溶剂的分类
溶剂概述和溶剂效应

溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作用做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相色谱中的作用。
关键词:溶剂溶剂效应吸收光谱液相色谱1,溶剂1.1溶剂的定义溶剂是一种可以溶化固体,液体或气体溶质的液体,继而成为溶液,最常用的溶剂是水。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和无机溶剂有机溶剂是一大类在生活和生产中广泛应用的有机化合物,分子量不大,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳香烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对人体有一定毒性。
(本文主要概述有机溶剂在化学反应以及波谱中的应用)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚至反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分子和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应用2.2.1溶剂效应在紫外吸收光谱中的应用[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采用的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
一般在气态或者非极性溶剂(如正己烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分子的相互作用增强,使谱带的精细结构变得模糊,以至完全消失成为平滑的吸收谱带。
这一现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显示振动跃迁的精细结构,而在乙醇溶液中,苯酚的吸收带几乎变得平滑的曲线,如图所示2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增大而向蓝移。
一般来说,从以环己烷为溶剂改为以乙醇为溶剂,会使该谱带蓝移7nm:如改为以极性更大的水为溶剂,则将蓝移8nm。
增大溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发生n→π*跃迁的分子,都含有非键电子。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电子跃迁到π*分子轨道时,氧的电子转移到碳上,使得羰基的激发态的极性减小,即Cδ+=Oδ-(基态)→C=O(激发态)。
有机溶剂分类详细介绍不同溶剂的各类参数

有机溶剂1. 有机溶剂分类 (1)烃类溶剂 (1)卤代唆溶剂 (3)醇类溶剂 (4)酮类溶剂 (6)酯类溶剂 (6)酚类溶剂 (6)2.溶剂选择的三条规律 (6)3.有机溶剂的溶解性 (7)溶解度参数 (7)常常利用溶剂溶解性和毒性 (8)4.有机溶剂的极性 (12)有机溶剂的极性表 (12)常常利用溶剂的极性顺序 (14)混合有机溶剂极性顺序 (14)试剂极性从小到大:烷、烯、醚、酯、酮、醛、胺、醇和酚、酸 (14)5.有机溶剂的毒性 (14)6. 常常利用有机溶剂的纯化方式 (16)1. 有机溶剂分类烃类溶剂1.烃只含有碳氢两种元素的有机化合物叫烃。
