就可求出数列中的各项例1 根据通项公式写出下面数列 an 的前5项1an2an -1n n解 1在通项公式中依次取n12345得到数列的前5项为2在通项公式中依次取n12345得到数列的前5项为-12-34-5练习一根据下列数列an的通项公式写出它的前5项1an n32an 5-1n1练习二根据下列数列an的通项公式写出它的第7项和第10项1an2an n n23an4an -2n3例2 写出数列的一个通项公式使它的前4项分别是下列各数 1135723- -解 1数列的前四项1357都是序号的2倍减去1所以它的一个通项公式是 an 2n-12数列的前四项分母都是序号加上1分子都是分母的平方减去1所以它的一个通项公式是an3数列的前四项 --的绝对值都等于序号与序号加1的积的倒数且奇数项为负偶数项为正所以它的一个通项公式是an总结1当一个数列中的数依次出现-相间时应先把符号分离出来用-1n或-1n1等来表示2认真观察各数列所给出的项寻求各项与序号的关系归纳其规律抽象出其通项公式练习三1已知一个数列的前4项分别是则它的一个通项公式是2数列的一个通项公式是ABCD例3 已知数列an的第1项是1以后各项由公式an 1n≥2给出写出这个数列的前5项例3中的函数表达式表达的是任一项an与它的前一项an-1的关系这样的关系式叫做数列的递推公式解不难得出a1 1a2 1 1 2a3 1 1a4 1 1a5 1 1练习四1已知数列an其中a11 981an an-112n≥2写出这个数列的前5项 2已知数列an中a5 2009an an-112n≥2求a1学生解答例题师你能总结一下这类题目的解决方法吗学生总结解法教师点拨解答学生疑难多媒体出示解题过程请学生在黑板上做练习一和练习二老师巡视指导师生共同订正答案教师引导学生分析数列的每一项与这一项的序号之间的对应关系项 1357↓↓↓↓序号 1234师你能找出各项与项数二者的对应关系满足什么规律吗学生探究找出规律数列的前四项1357都是序号的2倍减去1师如何用含有n的式子来表示第n项an教师对学生的回答给以点评板书解题过程学生根据1题的解题思路分组合作讨论解答后两道题教师巡视指导教师说明数列的通项公式可以不止一个教师引导学生总结师当一个数列中的数依次出现- 相间时应如何解决师根据数列的前几项写数列的一个通项公式的方法是什么学生合作探究完成练习教师巡视指导师生共同订正答案教师出示例3引导点拨师数列中 an 项与an-1项是什么关系引导学生得出是任一项与前一项的关系教师给出递推公式的定义学生分组探究教师巡视指导强调代数计算时要注意正确性请学生在黑板上做题教师巡视指导订正将例题直接当作成练习由学生自己寻找解题方法让学生体验探索与成功的快乐由数列的通项公式写出数列的前几项是简单的代入法本练习为写通项公式做准备尤其是对接受能力偏弱的学生可多举几个例子让学生观察归纳通项公式与各项序号的关系尽量为例2做准备由数列的前几项写出数列的一个通项公式是学生学习中的一个难点要帮助学生分析各项的结构特征让学生依据前几项的规律寻求项与序号的关系最后教师引导学生结论培养学生的合作探究意识和创新意识学生可能会写出多种不同的通项公式对学生善于思考勇于创新的精神给予赏识性评价培养学生勤动手动脑善于总结归纳的习惯通过练习让学生进一步掌握写通项公式的方法在教师的引导下培养学生观察分析归纳的能力培养学生积极实践科学探究的学习态度加强练习体会递推公式的应用小结三类题目1由数列的通项公式写出数列某一项2根据数列的前几项写出数列的一个通项公式3根据数列的递推公式写出数列的前几项学生阅读课本P5P7畅谈本节课的收获老师引导梳理总结本节课的知识点梳理总结也可针对学生薄弱或易错处强调总结作业教材P8习题第567题学生课后完成巩固拓展621 等差数列的概念教学目标1 理解等差数列的概念掌握等差数列的通项公式掌握等差中项的概念2 逐步灵活应用等差数列的概念和通项公式解决问题3 