发光二极管试电笔的工作原理

发光二极管试电笔的工作原理

发光二极管试电笔的工作原理

?本文介绍一种新颖的低压测电笔,其功能和使用方法与传统的氖管测电笔完全相同,它在试电时不需工作电源,只靠微弱的测试电流就能使发光二极管闪烁、压电陶瓷片发声,以声光双指示的形式显示测试点带电与否,既使试电显示更醒目,又克服了氖管漏气失效等缺点,实现了无源试电显示器件的固体化。

?

?

?众所周知,测电笔允许通过的测试电流一般为微安级。这幺小的电流不可能直接推动发光管发光及压电陶瓷发声,但从能量的角度看,氖管的起辉电压在100V左右,起辉电流按1μA计,则其最小发光功率为0.1mw而发光二极管的导通电压为1.6V~2V,最小发光电流可低至0.1mA以下,其最小发光功率约0.16mW,与氖管的最小发光功率为同一数量级。若再加入聚能电路以提高脉冲功率,就完全能以氖管发光的电能去推动发光二极管发光。此外,压电陶瓷片工作时所需电流极微,依靠氖管的测试电压促其发声,也无问题。

?

?

?依上述分析,笔者设计出如附图所示的电笔原理电路。分压限流电阻R、测试端CS、触摸端CM等与传统测电笔结构相似。二极管VD1~VD4组成整流桥,压电陶瓷片YD既作为发声元件,又利用自身固有的电容起充电聚能、脉冲放电作用。可控硅VS与触发管VS1~VS4构成电子开关,控制YD

肖特二极管的工作原理是什么.doc

肖特二极管的工作原理是什么 SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用P型半导体与N型半导体接触形成PN结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。 肖特基二极管是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千毫安。这些优良特性是快恢复二极管所无法比拟的。中、小功率肖特基整流二极管大多采用封装形式。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而消弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和浓度不同引起的电子扩散运动达到相对的平衡,便形成了肖特基势垒。 典型的肖特基二极管基整流管的内部电路结构是以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极使用钼或铝等材料制成阻档层。用二氧化硅(SiO2)来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较H-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,N型基片和阳极金属之间便形成肖特基势垒,当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别通常将PN结整流管称作结整流管,而把金属-半导管整流管叫作肖特基整流管,近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可节省贵金属,大幅度降低成本,还改善了参数的一致性。 肖特基二极管是贵金属(金、银、铝、铂等)A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,

LED发光二极管原理(图文)讲解学习

LED发光二极管原理(图文)半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用(一)LED发光原理发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P 区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。 理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义(1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。(3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发

感应电笔

感应式测电笔(一) 本例介绍的感应式测电笔,比普通测电笔的灵敏度高,能悬空 (非接触)测量出导线是否带电。 电路工作原理 该感应式测电笔电路由电压放大器、控制器、多谐振荡器和LED指示电路组成,如图2-90所示。 电压放大器由小非门集成电路IC内部的非门电路Dl、D2和电阻器Rl-R3、电位器RP和电容器Cl组成。 控制器由IC内部的非门D3、D4组成。 多谐振荡器由lC内部的非门D5、D6和电阻器R5、R6、电容器C2组成。 LED指示电路由晶体管V、电阻器R4、R7和发光二极管VLl、VL2组成。 接通电源开关S后,电源指示发光二极管VL2点亮,D3和D4均输出低电平,HA不发声,VLl不发光。 将该感应式测电笔靠近市电电网中某导线时,该导线为相线,则测电笔的测试探针会感到微弱的电场信号,此信号经电压放大器放大整形后,通过D3和D4分别控制多谐振荡器和LED指示电路。 当测试探针感应到电场信号时,D3和D4的输出端均变为高电平。D3输出的高电平使二极管VD截止,多谐振荡器振荡工作,蜂鸣器HA发出警示声;D4输出的高电平使V导通,VLl发光,指示该导线有电。 调节RP的阻值,可改变声光警示的灵敏度。 改变R6的阻值或改变C2的容量,可改变多谐振荡器的振荡频率,从而改变HA发声的音调。 元器件选择 R1-R7选用1/4W或1/8W碳膜电阻器。 RP选用微型电位器或可变电阻器。 Cl选用独石电容器;C2选用高频瓷介电容器。 VLl和VL2均选用φ3mm的发光二极管,其中VL1选红色,VL2选绿色。 V选用Sg013或3DGg013型硅NPN晶体管。 IC选用CD4069型六非门集成电路。 HA选用倪φ27mm的压电陶瓷蜂鸣片。 GB选用两只1.5V纽扣电池。