按照结构将烃类分为脂肪烃和芳香烃。
脂肪烃包括脂肪链烃和脂环烃。
开链结构的脂肪烃按照结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。
芳香烃是含有苯环特殊结构的烃类。
按照具体结构分为单环芳烃、多环芳烃和稠环芳烃。
烃类溶剂按照来源分为两类:由石油分馏取得的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制取得的成份单一烃类溶剂是烃的纯溶剂。
纯溶剂价钱较高,通常只用于一些特殊用途中。
2.溶剂油石油是由多种烃类组成的混合物,通过度馏处置取得不同沸点范围的产品。
按照沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。
其中沸点范围在30~90℃以戊烷和己烷为主要成份的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。
在工业生产中常做溶剂利用,称为溶剂油或溶剂汽油。
最近几年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。
煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包括的烃类成份复杂。
在必然情况下也可以做溶剂利用,如美国干洗业利用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。
因此广义上溶剂油包括多种沸程范围的烃类混合物和己烷、苯、甲苯、二甲苯纯烃类溶剂。
ich 溶剂分类

ich 溶剂分类
ich(国际化学家联合会)是一个专门从事化学领域研究的组织,该组织制定了一种溶剂分类系统,以方便化学家在研究中使用。
这种分类系统包括三个主要分类,分别是极性、极性-非极性和非极性。
极性溶剂
极性溶剂是指在分子中带有极性键的溶剂,它们与其他带有极性键的化合物容易发生反应。
这类溶剂通常具有较高的介电常数和比表面积,使它们在溶液中具有强烈的溶剂能力。
常见的极性溶剂包括:水、醇类、酮类、醛类、羧酸类、酰胺类、亚胺类、硫醇类等。
极性-非极性溶剂
极性-非极性溶剂是指既有极性键又有非极性键的溶剂,可在溶液中扮演两种不同的角色。
它们既可以溶解极性化合物,又可以溶解非极性化合物。
常见的极性-非极性溶剂包括:丙酮、乙醚、二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、甲醇和乙醇等。
非极性溶剂
非极性溶剂是指在分子中没有极性键的溶剂,它们可以与其他非极性化合物溶解。
这类溶剂通常具有较低的介电常数和比表面积,因此它们在溶液中溶解非极性化合物时效果更好。
常见的非极性溶剂包括:石油醚、氯仿、二氯甲烷、乙酸乙酯、环己烷、正己烷、苯和甲苯等。
总之,ich 溶剂分类是化学家在研究中常用的一种分类方式,不
同的溶剂在不同的研究领域中扮演着不同的角色。
对化学家来说,熟练掌握ich 溶剂分类对于化学研究的开展有着重要的意义。
常用有机溶剂分类大全

有机溶剂分类一、烃类溶剂1.烃只含有碳氢两种元素的有机化合物叫烃。