通过教学培养学生的观察分析归纳推理的能力渗透由特殊到一般的思想教学重点等差数列的概念及其通项公式教学难点等差数列通项公式的灵活运用教学方法本节课主要采用自主探究式教学方法充分利用现实情景尽可能地增加教学过程的趣味性实践性在教师的启发指导下强调学生的主动参与让学生自己去分析探索在探索过程中研究和领悟得出的结论从而达到使学生既获得知识又发展智能的目的教学过程环节教学内容师生互动设计意图导入问题某工厂的仓库里堆放一批钢管参见教材图6-1共堆放了7层试从上到下列出每层钢管的数量教师出示引例并提出问题学生探究解答希望学生能通过对日常生活中的实际问题的分析对比建立等差数列模型进行探究解答问题体验数学发现和创造的过程新课新课新课新课新课新课从上例中我们得到一个数列每层钢管数为456789101等差数列的定义一般地如果一个数列从第二项起每一项与它前一项的差等于同一个常数这个数列就叫做等差数列这个常数就叫做等差数列的公差常用字母d表示练习一抢答下列数列是否为等差数列124681012012345633333332471116-8-6-402430-3-6-9注意求公差d一定要用后项减前项而不能用前项减后项2常数列特别地数列3333333也是等差数列它的公差为0公差为0的数列叫做常数列3等差数列的通项公式首项是a1公差是d的等差数列an的通项公式可以表示为 ana1n-1d4通项公式的应用根据这个通项公式只要已知首项a1和公差d便可求得等差数列的任意项an事实上等差数列的通项公式中共有四个变量知道其中三个便可求出第四个例1 求等差数列852的通项公式和第20项解因为a1 8d 5-8-3所以这个数列的通项公式是an 8n-1×-3即an -3n 11所以a20 -3×20 11 -49例2 等差数列-5-9-13的第多少项是-401解因为a1 -5而且d -9--5-4an -401所以 -401 -5 n-1×-4解得 n100即这个数列的第100项是-401练习二1求等差数列3711的第4710项2求等差数列1086的第20项练习三在等差数列an中1d - a7 8求a12a1 12a6 27求d例3 在3与7之间插入一个数A使3A7成等差数列求A 解因为3A7成等差数列所以A-3 7-A2A 3 7解得A55等差中项的定义一般地如果aAb 成等差数列那么A 叫做a与b的等差中项6等差中项公式如果A 是a与b的等差中项则A这就表明两个数的等差中项就是它们的算术平均数7一个结论在等差数列a1a2a3an中a2a3an这就是说在一个等差数列中从第2项起每一项有穷等差数列的末项除外都是它的前一项与后一项的等差中项练习四求下列各组数的等差中项1732与-1362与42例4 已知一个等差数列的第3项是5第8项是20求它的第25项解因为a 3 5a 8 20根据通项公式得整理得解此方程组得a1 -1d 3所以a25 -125-1×3 71强调已知首项a1和公差d便可求得等差数列的任意项an练习五1已知等差数列an 中a1 3an 21d 2求n2已知等差数列an 中a4 10a5 6求a8 和d例5 梯子的最高一级是33 cm最低一级是89 cm中间还有7级各级的宽度成等差数列求中间各级的宽度解用an 表示题中的等差数列已知a1 33an 89n 9则a9 339-1d 即89 33 8d解得d 7于是a2 33 7 40a3 40 7 47a4 47 7 54a5 54 7 61a6 61 7 68a7 68 7 75a8 75 7 82即梯子中间各级的宽从上到下依次是40 cm47 cm54 cm61 cm68 cm75 cm82 cm例 6 已知一个直角三角形的三条边的长度成等差数列求证它们的比是3∶4∶5证明设这个直角三角形的三边长分别为a-daad根据勾股定理得a-d2 a2 ad2解得a 4d于是这个直角三角形的三边长是3d4d5d即这个直角三角形的三边长的比是3∶4∶5 师请同学们仔细观察看看这个数列有什么特点学生观察回答教师总结特征从第二项起每一项与它前面一项的差等于同一个常数即等差我们给具有这种特征的数列一个名字等差数列教师板书定义师等差数列的例子在生活中有很多谁能再举几个教师出示题目学生思考抢答师你能说出练习一中各等差数列的公差吗学生说出各题的公差d教师订正并强调求公差应注意的问题师已知一个等差数列an的首项是a1公差是d如何求出它的任意项an呢学生分组探究填空归纳总结通项公式a2a1 