LED显示屏显示原理

LED显示屏系统原理及工程技术 导读:LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世纪80年代后期开始,随着LED制造技术的不断完善,在国外得到了广泛的应用。 本主题首先介绍了LED显示屏的发展与应用概况。 在第一章中叙述了LED显示器件的基本工作原理及特性,详细介绍了LED点阵显示屏的具体电路和参数。第二章针对广泛应用的图文显示屏,在介绍它的基本组成之后,对各部分LED显示屏电路进行了深入的分析,并给出了完整实用的硬件电路图和全部汇编语言程序清单。 第三章的内容是图象显示屏,侧重分析了LED显示屏的灰度控制方法,并介绍了集成电路TLC5902的特性及应用。 第四章讨论了当时最先进的视频显示屏,就视频信号源的组织、视频LED显示屏的结构、主要集成电路芯片,以及配套的应用软件等,分别介绍了ZQL9701、DS90C031等芯片的技术特性和LEDSHOW、“LED管理工具&rdquo等软件的使用方法。书后还附有我国LED的行业标准。本书可供从事各类LED显示屏工作的工程技术人员参考,也可作为大专院校有关专业的教书参考书或教材。 前言 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世纪80年代后期开始,随着LED 制造技术的不断完善,在国外得到了广泛的应用。在我国改革开放之后,特别是进入90年代国民经济高速增长,对公众场合发布信息的需求日益强烈,LED显示屏的出现正好适应了这一市场形势,因而在LED显示屏的设计制造技术与应用水平上都得到了迅速的提高。 LED显示屏经历了从单色、双色图文显示屏,到图象显示屏,一直到今天的全彩色视频显示屏的发展过程。无论在期间的性能(提高亮度LED显示器及蓝色发光灯等)和系统的组成(计算机化的全动态显示系统)等方面都取得了长足的进步。目前已经达到的超高亮度全彩色视频显示的水平,可以说能够满足各种应用条件的要求。其应用领域已经遍及交通、证券、电信、广告、宣传等各个方面。我国LED显示屏的发展可以说基本上与世界水平同步,至今已经形成了一个具有相当发展潜力的产业。应该指出的是,我国LED产业不但在应用技术上取得了巨大的成功,而且在创新能力上有出色的表现,例如北京中庆数据设备公司研制的ZQL9701超大规模芯片,就代表了当前LED显示屏控制电路的国际水平。 与国内LED显示屏产业的迅速发展相比,目前关于LED显示屏的图书资料显得太少,不便于设计制造人员及运用维护人员的工作,由此萌发了编写一本LED显示屏技术用书的想法,适逢电子科技大学出版社之邀,斗胆动笔草就本书。书中分别就LED显示屏的概况、LED显示器件、图文显示屏、图象显示屏、视频显示屏等有关技术问题进行了叙述,以期使从事各类LED显示屏工作的读者能够从本书中得到一些有用的材料。 由于LED显示屏是多种综合应用的产品,涉及光电子学、半导体器件、数字电子电路、大规模集成电路、单片机及微机等各个方路及方法还要花较大篇幅进行介绍,容易冲淡主题。反过来采用集成电路和单片机等简单普及的刻与LED显述硬件又有软件。上述各个领域都自成体系,在本书中无法一一尽述,只能以显示意直接有关的部分,而不追求各相关技术自身的完成性;二、尽量采用简单普及的方案进不方案,可以追求相关技术的先进性。例如在一些控制电路中,能用常规集成电路实现,而又面,既示避免各个相关技术“从头说起”的麻烦,从而达到精简内容突出重点的目的。而不行描屏有进行讨论。书中在处理相关领域技术方面采取了以下两条对策:一、侧重叙述屏为主线,介绍相关技术在LED显示屏中的应用,不采器件的方案。 LED电子显示屏控制原理

PIN光电二极管

PIN光电二极管 1. 工作原理 在上述的光电二极管的PN结中间掺入一层浓度很低的N型半导体,就可以增大耗尽区的宽度,达到减小扩散运动的影响,提高响应速度的目的。由于这一掺入层的掺杂浓度低,近乎本征(Intrinsic)半导体,故称I层,因此这种结构成为PIN光电二极管。I层较厚,几乎占据了整个耗尽区。绝大部分的入射光在I层内被吸收并产生大量的电子-空穴对。在I层两侧是掺杂浓度很高的P型和N型半导体,P层和N层很薄,吸收入射光的比例很小。因而光产生电流中漂移分量占了主导地位,这就大大加快了响应速度。 通过插入I层,增大耗尽区宽度达到了减小扩散分量的目的,但是过大的耗尽区宽度将延长光生载流子在耗尽区内的漂移时间,反而导致响应变慢,因此耗尽区宽度要合理选择。通过控制耗尽区的宽度可以改变PIN观点二极管的响应速度。 2. PIN光电二极管的主要特性 (1) 截止波长和吸收系数 只有入射光子的能量 PIN型光电二极管 也称PIN结二极管、PIN二极管,在两种半导体之间的PN结,或者半导体与金属之间的结的邻近区域,在P区与N区之间生成I型层,吸收光辐射而产生光电流的一种光检测器。具有结电容小、渡越时间短、灵敏度高等优点。 目录 PIN型光电二极管的结构 PIN结的导电特性 PIN型光电二极管的主要参数 PIN型光电二极管的典型应用