根据结构将烃类分为脂肪烃和芳香烃。
脂肪烃包括脂肪链烃和脂环烃。
开链结构的脂肪烃根据结构的饱和程度分为饱和链烃(烷烃)和不饱和链烃(烯烃和炔烃)。
芳香烃是含有苯环特殊结构的烃类。
根据具体结构分为单环芳烃、多环芳烃和稠环芳烃。
烃类溶剂根据来源分为两类:由石油分馏得到的烃类混合物溶剂叫石油溶剂油,简称溶剂油;由化工原料合成或精制得到的成分单一烃类溶剂是烃的纯溶剂。
纯溶剂价格较高,通常只用于一些特殊用途中。
2.溶剂油石油是由多种烃类组成的混合物,经过分馏处理得到不同沸点范围的产品。
根据沸,抿范围通常把石油产品分为石油醚、汽油、煤油、柴油、润滑油、石蜡和沥青。
其中沸点范围在30~90℃以戊烷和己烷为主要成分的石油醚和沸点范围在40~200℃烃分子含碳数在4~12的汽油,有很好的溶解性能。
在工业生产中常做溶剂使用,称为溶剂油或溶剂汽油。
近年来还开发出相当于煤油乃至轻柴油馏分做高沸点溶剂油,拓宽了溶剂油的概念。
煤油是石油分馏时,沸点在175~325℃范围的馏分,由于馏程长所包含的烃类成分复杂。
在一定情况下也可以做溶剂使用,如美国干洗业使用的干洗溶剂汽油(stoddard solvent)实际上是一种不易燃的煤油溶剂。
因此广义上溶剂油包括多种沸程范围的烃类混合物以及己烷、苯、甲苯、二甲苯纯烃类溶剂。
为了叙述上的方便,本书介绍的溶剂油是指由石油分馏得到的烃类混合物溶剂。
(1)溶剂油按沸程分类根据分馏过程的沸程,溶剂油大致分为三类:把沸程在100℃凋以下的称为低沸点溶剂油,如工业上的6号抽提溶剂油,沸程为60~90℃;把沸程在100~150℃的称为中沸点溶剂油,如橡胶溶剂油,沸程在80~120℃;把沸程高于150℃的称为高调沸点溶剂油,如油漆溶剂油,沸程为140—200℃,油墨溶剂油干点达360℃都属于高沸点溶剂油。
从沸程范围看,溶剂油大多数属于汽油馏分。
常用有机溶剂分类

常用有机溶剂分类及干燥第一类溶剂是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂。
在可能的情况下,应避免使用这类溶剂。
如果在生产治疗价值较大的药品时不可避免地使用了这类溶剂,除非能证明其合理性,残留量必须控制在规定的范围内,如:苯(2ppm)、四氯化碳(4ppm )、1 , 2 —二氯乙烷(5ppm )、1, 1—二氯乙烷(8ppm)、1,1,1-三氯乙烷(1500ppm)。
第二类溶剂是指无基因毒性但有动物致癌性的溶剂。
按每日用药10 克计算的每日允许接触量如下:2—甲氧基乙醇(50ppm )、氯仿(60ppm)、1 ,1 ,2—三氯乙烯(80ppm)、1,2—二甲氧基乙烷(100ppm)、1,2,3,4—四氢化萘(100ppm)、2—乙氧基乙醇(160ppm)、环丁砜(160ppm)、嘧啶(200ppm)、甲酰胺(220ppm)、正己烷(290ppm)、氯苯(360ppm)、二氧杂环己烷(380ppm)、乙腈(410ppm)、二氯甲烷(600ppm)、乙烯基乙二醇(620ppm)、N, N —二甲基甲酰胺(880ppm)、甲苯(890ppm)、N,N —二甲基乙酰胺(1090ppm)、甲基环己烷(1180ppm)、1 , 2 —二氯乙烯(1870ppm )、二甲苯(2170ppm )、甲醇(3000ppm )、环己烷(3880ppm)、N—甲基吡咯烷酮(4840ppm)、。
第三类溶剂是指对人体低毒的溶剂。