da3 d da1 da4 d da1 dan a1 d师一个等差数列的各项已知和就可以确定下来师等差数列的通项公式中共有几个变量教师引导学生分析本题已知什么求什么怎么求学生思考说出已知所求代入通项公式强调通项公式是用含有n 的式子表示 an学生尝试解答后师生共同板书解题过程仿照例1教师引导点拨学生解答多媒体出示解题过程学生核对订正教师强调解题过程要规范严谨学生练习请学生在黑板上做题教师巡视指导师生共同订正教师出示例题学生同桌之间合作探究学生分析解题思路教师出示答案订正师在a与b 之间插入一个数A使aAb 成等差数列你能用ab 来表示A 吗学生探究回答教师订正学生的回答给出等差中项的定义和公式师你能用文字描述一下这个式子的含义吗师在等差数列135791113中每相邻的三项满足等差中项的关系吗学生分组合作探究得出结论师能将这个结论推广到一般的等差数列中吗学生继续分组合作探究教师总结学生的回答给出结论学生做练习学生回答各题结果统一订正答案教师出示例题学生分组合作探究教师点拨引导1例题给出了哪些量如何用数列符号表示2例题中的所求量是什么需要知道哪些条件教师总结学生思路给出解题过程学生自主练习教师巡视指导请个别学生在黑板上做题后师生共同订正教师出示例题引导学生将题中的已知和未知转化为用数列符号表示学生解答教师巡视指导教师出示解题过程强调解题步骤要规范严谨叙述要简明完整教师出示例题提示点拨当已知三个数成等差数列时可将这三个数表示为a-daad其中d 是公差由于这样具有对称性运算时往往容易化简学生根据教师的提示分组探究请学生在黑板上做题教师引导学生订正解题过程规范解题步骤由特殊到一般发挥学生的自主性培养学生的归纳能力在学生自主探究的基础上得出定义和公式更有利于学生理解和运用引导学生观察归纳猜想培养学生合理的推理能力学生在分组合作探究过程中可能会找到多种不同的解决办法教师要逐一点评并及时肯定赞扬学生善于动脑勇于创新的品质激发学生的创造意识鼓励学生自主解答培养学生运算能力通过例题强化学生对等差数列通项公式的理解强化学生学以致用的意识由特殊到一般发挥学生的自主性培养学生的归纳能力在学生自主探究的基础上得出定义和公式更有利于学生理解和运用引导学生观察归纳猜想培养学生合理的推理能力通过两道直接套用公式的练习题强化学生对中项公式的掌握学生在分组合作探究过程中可能会找到多种不同的解决办法教师要逐一点评并及时肯定赞扬学生善于动脑勇于创新的品质激发学生的创造意识。
高级中学高中数学必修2:2.3.1 直线与平面所成的角(课件)

斜线 P A
斜足
斜线
射影:过垂足O和斜足A的直线 AO叫做直线AP在平面 的 射影。
直线和平面 所成的角:一条直线 和它在平面内上的射影所成的锐 射影 角。
斜足
垂足 垂线
规定:
一条直线垂直于平面,它们所成的角是直角 一条直线和平面平行,或在平面内,它们所 成的角是0 的角
直线和平面所成角的范围是[0,90]
A
D
C
B
∴ A1C1与面BB1D1D所成的角为 900
1.如图:正方体ABCD-A1B1C1D1中,求:
(1)A1C1与面ABCD所成的角
(2) A1C1与面BB1D1D所成的角
(3) A1C1与面BB1C1C所成的角 45o
D1 B1 C1
(4)A1C1与面ABC1D1所成的角
A1
D A B
C
1.如图:正方体ABCD-A1B1C1D1中,求:
例题示范,巩固新知
例1、如图,正方体ABCD-A1B1C1D1中,求
直线A1B和平面A1B1CD所成的角。 分析:找出直线A1B在平面平面 A1B1CD内的射影,就可以求出 A1B和平面A1B1CD所成的角。 A
D1 C1 B1
1
O
D C B
阅读教科书P67上的解答过程
A
巩固练习
1.如图:正方体ABCD-A1B1C1D1中,求:
范围: 0 , 90
(2)利用判定定理.