PIN型光电二极管的结构 pin结二极管的基本结构有两种,即平面的结构和台面的结 构,如图1所示。对于Si-pin133结二极管,其中i型层的载流子浓度很低(约为10cm数量级)电阻 率很高、(约为k-cm数量级),厚度W一般较厚(在10~200m 之间);i型层两边的p型和n型半导体的掺杂浓度通常很高(即为重掺杂)。 平面结构和台面结构的i型层都可以采用外延技术来制作,高掺杂的p+层可以采用热扩散或者离子注入技术来获得。平面结构二极管可以方便地采用常规的平面工艺来制作。而台面结构二极管还需要进行台面制作(通过腐蚀或者挖槽来实现)。台面结构的优点是:①去掉了平面结的弯曲部分,改善了表面击穿电压;②减小了边缘电容和电感,有利于提高工作频率。 PIN结的导电特性 pin 结就是在 pin 结的空间电荷区分别在 i 型层两边的界面处,而整个的 i 型层中没有空间电荷,但是存在由两边的空间电荷所产生出来的电场——内建电场,所以 pin 结的势垒区就是整个的 i 型层。 ①基本概念: 众所周知,一般 p-n 结的导电(较大的正向电流以及很小的反向电流)主要是由于少数载流子在势垒区以外的两边扩散区中进行扩散所造成的;扩散区是不存在电场的电中性区。在此实际上也就暗示着载流子渡越势垒区的速度很快,即忽略了存在强电场的势垒区的阻挡作用;当然,这种处理也只有在势垒区较薄(小于载流子的平均自由程)时才是允许的。而对于势垒区厚度较大(≈载流子平均自由程)的p-n 结,则就需要考虑载流子在渡越势垒区的过程中所造成的影响,这种影响主要就是将增加一定的产生-复合电流。

功率二极管结构和工作原理

功率二极管结构和工作原理 在本征半导体中掺入P型和N型杂质,其交界处就形成了PN结,在PN结的两端引出两个电极,并在外面装上管壳,就成为半导体二极管。如果一杂质半导体和金属形成整流接触,并在两端引出两个电极,则成为肖特基二极管。 二极管的结构和工作原理: PN结的形成及二极管的单向导电性描述如下: 如下图1所示,对于一块纯净的半导体,如果它的一侧是P区,另一侧为N区,则在P区和N区之间形成一交界面。N区的多子(电子)向P区运动,P区的多子(空穴)向N区运动,这种由于浓度差异而引起的运动称为“扩散运动”。扩散到P区的电子不断地与空穴复合,同时P区的空穴向N区扩散,并与N区中的电子复合。交界面两侧多子复合的结果就出现了由不能移动的带电离子组成的“空间电荷区”。N区一侧出现正离子区,P区一侧出现负离子区,正负离子在交界面两侧形成一个内电场。这个内电场对多子的扩散运动起阻碍作用的同时,又有利于N区的少子(空穴)进入P区,P区的少子(电子)进入N区,这种在内电场作用下少子的运动称为“漂移运动”。扩散运动有助于内电场的加强,内电场的加强将阻碍多子的扩散,而有助于少子的漂移,少子漂移运动的加强又将削弱内电场,又有助于多子的扩散,最终扩散运动和漂移运动必在一定温度下达到动态平衡。即在单位时间内P区扩散到N区的空穴数量等于由P区漂移到N区的自由电子数量,形成彼此大小相等,方向相反的漂移电流和扩散电流,交界面的总电流为零。在动态平衡时,交界面两侧缺少载流子的区域称为“耗尽层“,这就形成了PN结。

如图2所示,当PN结处于正偏,即P区接电源正端,N区接电源负端时,外加电场与PN 结内电场方向相反,内电场被削弱,耗尽层变宽,打破了PN结的平衡状态,使扩散占优势。多子形成的扩散电流通过回路形成很大的正向电流,此时PN结呈现的正向电阻很小,称为“正向导逋”。当PN结上流过的正向电流较小时,二极管的电阻主要是作为基片的低掺杂N区的欧姆电阻,其阻值较高且为常量,因而管压降随正向电流的上升而增加;当PN结上流过的正向电流较大时,注入并积累在低掺杂N区的少子空穴浓度将很大,为了维持半导体电中性条件,其多子浓度也相应大幅度增加,使得其电阻率明显下降,也就是电导率大大增加,这就是电导调制效应。电导调制效应使得PN结在正向电流较大时压降仍然很低,维持在1V左右,所以正向偏置的PN结表现为低阻态,为保护PN结,通常要在回路中串联一个限流电阻。

测电笔教案

测电笔 使学生了解用测电笔的构造、原理。从而学会正确及安全的使 用测电笔。 测电笔的正确使用方法及测电笔的用途 理论课新授演示 一、新课引入 电能是一把双刃剑,正确使用电工工具,就能控制它,让电能为人类造福。测电笔是电工必备的安全工具,称为“电工的眼睛”。现在我们共同来了解一下测电笔。 二、教学过程 一>、测电笔的构造是怎样的? 测电笔(又叫试电笔、验电笔)是一种常用的低压验电器,是用来检测电路或电器是否带电的低压测试工具,常见的有钢笔式和螺丝刀式两种。 测电笔一般由笔尖金属体、电阻、氖管、弹簧和笔尾金属体组成。 二>、它的及使用方法又是怎样的呢? 使用测电笔时,握笔的手必须接触笔尾的金属体。让笔尖金属体与被测物接触,如果氖管发光表明被测物带电或者是相线,氖管不发光则不能用手接触笔尖金属体,以免触电。 三>、测电笔的用途 1,分辨电源的相线和零线。 2.判断缺电是停电还是电源故障。 3.检测用电器外壳是否带电。 四>、测电笔的使用(讲授、演示)