急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据。
在无需论证的情况下,残留溶剂的量不高于%是可接受的,但高于此值则须证明其合理性。
这类溶剂包括:戊烷、甲酸、乙酸、乙醚、丙酮、苯甲醚、1—丙醇、2—丙醇、1—丁醇、2—丁醇、戊醇、乙酸丁酯、三丁甲基乙醚、乙酸异丙酯、甲乙酮、二甲亚砜、异丙基苯、乙酸乙酯、甲酸乙酯、乙酸异丁酯、乙酸甲酯、3-甲基-1-丁醇、甲基异丁酮、2-甲基-1-丙醇、乙酸丙酯。
溶剂分类、纯化、选择原则总结

溶剂分类、纯化、选择原则的介绍。
1、溶剂分类原则:①按化学组成分类:分为有机溶剂和无机溶剂。
②按极性分类:分为极性溶剂和非极性溶剂,对于常用溶剂的极性有:水>甲酸>甲醇>乙酸>乙醇>异丙醇>乙腈>DMSO>DMF>丙酮>HMPA>CH2Cl2>吡啶>氯仿>氯苯>THF>二氧六环>乙醚>苯>甲苯>CCl4>正辛烷>环己烷>石油醚。
③按结构分类,有机溶剂按化学结构可大致分为十类:(1) 芳香烃类:苯、甲苯等;(2) 脂肪烃类:戊烷、己烷等;(3) 脂环烃类:环己烷、环己酮等;(4) 卤化烃类:氯苯、二氯甲烷等;(5) 醇类:甲醇、乙醇等;(6) 醚类:乙醚、环氧丙烷等;(7) 酯类:乙酸乙酯、苯甲酸乙酯等;(8) 酮类:丙酮、甲基丁酮等;(3) 多羟基化合物及衍生物:乙二醇单甲醚、丙三醇等;(10) 其他:乙腈、吡啶等。
④按毒性分类:(1)第一类:是指已知可以致癌并被强烈怀疑对人和环境有害的溶剂,如:苯、四氯化碳、氯乙烷类等;(2)第二类:是指无基因毒性但有动物致癌性的溶剂,如:氯仿、二甲苯、甲醇、环己烷、N-甲基吡咯烷酮等、正己烷、氯苯;(3)第三类:是指对人体低毒的溶剂。
急性或短期研究显示,这些溶剂毒性较低,基因毒性研究结果呈阴性,但尚无这些溶剂的长期毒性或致癌性的数据,如:乙醚、丙酮、苯甲醚、乙酸乙酯、甲酸乙酯、甲基异丁酮等。
⑤按沸点高低的分类:(1)低沸点溶剂(沸点在100℃以下)这类溶剂的特点是蒸发速度快,易干燥、粘度低,大多数具有芳香气味。
属于这类溶剂的一般是活性溶剂或稀释剂。
例如:甲醚、甲酸甲酯、丙酮、苯等等;(2)中沸点溶剂(沸点在100~150℃)这类溶剂用于硝基喷漆,流平性好。
例如:丁醇、甲苯、环己酮等等;(3)高沸点溶剂(沸点在150~200℃)这类溶剂的特点是蒸发速度慢,溶解能力强,作涂料用时涂膜流动性好,可以防止沉淀合涂膜发白。
溶剂极性顺序表
溶剂极性顺序表在化学实验和工业生产中,溶剂是必不可少的一种物质。
然而不同的化学反应和分析测试所需要的溶剂极性不同,因此,选择合适的溶剂十分重要。
本文将对常见的有机溶剂进行分类和介绍,帮助读者更好地了解和选择不同极性的溶剂。
一、无极性溶剂1、正庚烷正庚烷(C8H18)是一种无色液体,常温下呈现极佳的无极性特性。
正庚烷的分子式中只有碳和氢元素,分子内没有极性键,因此它不会形成氢键,具有非常低的介电常数。
它通常用作有机反应和萃取中的溶剂。
2、苯苯(C6H6)是一种无色液体,通常具有良好的附加溶解性,能溶于大部分无极性溶剂。
苯分子呈芳香性结构,分子中所有原子的电负性基本相等,没有明显的极性。
苯的主要应用领域包括有机化学合成和反应、材料科学和医药学等领域。
3、四氢呋喃四氢呋喃(C4H8O)是一种无色液体,具有良好的溶解性和稳定性。