3.数学思想方法:转化的思想 空间问题
平面问题
复习引入 1.直线与平面垂直的定义 如果直线l与平面α 的任意一条直线都垂直,我 们就说直线l与平面α 互相垂直,记作l⊥α .
线面垂直 线线垂直
【中职】9.3.2 直线与平面所成的角 高教版 精品课件

又因为 PA 平面 PAO,
所以 a PA.
a A
1、如图所示, PA 为平面 的斜线, PO ,a ,a PA.
求证:a AO. P
O
a A
该结论叫做三垂直定理的逆定理: 在平面内的一条直线,如果和这个平面的一条 斜线垂直,那么它也和这条斜线的射影垂直.
三垂线定理及逆定理的练习 一、判断对错 1、如图,若PO⊥平面ABC,OD⊥AB,则
AM
B
在平面 内,设 l 是线段 AB 的垂直平分线,垂足为 M.
1、到 AB 两点距离相等的点是否一定在 l 上? 2、到 AB 两点距离不相等的点是否在 l 上?
推广到空间,如果 A,B 是空间中的两点, 线段 AB 的垂直平分线有多少条? 所有线段 AB 的垂直平分线的集合形成怎样的图形?
巩固知识 典型例题
例1 如图所示,等腰 △ABC的顶点A在平面 外,底边BC在平面 内,已知底边长BC=16,腰长AB=17,又知点A到平面
的垂线段AD=10.求 (1)等腰△ABC的高AE的长
(2)斜线AE和平面 所成的角的大小(精确到1º).
解 (1) 在等腰△ABC中,AE⊥BC
故由BC=16可得BE=8.
(2)联结DE.因为AD是平面 的垂线,AE是的斜线,
所以DE是AE在内的射影. 因此 AED是AE和平面 所成的角.
在Rt△ADE中, sin AED AD 10 2,
AE 15 3
所以 AED 42
即斜线AE和平面 所成的角约为42°
如图长方体 ABCD-A1B1C1D1 中,AB=1,BC=1, AA1= 2 .求对角线 A1C 与平面 ABCD 所成的角.
例2 已知 PA 是平面 的斜线,PO ,a ,a AO.
最新中职数学基础模块教学设计:直线与直线、直线与平面、平面与平面所成的角

【课题】9.3 直线与直线、直线与平面、平面与平面所成的角【教学目标】知识目标:(1)了解两条异面直线所成的角的概念;(2)理解直线与平面垂直、直线与平面所成的角的概念,二面角及其平面角的概念.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】异面直线的概念与两条异面直线所成的角的概念、直线与平面所成的角的概念、二面角及其平面角的概念.【教学难点】两条异面直线所成的角的概念、二面角的平面角的确定.【教学设计】两条异面直线所成的角可用来刻画两条异面直线之间的位置关系,它是本节教学的难点.学生一般会有疑问:异面直线不相交怎么能成角?教学时要讲清概念.例1是求异面直线所成的角的巩固性题目,一般来说,这类题目要先画出两条异面直线所成的角,然后再求解.斜线在平面内的射影是本节的重要概念之一,是理解直线与平面所成的角的基础.要讲清这一概念,可采取“一边演示,一边讲解,一边画图”的方法,结合图形讲清斜线、斜足、斜线段、垂足、垂线段、斜线在平面内的射影与斜线段在平面内的射影.要讲清斜线在平面内的射影与斜线段在平面内的射影的区别.两个平面相交时,它们的相对位置可用两个平面所成的角来确定.教材从观察建筑房屋、修筑河堤两个实例,结合实验引入二面角的概念,二面角的概念可以与平面几何中的角的概念对比进行讲解.二面角的平面角的大小只与二面角的两个面的相对位置有关,而与平面角的顶点在棱上的位置无关.因此二面角的大小可以用它的平面角来度量.规定二面角的范围为[0,180].【教学备品】教学课件.【课时安排】2课时.(90分钟) 【教学过程】过 程行为 行为 意图 间*动脑思考 探索新知如图9−35所示,PA α⊥,线段P A 叫做垂线段,垂足A 叫做点P 在平面α内的射影.直线PB 与平面α相交但不垂直,则称直线PB 与平面α斜交,直线PB 叫做平面α的斜线,斜线和平面的交点叫做斜足.