工具:测电笔1把,螺口灯泡、插座、开关、保险盒各1个。 步骤: 1.检查测电笔是否完好,各部件是否齐全且安装顺序是否正确。 2.相互检查测电笔的握法是否正确,用测电笔在确定带电的插座上试测,判断测电笔是否完好。 3.在电源插座上判断相线插孔和零线插孔。 五>、学生上台演示测电笔的使用。 三、课后小结 今天我们主要学习了触电的危害性,及怎样做到安全用电的知识,同学们在生活中一定要注意遵守用电规则,不要大意。 四、作业 自己用测电笔试测电源插座上的相线插孔和零线插孔。以螺口灯头在灯泡发光时是否带电。 附、板书 测电笔 检查测电笔: 1、测电笔外壳是否完好。 2、电阻是否丢失。 3、安装顺序不能搞错。

LED发光二极管工作原理、特性及应用演示教学

LED发光二极管工作原理、特性及应用 半导体发光器件包括半导体发光二极管(简称LED)、数码管、符号管、米字管及点阵式显示屏(简称矩阵管)等。事实上,数码管、符号管、米字管及矩阵管中的每个发光单元都是一个发光二极管。 一、半导体发光二极管工作原理、特性及应用 (一)LED发光原理 发光二极管是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN结。因此它具有一般P-N结的I-N特性,即正向导通,反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。在正向电压下,电子由N区注入P区,空穴由P区注入N区。进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光,如图1所示。 假设发光是在P区中发生的,那么注入的电子与价带空穴直接复合而发光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、介带中间附近)捕获,而后再与空穴复合,每次释放的能量不大,不能形成可见光。发光的复合量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN结面数μm以内产生。

理论和实践证明,光的峰值波长λ与发光区域的半导体材料禁带宽度Eg有关,即λ≈1240/Eg(mm)式中Eg的单位为电子伏特(eV)。若能产生可见光(波长在380nm紫光~780nm红光),半导体材料的Eg应在3.26~1.63eV之间。比红光波长长的光为红外光。现在已有红外、红、黄、绿及蓝光发光二极管,但其中蓝光二极管成本、价格很高,使用不普遍。 (二)LED的特性 1.极限参数的意义 (1)允许功耗Pm:允许加于LED两端正向直流电压与流过它的电流之积的最大值。超过此值,LED发热、损坏。 (2)最大正向直流电流IFm:允许加的最大的正向直流电流。超过此值可损坏二极管。 (3)最大反向电压VRm:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏。 (4)工作环境topm:发光二极管可正常工作的环境温度范围。低于或高于此温度范围,发光二极管将不能正常工作,效率大大降低。 2.电参数的意义 (1)光谱分布和峰值波长:某一个发光二极管所发之光并非单一波长,其波长大体按图2所示。由图可见,该发光管所发之光中某一波长λ0的光强最大,该波长为峰值波长。 2)发光强度IV:发光二极管的发光强度通常是指法线(对圆柱形发光管是指其轴线)方向上的发光强度。若在该方向上辐射强度为(1/683)W/sr时,则发光1坎德拉(符号为cd)。由于一般LED的发光二强度小,所以发光强度常用坎德拉(mcd)作单位。 (3)光谱半宽度Δλ:它表示发光管的光谱纯度.是指图3中1/2峰值光强所对应两波长之间隔. (4)半值角θ1/2和视角:θ1/2是指发光强度值为轴向强度值一半的方向与发光轴向(法向)的夹角。半值角的2倍为视角(或称半功率角)。 图3给出的二只不同型号发光二极管发光强度角分布的情况。中垂线(法线)AO的坐标为相对发光强度(即发光强度与最大发光强度的之比)。显然,法线方向上的相对发光强度为1,离开法线方向的角度越大,相对发光强度越小。由此图可以得到半值角或视角值。

光电二极管教程光电二极管术

光电二极管教程 工作原理 结光电二极管是一种基本器件,其功能类似于一个普通的信号二极管,但在结半导体的耗尽区吸收光时,它会产生光电流。光电二极管是一种快速,高线性度的器件,在应用中具有高量子效率,可应用于各种不同的场合。 根据入射光确定期望的输出电流水平和响应度是有必要的。图1描绘了一个结光电二极管模型,它由基本的独立元件组成,这样便于直观了解光电二极管的主要性质,更好地了解Thorlabs光电二极管工作过程。 图1: 光电二极管模型 光电二极管术 响应度 光电二极管的响应度可以定义为给定波长下,产生的光电流(I PD)和入射光功率(P)之比: 工作模式(光导模式和光伏模式) 光电二极管可以工作在这两个模式中的一个: 光导模式(反向偏置)或光伏模式(零偏置)。工作模式的选择根据应用中速度和可接受暗电流大小(漏电流)而定。 光导模式