分子内可能存在一些偶极互相抵消的效应,因此,四氢呋喃也被认为是一种低极性溶剂。
它广泛用于有机合成、萃取和化学分析等领域。
二、低极性溶剂1、氯仿氯仿(CHCl3)是一种无色液体,具有优异的溶解性和透明度。
它在室温下为液体,但会逐渐气化成气体,因此,需要密封存储。
氯仿的分子中含有偶极键,具有一定的极性特征。
它可作为一种极性较低的溶剂,在制备药物、纺织染料和电子产品等生产中发挥着重要的作用。
2、二甲基甲酰胺二甲基甲酰胺(DMF)是一种无色液体,具有可靠的稳定性和优异的溶解性。
它是一种具有较强极性的有机溶剂,可以溶解多种有机化合物。
DMF在有机化学和生物医学领域被广泛应用,例如,用于卡宾化反应、氧化反应和材料科学中的溶胶凝胶等反应。
3、乙腈乙腈(C2H3N)是一种无色液体,分子中含有由碳、氢、氮组成的共价键,中性分子相互之间没有明显的电荷差异,因此,乙腈具有中等的极性。
乙腈广泛用于医药化学和生物化学中作为溶剂,常用于HPLC(高效液相色谱法)和UV-Vis分析等技术。
三、中极性溶剂1、乙醇乙醇(C2H5OH)是一种无色液体,具有明显的极性。
常用有机溶剂按毒性大小分类表
常用有机溶剂按毒性大小分类表一、第一类有机溶剂:1、三氯甲烷2、1,1,2,2,-四氯乙烷3、四氯化碳4、1,2二氯乙烯5、1,2二氯乙烷6、二硫化碳7、三氯乙烯8、苯9、由以上溶剂组成的混合物二、第二类有机溶剂:1、丙酮2、异戊醇3、异丁醇4、异丙醇5、乙醚6、乙二醇乙醚7、乙二醇乙醚乙酸酯8、乙二醇丁醚9、乙二醇甲醚10、邻—二氯苯11、二甲苯12、甲酚13、氯苯14、乙酸戊酯15、乙酸异戊酯16、乙酸异丁酯17、乙酸异丙酯18、乙酸乙酯19、乙酸丙酯20、乙酸丁酯21、乙酸甲酯22、苯乙烯23、1,4—二氧杂环己烷24、四氯乙烯25、环己醇26、环己酮27、1—丁醇28、2—丁醇29、甲苯30、二氯甲烷31、甲醇32、甲基异丁基甲酮33、甲基环己醇34、甲基环己酮35、甲丁酮36、1,1,1—三氯乙烷37、1,1,2—三氯乙烷38、丁酮39、二甲基甲酰胺40、四氢呋喃41、正己烷42、由以上溶剂组成的混合物三、第三类有机溶剂1、汽油2、煤焦油精3、石油醚4、石油精5、轻油精6、松节油7、矿油精8、由以上溶剂组成的混合物四、有机溶剂按其化学结构可分为10大类:1、芳香烃类:苯、甲苯、二甲苯等;2、脂肪烃类:戊烷、己烷、辛烷等;3、脂环烃类:环己烷、环己酮、甲苯环己酮等;4、卤化烃类:氯苯、二氯苯、二氯甲烷等;5、醇类:甲醇、乙醇、异丙醇等;6、醚类:乙醚、环氧丙烷等;7、酯类:醋酸甲酯、醋酸乙酯、醋酸丙酯等;8、酮类:丙酮、甲基丁酮、甲基异丁酮等;9、二醇衍生物:乙二醇单甲醚、乙二醇单乙醚、乙二醇单丁醚等;10、其他:乙腈、吡啶、苯酚等。
经常使用有机溶剂,如,乙醇、苯乙烯、全氯乙烯、三氯乙烯、乙烯乙二醇醚和三乙醇胺。
五、常用有机溶剂对人体的危害1、液氨:剧毒性、腐蚀性2、液态二氧化硫:剧毒3、甲胺:中等毒性,易燃4、二甲胺:强烈刺激性5、石油醚:低毒性6、乙醚:麻醉性7:、戊烷:低毒性8、二氯甲烷:低毒,麻醉性强9、二硫化碳:麻醉性,强刺激性10、溶剂石油脑:低毒性11、丙酮:低毒,类乙醇,但较大12、1,1-二氯乙烷:低毒、局部刺激性13、氯仿:中等毒性,强麻醉性14、甲醇:中等毒性,麻醉性,吸入蒸气使人失明15、四氢呋喃:吸入微毒,经口低毒16、己烷:低毒,麻醉性,刺激性17、三氟代乙酸:低毒18、1