超导体简述

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超导体简述

一、超导体的定义:

一般材料在温度接近绝对零度的时候,物体分子热运动几乎消失,材料的电阻趋近于0,此时称为超导体,达到超导的温度称为临界温度。

二、超导体的发展史:

1911年,荷兰科学家昂内斯(Onnes)用液氦冷却汞,当温度下降到绝对温标4.2K 时水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料。但这里所说的“高温”,其实仍然是远低于冰点摄氏0℃的,对一般人来说算是极低的温度。

1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。

经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。

超导现象

1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。

1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。

1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。

1987年,中国科学家赵忠贤以及美国华裔科学家朱经武相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1 987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从19 86-1987年的短短一年多的时间里,临界超导温度提高了近100K。

2001年,二硼化镁(MgB2)被发现其超导临界温度达到39K [1]。此化合物的发现,打破了非铜氧化物超导体(non-cuprate superconductor)的临界温度纪录。

1990至2000年代,具ZrCuAsSi结构的稀土过渡金属氮磷族化合物(rare-earth tran sition-metal oxypnictide, ReTmPnO)陆续被发现[2] [3]。但并未有人发现其中的超导现象。

超导体原料

2008年,日本的Hideo Hosono团队发现在铁基氮磷族氧化物(iron-based oxypnict ide中,将部份氧以掺杂的方式用氟作部份取代,可使LaFeAsO1-xFx的临界温度达到26K[4],在加压后(4 GPa)甚至可达到43K[5]。其后,中国的闻海虎团队,发现在以锶取代稀土元素之后,La1-xSrxFeAsO亦可达到临界温度25K[6]。其后,中国的科学家陈仙辉、赵忠贤等人,发现将镧以其他稀土元素作取代,则可得到更高的临界温度;其中,SmFeAs[O0.9F0.1]可达55K[7] [8]。另外,将铁以钴取代(LaFe1-xCo xAsO),稀土元素以钍取代(Gd1-xThxFeAsO),或是利用氧缺陷(LaFeAsO1-δ)等方式,也都可以引发超导[9] [10] [11]。

此系统亦被简称为“1111系统”。此化合物的发现,非但再度打破了由MgB2保持的非铜氧化物超导体(non-cuprate superconductor)的临界温度纪录,其含铁却有超导的特性也受人注目。

同样在2008年,受到上述“1111系统”的启发,ThCr2Si2结构的碱土金属氮磷族化合物(ATm2Pn2)亦被发现,在将BaFe2As2中将碱土金属(IIA)以碱金属(IA)部分取代,亦可得到临界温度约30至40K的高温超导体,如Ba1-xKxFe2As2(38 K) [12]。此系统亦被简称为“122系统”。如同氧化物超导体,“1111”与“122”系统的超导来源也是由层状结构中的FeAs层贡献,借由不同价数的离子掺杂或是氧缺陷,可提升FeAs层载子的浓度,进而引发超导。

三、超导技术的实用过程:

比尔·李

1911年,荷兰科学家昂内斯用液氦冷却水银,当温度下降到4.2K时发现水银的电阻完全消失,这种现象称为超导电性。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。

超导电性和抗磁性是超导体的两个重要特性。使超导体电阻为零的温度,叫超导临界温度。经过科学家们数十年的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。

1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种

氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。

1986年底,美国贝尔实验室邝细成研究的氧化物超导材料,其临界超导温度达

到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临

界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!

高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

四、广阔的超导应用:

高温超导材料的用途非常广阔,大致可分为三类:大电流应用(强电应用)、电子学应用(弱电应用)和抗磁性应用。大电流应用即前述的超导发电、输电和储能;电子学应用包括超导计算机、超导天线、超导微波器件等;抗磁性主要应用于磁悬浮列车和热核聚变反应堆等。

超导托卡马克核聚变实验装置超导磁悬浮列车利用超导材料的抗磁性,将超导材料放在一块永久磁体的上方,由于磁体的磁力线不能穿过超导体,磁体和超导体之间会产生排斥力,使超导体悬浮在磁体上方。利用这种磁悬浮效应可以制作高速超导磁悬浮列车。

超导磁体计算机高速计算机要求集成电路芯片上的元件和连接线密集排列,但密集排列的电路在工作时会发生大量的热,而散热是超大规模集成电路面临的难题。超导计算机中的超大规模集成电路,其元件间的互连线用接近零电阻和超微发热的超导器件来制作,不存在散热问题,同时计算机的运算速度大大提高。此外,科学家正研究用半导体和超导体来制造晶体管,甚至完全用超导体来制作晶体管。

核聚变反应堆“磁封闭体”核聚变反应时,内部温度高达1亿~2亿摄氏度,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为“磁封闭体”,将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为21世纪前景广阔的新能源。

科学家新近创造出一种新的物质形态,并预言它将帮助人类做出下一代超导体,以用于发电和提高火车的工作效率等多种用途。

相关文档
最新文档