处于光导模式时,有一个外加的偏压,这是我们DET系列探测器的基础。电路中测得的电流代表器件接受到的 光照; 测量的输出电流与输入光功率成正比。外加偏压使得耗尽区的宽度增大,响应度增大,结电容变小,响应 度趋向直线。工作在这些条件下容易产生很大的暗电流,但可以选择光电二极管的材料以限制其大小。(注: 我 们的DET器件都是反向偏置的,不能工作在正向偏压下。) 光伏模式 光伏模式下,光电二极管是零偏置的。器件的电流流动被限制,形成一个电压。这种工作模式利用了光伏效应, 它是太阳能电池的基础。当工作在光伏模式时,暗电流最小。 暗电流 暗电流是光电二极管有偏压时的漏电流. 工作在光导模式时, 容易出现更高的暗电流, 并与温度直接相关. 温度 每增加 10 °C, 暗电流几乎增加一倍, 温度每增加 6 °C, 分流电阻增大一倍. 显然, 应用更大的偏压会降低结电 容, 但也会增加当前暗电流的大小. 当前的暗电流也受光电二极管材料和有源区尺寸的影响. 锗器件暗电流很大, 硅器件通常比锗器件暗电流小.下 表给出了几种光电二极管材料及它们相关的暗电流, 速度, 响应波段和价格。 Material Dark Current Speed Spectral Range Cost Silicon (Si) Low High Speed Visible to NIR Low Germanium (Ge) High Low Speed NIR Low Gallium Phosphide (GaP) Low High Speed UV to Visible Moderate Indium Gallium Arsenide (InGaAs) Low High Speed NIR Moderate Indium Arsenide Antimonide (InAsSb) High Low Speed NIR to MIR High High High Speed NIR High Extended Range Indium Gallium Arsenide (InGaAs) High Low Speed NIR to MIR High Mercury Cadmium Telluride (MCT, HgCdTe) 结电容 结电容(C j)是光电二极管的一个重要性质,对光电二极管的带宽和响应有很大影响。需要注意的是,结区面积 大的二极管结体积也越大,也拥有较大的充电电容。在反向偏压应用中,结的耗尽区宽度增加,会有效地减小结 电容,增大响应速度。 带宽和响应 负载电阻和光电二极管的电容共同限制带宽。要得到最佳的频率响应,一个50欧姆的终端需要使用一条50欧姆 的同轴电缆。带宽(f BW)和上升时间响应(t r)可以近似用结电容(C j)和负载电阻(R load)表示:

稳压二极管工作原理

稳压二极管工作原理 一、稳压二极管原理及特性 一般三极管都是正向导通,反向截止;加在二极管上的反向电压如果超过二极管的承受能力,二极管就要击穿损毁。但是有一种二极管,它的正向特性与普通二极管相同,而反向特性却比较特殊:当反向电压加到一定程度时,虽然管子呈现击穿状态,通过较大电流,却不损毁,并且这种现象的重复性很好;只要管子处在击穿状态,尽管流过管子的电在变化很大,而管子两端的电压却变化极小起到稳压作用。这种特殊的二极管叫稳压管。 稳压管的型号有2CW、2DW 等系列,它的电路符号如图5-17所示。 稳压管的稳压特性,可用图5一18所示伏安特性曲线很清楚地表示出来。 稳压管是利用反向击多区的稳压特性进行工作的,因此,稳压管在电路中要反向连接。稳压管的反向击穿电压称为稳定电压,不同类型稳压管的稳定电压也不一

样,某一型号的稳压管的稳压值固定在口定范围。例如:2CW11的稳压值是3.2伏到4.5伏,其中某一只管子的稳压值可能是3.5伏,另一只管子则可能是4,2伏。 在实际应用中,如果选择不到稳压值符合需要的稳压管,可以选用稳压值较低的稳压管,然后串联几只硅二极管“枕垫”,把稳定电压提高到所需数值。这是利用硅二极管的正向压降为0.6~0.7伏的特点来进行稳压的。因此,二极管在电路中必须正向连接,这是与稳压管不同的。 稳压管稳压性能的好坏,可以用它的动态电阻r来表示: 显然,对于同样的电流变化量ΔI,稳压管两端的电压变化量ΔU越小,动态电阻越小,稳压管性能就越好。 稳压管的动态电阻是随工作电流变化的,工作电流越大,动态电阻越小。因此,为使稳压效果好,工作电流要选得合适。工作电流选得大些,可以减小动态电阻,但不能超过管子的最大允许电流(或最大耗散功率)。各种型号管子的工作电流和最大允许电流,可以从手册中查到。 稳压管的稳定性能受温度影响,当温度变化时,它的稳定电压也要发生变化,常用稳定电压的温度系数来表示,这种性能例如2CW19型稳压管的稳定电压Uw= 12伏,温度系数为0.095%℃,说明温度每升高1℃,其稳定电压升高11.4毫伏。为提高电路的稳定性能,往往采用适当的温度补偿措施。在稳定性能要求很高时,需使用具有温度补偿的稳压,如2DW7A、2DW7W、2DW7C 等。 二、稳压二极管稳压电路图 由硅稳压管组成的简单稳压电路如图5- l9(a)所示。硅稳压管DW与负载Rfz,并联,R1为限流电阻。