,1,1-三氯乙烷:低毒19、四氯化碳:毒性强20、乙酸乙酯:低毒,麻醉性21、乙醇:微毒类,麻醉性22、丁酮:低毒,毒性强于丙酮23、苯:强烈毒性,吸入后在体内残留,不能代谢,会致癌24、环己烷:低毒,中枢抑制作用25、乙睛中等毒性,大量吸入蒸气,引起急性中毒26、异丙醇:微毒,类似乙醇27、1,2-二氯乙烷:高毒性、致癌28、乙二醇二甲醚:吸入和经口低毒29、三氯乙烯:有机有毒品30、三乙胺:易爆,皮肤黏膜刺激性强31、丙睛:高毒性,与氢氰酸相似32、庚烷:低毒,刺激性、麻醉性33、硝基甲烷:麻醉性,刺激性34、1,4-二氧六环:微毒,强于乙醚2~3倍35、甲苯:低毒类,麻醉作用36、硝基乙烷:局部刺激性较强37、吡啶:剧毒,皮肤黏膜刺激性38、4-甲基-2-戊酮:毒性和局部刺激性较强39、乙二胺刺激皮肤、眼睛40、丁醇低毒,大于乙醇3倍41、乙酸:低毒,浓溶液毒性强42、乙二醇一甲醚:低毒类43、辛烷:低毒性,麻醉性44、乙酸丁酯:一般条件毒性不大45、吗啉:腐蚀皮肤,刺激眼和结膜,蒸汽引起肝肾病变46、氯苯毒性低于苯,损害中枢系统,47、乙二醇一乙醚:低毒类,二级易燃液体48、对二甲苯:一级易燃液体49、二甲苯:一级易燃液体,低毒类50、间二甲苯:一级易燃液体51、醋酸酐:微毒52、邻二甲苯:一级易燃液体53、N,N-二甲基甲酰胺:低毒54、环己酮:低毒类,有麻醉性,中毒几率比较小55、环己醇:低毒,无血液毒性,刺激性56、N,N-二甲基乙酰胺:微毒类57、糠醛:有毒品,刺激眼睛,催泪58、N-甲基甲酰胺:一级易燃液体59、苯酚(石炭酸):高毒类,对皮肤、黏膜有强烈腐蚀性,可经皮吸收中毒60、1,2-丙二醇低毒,吸湿,不宜静注61、二甲亚砜:微毒,对眼有刺激性62、邻甲酚:毒性参照甲酚63、N,N-二甲基苯胺:抑制中枢和循环系统,经皮肤吸收中毒64、乙二醇:低毒类,可经皮肤吸收中毒65、对甲酚:毒性参照甲酚66、N-甲基吡咯烷酮:毒性低,不可内服67、间甲酚:毒性参照甲酚68、苄醇:低毒,黏膜刺激性69、甲酚:低毒类,腐蚀性,与苯酚相似70、甲酰胺:皮肤、黏膜刺激性、经皮肤吸收71、硝基苯:剧毒,可经皮肤吸收72、乙酰胺:毒性较低73、六甲基磷酸三酰胺:较大毒性74、喹啉:中等毒性,刺激皮肤和眼75、乙二醇碳酸酯:毒性低76、二甘醇微毒,经皮吸收,刺激性小77、丁二睛:中等毒性78、环丁砜:微毒79、甘油:食用对人体无毒常用的石油醚,乙酸乙酯,丙酮毒性较小,但是尽量使用时带好口罩,通风橱打开保持通风较好。
溶剂的分类概述
(1)
偶极矩(μ):
指偶极分子中电量相等的两个相反电荷中的一
个电荷的电量(q),与这两个电荷间距离(d)的
乘积,单位:德拜(D)。即:
μ=q×d
库仑.米((c.m)
Cl
例:
1D=3.33564x10-30(c.m)
μ=1.54D
0~18.5 x10-30(c.m)
溶剂的分类
有机溶剂的偶极矩μ在0~5.5D之间。
质子传递型溶剂:氢键给体,质子给体, EPA。
如羟基、氨基、羧基和酰胺基。
非质子传递型溶剂:氢键受体,EPD。 如O、N。
3.溶剂极性的本质——溶剂化作用
每一个被溶解的分子或离子被一层或几层溶剂分括溶剂与溶 质之间所有专一性和非专一性相互作用的总和。
小结
溶剂极性的本质是溶剂与溶质之间所 有专一性和非专一性相互作用的总和。
2.溶剂的分类
(1)按化学结构分类