点P 与斜足B 之间的线段叫做点P 到这个平面的斜线段.过垂足与斜足的直线叫做斜线在平面内的射影.如图9−35中,直线AB 是斜线PB 在平面α内的射影.从上面的实验中可以看到,从平面外一点向这个平面引垂线段和斜线段,垂线段最短.因此,将从平面外一点P 到平面α的垂线段的长叫做点P 到平面α的距离.讲解 说明 引领 分析 仔细 分析 讲解 关键 词语思考 理解 记忆带领 学生 分析 40*创设情境 兴趣导入如图9−36所示,炮兵在发射炮弹时,为了击中目标,需要调整好炮筒与地面的角度.图9−36质疑思考 带领 学生 分析42 *动脑思考 探索新知斜线l 与它在平面α内的射影l '的夹角,叫做直线l 与平面α所成的角.如图9−37所示,PBA ∠就是直线PB 与平面α图9−35过 程行为 行为 意图 间所以42AED ∠≈︒.即斜线AE 和平面α所成的角约为42︒. 【想一想】为什么这三条连线都画成虚线?思考学生 是否 理解 知识 点55 *运用知识 强化练习长方体ABCD −1111A B C D 中,高DD 1=4cm ,底面是边长为3cm 的正方形,求对角线D 1B 与底面ABCD 所成角的大小(精确到1′).练习9.3.2图提问 巡视 指导思考 求解及时 了解 学生 知识 掌握 得情 况60 *创设情境 兴趣导入在建筑房屋时,有时为了美观和排除雨水的方便,需要考虑屋顶面与地面形成适当的角度(如图9−39(1));在修筑河堤时,为使它经济且坚固耐用,需要考虑河堤的斜坡与地面形成适当的角度(如图9−39(2)).在白纸上画出一条线,沿着这条线将白纸对折,然后打开进行观察.质疑引导 分析思考启发 思考63 *动脑思考 探索新知平面内的一条直线把平面分成两部分,每一部分叫做一个半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面.以直线l (或CD )为棱,两个半平面分别为αβ、的二面角,记作二面角l αβ--(或CD αβ--)(如图9−40).讲解 说明 引领思考带领(2)图9−39(1)过 程行为 行为 意图 间过棱上的一点,分别在二面角的两个面内作与棱垂直的射线,以这两条射线为边的最小正角叫做二面角的平面角.如图9−41所示,在二面角α−l −β的棱l 上任意选取一点O ,以点O 为垂足,在面α与面β内分别作OM l ⊥、ON l ⊥,则MON ∠就是这个二面角的平面角. 分析 仔细 分析 讲解 关键 词语理解 记忆学生 分析70*创设情境 兴趣导入用纸折成一个二面角,在棱上选择不同的点作出二面角的平面角,度量它们是否相等,想一想是什么原因. 质疑 思考 启发 思考 72 *动脑思考 探索新知二面角的平面角的大小由αβ、的相对位置所决定,与顶点在棱上的位置无关,当二面角给定后,它的平面角的大小也就随之确定.因此,二面角的大小用它的平面角来度量.当二面角的两个半平面重合时,规定二面角为零角;当二面角的两个半平面合成一个平面时,规定二面角为平角.因此二面角取值范围是[0,180].平面角是直角的二面角叫做直二面角.例如教室的墙壁与地面就组成直二面角,此时称两个平面垂直.平面α与平面β垂直记作αβ⊥ 讲解 说明 引领 分析 思考 理解 记忆 带领 学生 分析76 *巩固知识 典型例题例3 在正方体1111ABCD A B C D -中(如图9−42),求二面角1D AD B --的大小.图9−42解 AD 为二面角的棱, 1AA 与AB 是分别在二面角的两个面内并且与棱AD 垂直的射线,所以1A AB ∠为二面角说明 强调 引领观察 思考通过例题进一步领图9−40CD图9−41loNM βαCD继续探索活动探究(1)读书部分:教材(2)书面作业:教材习题(3)实践调查:用发现的眼睛寻找生活中的异面直线实例【教师教学后记】。
《直线与直线、直线与平面、平面与平面所成的角》中职数学(基础模块)下册9.3【高教版】2

2019/8/11
教学资料精选
10
谢谢欣赏!