光电二极管的工作原理与应用

光电二极管的工作原理与应用 学生:李阳洋王煦何雪瑞黄艺格指导老师:陈永强 摘要:光电二极管是结型器件。当光照射在P-N结时,光子被吸收,产生电子-空穴对,电子和空穴在结区被结电场所收集,在外电路形成光电流。为了保证绝大部分响应波长的入射光能在结区吸收,这就要求空间电荷区有足够宽度,所以外电路加有足够的反偏电压。 关键词:光电二极管;光电流;暗电流;反偏电压;光功率 1、引言 随着科学技术的发展,在信号传输和存储等环节中,越来越多地应用光信号。采用光电子系统的突出优点是,抗干扰能力较强、传送信息量大、传输耗损小且工作可靠。光电二极管是光电子系统的电子器件。光电二极管(photodiode)是一种能够将光根据使用方式转换成电流或者电压信号的光探测器。常见的传统太阳能电池就是通过大面积的光电二极管来产生电能。 2、工作原理 光电二极管是将光信号转换成电流或电压信号的特殊二极管,它与常规二极管结构上基本相似,都具有一个PN结,但光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。其基本原理是当光照在二极管上时,被吸收的光能转换成电能。光电二极管工作在反向电压作用下,只通过微弱的电流(一般小于0.1微安),称为暗电流,有光照时,携带能量的光子进入PN结后,把能量传给共价键上的电子,使有些电子挣脱共价键,而产生电子-空穴对,称为光生载流子,因为光生载流子的数目是有限的,而光照前多子的数目远大于光生载流子的数目,所以光生载流子对多子的影响是很小的,但少子的数目少有比较大的影响,这就是为什么光电二极管是工作在反向电压下而不是正向电压下,于是在反向电压作用下被光生载流子影响而增加的少子参加漂流运动,在P区,光生电子扩散到PN结,如果P区厚度小于电子扩散长度,那么大部分光生电子将能穿过P区到达PN结,在N区也是相同的道理,也因此光电二极管在制作时,PN结的结深很浅,以促使少子的漂移。综上若光的强度越大,反向电流也就越大,这种特性称为光导电,而这种现象引起的电流称为光电流。总的来说光电二极管的工作是一个吸收的过程,它将光的变化转换成反向电流的变化,光照产生电流和暗电流的综合就是光电流,因此光电二极管的暗电流因尽量最小化来提器件对光的灵敏度,光的强度与光电流成正比,因而就可以把光信号转换成电信号。 图1基本工作原理

二极管入门知识二极管结构和工作原理

二极管入门知识二极管结 构和工作原理 This model paper was revised by the Standardization Office on December 10, 2020

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜 和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会 听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子 PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低

电笔的工作原理

电笔的工作原理 2007-12-08 13:26 因为电流根本不需流经大地.电工即使离地高空作业时用试电笔测火 线,氖泡依然会发光.我是一名电工,也是一名物理教师. 参照蓝色冲击所给电路图,道理如下: 1.惰性气体特性: 加一定电压时发生电离,气体中产生自由电荷,自由 电荷定向移动形成电流.电离时伴生辉光. 2.人体是导体,也可以视为一个大电容,有充电放电本领. 3.火线与人体间的电场随交流电方向的改变而不断改变方向,并给氖泡感生一个不断改变方向的电压,从而导致人体电容不断地充电放电,氖 泡中的感应电流得以维持,并激发出辉光. 4.辉光电流微弱,无伤人体. 5.零线中也有交变电流,但相对于人体的电势为O伏,不能感生电压电 流. 按图所示,虚线框内部分表示试电笔的结构。R1表示人体的电阻,它 的下端接了地线,表示人站在地上。先把试电笔接向触点1,这时相当于试电笔笔尖接到零线上,试电笔两端电压为零,氖管不发光。再把试电笔接向触点2,这时相当于试电笔笔尖接到火线上,加于氖管的电压超过它的起辉电压(约70伏特)发出辉光。 测电笔是广大电工经常使用的工具之一,用来判别物体是否带电。它的内部构造是一只有两个电极的灯泡,泡内充有氖气,俗称氖泡,它的一极接到笔尖,另一极串联一只高电阻后接到笔的另一端。当氖泡的两极间电压达到一定

值时,两极间便产生辉光,辉光强弱与两极间电压成正比。当带电体对地电压大于氖泡起始的辉光电压,而将测电笔的笔尖端接触它时,另一端则通过人体接地,所以测电笔会发光。测电笔中电阻的作用是用来限制流过人体的电流,以免发生危险。 测电笔除了可以判断物体是否带电外,还有以下几个用途:(1)可以用来进行低压核相,测量线路中任何导线之间是否同相或异相。具体方法是: 站在一个与大地绝缘的物体上,双手各执一支测电笔,然后在待测的两根导线上进行测试,如果两根测电笔发光很亮,则这两根导线为异相;反之,则为同相,它是利用测电笔中氖泡两极间电压差值与其发光强弱成正比的原理来进行判别的。 (2)可以用来判别交流电和直流电。在用测电笔进行测试时,如果测电笔氖泡中的两个极都发光,就是交流电;如果两个极中只有一个极发光,则是直流电。 (3)可以判断直流电的正、负极。将测电笔接在直流电路中测试,氖泡发亮的那一极就是负极,不发亮的一极是正极。 (4)可用来判断直流是否接地。在对地绝缘的直流系统中,可站在地上用测电笔接触直流系统中的正极或负极,如果测电笔氖泡不亮,则没有接地现象。如果氖泡发亮,则说明有接地现象,其发亮如在笔尖端,则说明为正极接地。如发亮在手指端,则为负极接地。但是必须指出的是在带有接地监察继电器的直流系统中,不可采用此方法判断直流系统是否发生接地。 测电笔是利用导线的对地电容原理做的,和人体构成的电容和对地电容是很接近的,所以,在人离开地面电笔还会亮。 氖泡上通过极小的电流,就会发光。 (1)跳起来的人体是个孤立电容器,虽然容量极小,还是有电容,接入交流电,会有微小电流进出人体。 (2)人体处在不是非常干燥的空气中,在交变电场作用下,有少量“游离”电荷进出人体,形成微弱电流。