无机溶剂:水、液氨、液体二氧化硫、氟化氢、浓 硫酸、熔融氢氧化钠和氢氧化钾、四氯 化钛、三氯化磷合三氯氧磷等。
有机溶剂:脂烃、环烷烃、芳烃、卤代烃、醇、醚、 酚、醛、酮、羧酸、羧酸酯、硝基物、 胺、腈、酰胺、砜和亚砜、杂环化合物等。
溶剂的分类
(2)按偶极矩和介电常数分类
绝缘材料电性能的一个重要参数。 具有永久偶极或诱导偶极的溶剂分子被充电
的电容器板强制形成一个有序排列,即极化作用, 极化作用越大,介电常数越大。
介电常数表示溶剂分子本身分离出电荷的能 力,或溶剂使它偶极定向的能力。
溶剂的分类
有机溶剂的介电常数ε在2~190之间,ε越大,
溶剂极性越强。
极性溶剂:ε>15~20 非极性溶剂:ε<15~20
0~18.5 x10-30(c.m) 极性溶剂:分子中具有永久偶极的溶剂。
溶剂概述和溶剂效应
溶剂概述和溶剂效应溶剂概述和溶剂效应摘要:对化学反应中溶剂的种类和作⽤做概述,以及溶剂效应在紫外,荧光,红外,核磁波谱和液相⾊谱中的作⽤。
关键词:溶剂溶剂效应吸收光谱液相⾊谱1,溶剂1.1溶剂的定义溶剂是⼀种可以溶化固体,液体或⽓体溶质的液体,继⽽成为溶液,最常⽤的溶剂是⽔。
1.2溶剂的分类溶剂按化学组成分为有机溶剂和⽆机溶剂有机溶剂是⼀⼤类在⽣活和⽣产中⼴泛应⽤的有机化合物,分⼦量不⼤,常温下呈液态。
有机溶剂包括多类物质,如链烷烃、烯烃、醇、醛、胺、酯、醚、酮、芳⾹烃、氢化烃、萜烯烃、卤代烃、杂环化物、含氮化合物及含硫化合物等等,多数对⼈体有⼀定毒性。
(本⽂主要概述有机溶剂在化学反应以及波谱中的应⽤)2,溶剂效应2.1溶剂效应的定义溶剂效应是指溶剂对于反应速率,平衡甚⾄反应机理的影响。
溶剂对化学反应速率常数的影响依赖于溶剂化反应分⼦和相应溶剂化过渡态的相对稳定性。
2.2溶剂效应在紫外,荧光,红外,核磁中的应⽤2.2.1溶剂效应在紫外吸收光谱中的应⽤[5]有机化合物紫外吸收光谱的吸收带波长和吸收强度,与所采⽤的溶剂有密切关系。
通常,溶剂的极性可以引起谱带形状的变化。
⼀般在⽓态或者⾮极性溶剂(如正⼰烷)中,尚能观察到振动跃迁的精细结构。
但是改为极性溶剂后,由于溶剂与溶质分⼦的相互作⽤增强,使谱带的精细结构变得模糊,以⾄完全消失成为平滑的吸收谱带。
这⼀现象称为溶剂效应。
例如,苯酚在正庚烷溶液中显⽰振动跃迁的精细结构,⽽在⼄醇溶液中,苯酚的吸收带⼏乎变得平滑的曲线,如图所⽰2.2.1.1溶剂极性对n→π*跃迁谱带的影响[2]n→π*跃迁的吸收谱带随溶剂的极性的增⼤⽽向蓝移。
⼀般来说,从以环⼰烷为溶剂改为以⼄醇为溶剂,会使该谱带蓝移7nm:如改为以极性更⼤的⽔为溶剂,则将蓝移8nm。
增⼤溶剂的极性会使n→π*跃迁吸收谱带蓝移的原因如下:会发⽣n→π*跃迁的分⼦,都含有⾮键电⼦。
例如C=O在基态时碳氧键极化成Cδ+=Oδ-,当n电⼦跃迁到π*分⼦轨道时,氧的电⼦转移到碳上,使得羰基的激发态的极性减⼩,即Cδ+=Oδ-(基态)→C=O(激发态)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
溶剂性质对溶液酸碱性的影响
同一种溶质在不同溶剂中常常表现出不同的酸 碱性,甚至相反的酸碱性质,说明溶液的酸碱 性并不完全取决于溶质,溶剂的酸碱性也起很 大作用。例如,乙酸在水中是弱酸,在液氨中 是强酸,而在无水硫酸中则显碱性。
溶剂对溶质氧化还原性的影响