2019/8/11
教学资料精选
11
例 已知正方体 ABCD-ABCD ( 如图 ) , 求二面角 D-AB-D 的大小 .
D
解:在正方体 ABCD-ABCD 中,
A
AB⊥平面 ADDA,
所以 AB⊥AD,AB⊥AD,
所以 DAD 即为 二面角D-AB-D 的平面角.
由于△DAD是等腰直角三角形,
面
C
A
l
D
面
棱 B
二.二面角的平面角
射线 OA 和 OB 构成的 AOB 叫做二面角的平面角.
l
B
O A
二面角的大小可以用它的平面角来度量,二面角 的平面角是多少度,就说这个二面角是多少度.
l
B
O A
l
B
O A
我们约定,二面角 的大小范围是 0≤ ≤180 . 平面角是直角的二面角叫做直二面角.
•
关键是,出错了你就知道上课时应该重点听哪里,注意力自然就能集中了。
•
4、即便上课时不理解也不要放弃
•
有些同学觉得老师讲的听不懂,就干脆不再听讲,按照自己的方法去学习。其实这样做真的很傻,因为不听讲就非常容易和同学们的学习进度脱节,这就会直接导致考试时成绩下降。原因是,老师讲的内容不一定都在教材中体现,有相当一部分重点内容
•
低着头,心情就放松了,但那种放松对学习一点好处也没有,之所以会放松,就是因为觉得即便是自己开小差,老师也不知道。如果你往前看,不时地和老师眼神交会一下,注意力必然会集中起来。和老师眼神交汇的那种紧张感会让你注意力集中,并充
2024-2025学年河北省高三(上)调研数学试卷(二)(11月份)(含答案)

2024-2025学年河北省高三(上)调研数学试卷(二)(11月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集U =A ∪B ={x ∈N|x 2−10x ≤0},A ∩(∁U B)={1,3,5,7},则集合B =( )A. {2,4,6,8} B. {2,4,6,8,9,10}C. {0,2,4,6,8,10}D. {0,2,4,6,8,9,10}2.函数y =lg (x−1)的定义域为( )A. {x|x >1}B. {x|x ≥2}C. {x|x >10}D. {x|x ≥11}3.若事件A ,B 发生的概率分别为P(A),P(B),(P(A)>0,P(B)>0),则“P(B|A)=P(B)”是“P(A|B)=P(A)”的( )条件.A. 充分不必要B. 必要不充分C. 充分且必要D. 既不充分又不必要4.球O 是棱长为1的正方体的外接球,则球O 的内接正四面体体积为( )A. 12B.66C. 13D.645.某同学掷一枚正方体骰子5次,记录每次骰子出现的点数,统计出结果的平均数为2,方差为0.4,可判断这组数据的众数为( )A. 1B. 2C. 3D. 46.已知x >1,y >0,且1x−1+1y =1,则4x +y 的最小值为( )A. 13B.15+5 52C. 14D. 9+657.已知函数f(x)的定义域为R ,且f(2x +1)为奇函数,f(2x +4)=f(2x),则一定正确的是( )A. f(x)的周期为2 B. f(x)图象关于直线x =1对称C. f(x +1)为偶函数D. f(x +3)为奇函数8.已知函数f(x)=2sin(ωx−π3)(ω>0)在区间(π3,π)上有且仅有一个零点,当ω最大时f(x)在区间[−100π,100π]上的零点个数为( )A. 466B. 467C. 932D. 933二、多选题:本题共3小题,共18分。