LED数码管的结构及工作原理

LED数码管的结构及工作原理 LED数码管(LED Segment Displays)是由多个发光二极管封装在一起组成“8”字型的器件,引线已在内部连接完成,只需引出它们的各个笔划,公共电极。LED数码管常用段数一般为7段有的另加一个小数点,还有一种是类似于3位“+1”型。位数有半位,1,2,3,4,5,6,8,10位等等....,LED数码管根据LED的接法不同分为共阴和共阳两类,了解LED的这些特性,对编程是很重要的,因为不同类型的数码管,除了它们的硬件电路有差异外,编程方法也是不同的。图2是共阴和共阳极数码管的内部电路,它们的发光原理是一样的,只是它们的电源极性不同而已。颜色有红,绿,蓝,黄等几种。LED数码管广泛用于仪表,时钟,车站,家电等场合。选用时要注意产品尺寸颜色,功耗,亮度,波长等。下面将介绍常用LED数码管内部引脚图。 图1 这是一个7段两位带小数点10引脚的LED数码管 图2 引脚定义

每一笔划都是对应一个字母表示 DP 是小数点. 数码管分为共阳极的LED 数码管、共阴极的LED 数码管两种。下图例举的是共阳极的LED 数码管,共阳就是7段的显示字码共用一个电源的正。led 数码管原理图示意: 图3 引脚示意图 从上图可以看出,要是数码管显示数字,有两个条件:1、是要在VT 端(3/8脚)加正电源;2、要使(a,b,c,d,e,f,g,dp)端接低电平或“0”电平。这样才能显示的。 共阳极LED 数码管的内部结构原理图图4: 图4 共阳极LED 数码管的内部结构原理图 a b c d e f g dp

共阴极LED数码管的内部结构原理图: a b c d e f g dp 图5 共阴极LED数码管的内部结构原理图 表1.1 显示数字对应的二进制电平信号 LED数码管要正常显示,就要用驱动电路来驱动数码管的各个段码,从而显示出我们要的数位,因此根据LED数码管的驱动方式的不同,可以分为静态式和动态式两类。 A、静态显示驱动:

二极管工作原理学习

二级管工作原理(PN结原理)学习 0、小叙闲言 并没有进一步研究一下,今天写下这篇文章,主要是介绍二极管的工作原理,为后面的三极管和MOSFET工作原理的理解打下基础,然后,应该能理解放大器的工作原理,最后也就也能解决上两篇文章提出的问题了。 1、PN结形成 P(Positive)型和N(Negative)型可根据它们的载流子(载流子说得比较学术,其实就是导体里面能流动的带电粒子,为电子或者是空穴,空穴可以看作是带正电的电子)来区分。对半导体材料(一般应该是硅Si)参入不同的杂质,就可以形成P型半导体和N型半导体。P型半导体里面能够流动的粒子是空穴,N型半导体里面能够流动的粒子是电子。它们的结构如下图1所示,对于它们俩如何参杂以形成不同的半导体,我们可没必要再研究下去,

除非你是专门搞半导体材料的。P型半导体中的大红圆是负离子,由于材料的性质,它是不可移动的,而其中的小绿圆(空穴),是可移动的,这一点很重要,请务必记住;同理N型半导体,它里面的大绿圆(正离子)不可自由移动,而小红圆(电子)可自由移动。 图1 P型和N型半导体结构

简单了解了P型半导体和N型半导体之后,我们常说的PN结是如何形成的呢,且看下方图2动图。当P型半导体和N型半导体接合在一起的时候,由于P型半导体中空穴浓度高,而N型半导体中电子浓度高,因此会形成一个扩散运动,P型半导体中空穴会向它浓度低的地方扩散,从而扩散到N型区,N型半导体的电子也会向它浓度低的地方扩散,从而扩散到P型区。这样一来,P型区剩下不能自由移动的负离子,而N型区剩下不能自由移动的正离子,一正一负,在PN结内部形成了一个从左往右的内电场,基本上这个内电场就体现PN结的工作特性。另外有一点要说明的是,PN结只是局部带电,即P型区呈负电,而N型区呈负电,但是它们俩一中和,整体上是呈中性的。

验电笔的工作原理及使用注意事项

验电笔的工作原理及使用注意事项 普通低压验电笔的工作原理:当测试带电体时,金属探头触及带电导体,并用手触及验电笔后端的金属挂钩或金属片,此时电流路径是通过验电笔端、氖泡、电阻、人体和大地形成回路而使氖泡发光。只要带电体育大地之间存在一定的电位差(通常是60kv以上),验电笔就会发出辉光。如果氖泡不亮,则表明该物体不带电。若是交流电,氖泡两极发光;若是直流电,则只有一极发光。 验电笔使用注意事项1.区分设备漏电与静电。有些设备金属外壳没有接地或接零保护。验电时氖管也发亮,但这种带电,一般不构成触电危险。遇到这种情况,电工可用试验灯、万用表电阻挡、兆欧表等丈量来加以区分。除此之外,还可以用电笔区分设备是漏电还是带静电:用电笔接触带电设备,如果氖管闪亮一下,立刻就熄灭,证明设备带的静电;如果氖管长时间闪亮则是漏电。 2.采用正确验电方法。验电时。拇指和中指握住笔身,使氖管小窗背光朝自己,无名指和小指指尖放在手心,笔尖接触到被测试的设备上。若电笔的氖管发光,则说明被测试设备带电,并且氖管越亮,电压越高;若氖管不发光,则说明被测试设备不带电。 3.额定电压范围使用。普通验电笔丈量电压范围在60伏~500伏之间。如果用于测试低于60伏的电压。会造成误判断;用于测试高于500伏的电压,容易造成人身触电。因此,验电笔只允许在规定的额定电压范围内使用。 4.验电时须采取防触电和短路措施。使用验电笔时。否则,会造成人身触电事故。使用螺丝刀式验电笔时,其上较长的笔头部分,应套上绝缘塑料套管,只留出10毫米左右金属头作测试用。因为低压设备相间及相对地之间的距离较小,如果不采取上述防护措施,极易引起相间及相对地短路。用验电笔验电时,操作人员应坚持操作稳定,不能将笔尖同时接触在被测的两线上,特别是检验靠得很近的接线桩头时,更应格外小心,以免误碰、误触而造成短路伤人。另外,为预防因使用不合格验电笔导致触电事故,验电时,专业电工最好穿绝缘鞋,并站在干燥的木板、板凳等绝缘物体上。

LED工作原理

LED 工作原理 液晶是一种介乎于液体和晶体之间的物质,其显示的原理是通过给液晶施加不同的电压来改变其分子排列状态,从而控制光线的通过量,以便显示多种多样的图像。而液晶自身并不会发光,它只是控制光线的通过与否,因此所有的液晶面板都需要背光源来提供照明。 图1 液晶驱动原理 实际上,LED 也就是我们通常所说的发光二极管,通俗些讲,它就是在PN 结中注入载流子,少数载流子与多数载流子复合后,释放出能量,表现以光的形式,从而实现电致发光。它也并非什么新物件了,这些年已经被应用在户外广告、标牌、指示灯、汽车前大灯、电器按键背光源等多个方面。 发光二极管,是一种固态的半导体器件,它可以直接把电转化为光。LED 的心脏是一个半导体的晶片,晶片的一端附在一个支架上,一端是负极,另一端连接电源的正极,使整个晶片被环氧树脂封装起来。半导体晶片由两部分组成,一部分是P 型半导体,在它里面空穴占主导地位,另一端是N 型半导体,在这边主要是电子。但这两种半导体连接起来的时候,它们之间就形成一个P-N 结。当电流通过导线作用于这个晶片的时候,电子就会被推向P 区,在P 区里电子跟空穴复合,然后就会以光子的形式发出能量,这就是LED 发光的原理。 Field OFF Field ON 0//>-=?⊥εεε

图4 LED背光光源的工作原理 更重要的是,LED可发出从紫外到红外不同波段、不同颜色的光线,早些时候,LED 还只能发出单波长光线,还不能像白炽灯那样工作,甚至只有蓝、红、绿等颜色。 如果只是这样的话,LED无法被做成白光源,也就没法被应用为液晶电视的背光源了。而这些年,众多液晶电视厂商也都在这方面动脑筋,着重开发白光LED背光源。在这一方面,日本企业一直都是先行者,它们在1996年就提出了些解决方案,以日亚化学为例,它们提出的方案就是在蓝色LED上涂抹黄色荧光粉实现白光输出。 LED背光的优势点: 首先,采用了LED 背光,液晶面板的体积将进一步缩小;其次,LED是由众多栅格状的LED 组成,每个“格子”中都拥有一个LED,这样LED 背光就能实现真正的光源平面化;我们知道,平面化光源不仅有优异的亮度均匀性,还不需要复杂的光路设计,应用了L ED的液晶电视就可以被做得更薄,还能实现真正的光源平面化另外,在发光寿命方面,LE D背光源技术更是可以超出传统的CCFL许多。咱们知道,普通的CCFL 背光源的使用寿命一般在3万小时左右,即便是顶级的CCFL背光源的寿命也不过6万小时。而LED 背光则完全没有这样的问题,现阶段白色LED 背光的寿命已经高达10万小时,很多专家还提出这一成绩甚至有进一步发展的空间,消费者即使是24小时不间断使用,LED液晶电视也

相关文档
最新文档