在不同溶剂中,溶质的氧化还原性也受到溶剂本身氧化还 原性质的影响和限制。 1) 以液氨为例,电子在液氨溶液中能够存在相当长的 时间。液氨中。可以将钠作为有机化合物的好的还 原剂; 2) 而在水中,由于水优先被钠还原,则无法使钠起到 这一作用。
稀释剂:用来调节粘度,降低树脂一溶剂系统的间 格,偶而亦能起到使树脂溶解的作用,常为芳 香族或脂肪族烃类。如烃类化合物对硝基纤维 素来说是稀释剂。
涂料中使用溶剂目的
其目的是为了降低成膜物质的粘度,便于施工, 以得到均匀的保护涂层。这些溶剂在成膜之后, 应能全部蒸以除去,而无残留,故大多是挥发 性有机液体。 涂料用的成膜物质都是无定形的有机高聚物, 用适当溶剂溶解后,溶液的粘度随浓度的增大 而增大,控制溶液的粘度是由施工条件决定, 而不是象一般化合物,有溶解度的限制。 要想达到最好的成膜性能,选择溶剂是十分 重要的。
二、溶剂的功能
通常有以下几种: 1、萃取提纯:从混合物中萃取出某一固体或液体, 以达到提纯之目的。 2、化学反应场所:绝大多数的化学反应都借助不 同的溶剂来进行,对于同一个反应不同的溶剂 会有不同的效果,某些能促进反应而另外一些 可能抑制反应,甚至不发生反应。 3、用作涂料或其它高分子化合物的载体,以调整 粘度。
碱性溶剂
酸性溶剂 两性溶剂
易接受质子的溶剂
很难与质子结合但易给出质子的溶剂 既能给出质子,又能接受质子的溶剂
质子惰性溶剂 既不给出质子又不接受质子的溶剂
(3)按化学结构和官解团分类
烃类:常用作稀释剂,与各种溶质的相互的作用力 极为微弱,如正已烷环已烷、煤油、石油醚、 苯、甲苯、二甲苯。
卤代烃类:最常用的是CCl4和氯仿,此外:1,2— 二氯乙烯、三氯乙烯、氯苯,十分稳定,不易 燃烧,本身是阻燃剂,沸点低是很好萃取剂。
的钠离子(Na+)和氯离子(Cl-),即氯化钠被
水溶剂化。
2.溶剂化的本质
一个极性溶剂分子有带部分正电荷的正端和带部分
负电荷的负端,如R-O-H。正离子与溶剂的负端,负 离子与溶剂的正端互相吸引,称为离子-偶极作 用,也称为离子-偶极键。离子-偶极作用是溶剂 化的本质,一个离子可形成多个离子-偶极键,结 果是离子被溶剂化,被溶剂分子包围。
1、溶解度:有机溶剂与水的相溶性是很重要的, 第三组分对两者的互溶性影响较大。 2、蒸汽压和沸点;一般要求溶剂必须是蒸汽压低, 沸点高的物质。室温下蒸汽压较高的溶剂是不 实用的,操作时这类溶剂易从容器中泄漏出来, 并引起火灾或导致中毒。
3、熔点:熔剂的熔点不宜过高,室温下应呈液态。 在某些特殊萃取过程中可采用熔点低于被提取 有机化合物熔点的溶剂,在两种液相冷却过程 中,被提取物易固化,便于分离。
4、粘度和表面张力,一般要求溶剂粘度小,表面 张力高,过粘的溶剂不便使用,不但输送困难, 且如用作萃取时,不利于两相搅拌和两相的分 离。表面张力过低也不利于分离。 5、光学性质,大多数溶剂中在可见光区无显著的 吸收,但能吸收紫外区的光。故需测定溶剂中 溶质的紫外光吸收时,须注意溶剂对紫外光的 吸收不应与溶质重叠。 6、介电常数;用于萃取时,用高介电常数的溶剂, 用作稀释剂时,选用较低介电常数的溶剂。
含氮溶剂:二甲基甲酰胺、硝基苯、硝基甲烷。
(4)在涂料工业中,根据溶剂对树脂的溶解能力 不同分为 活性溶剂,即真溶剂:即能使树脂溶解,即能使树 脂变成分散的可溶剂状态。大多是极性物质, 含有含氧官能团,如脂肪酸酯、酮类和乙二醇 醚等。均有破坏氢键和偶极一偶极键的作用, 阻止了凝聚。
助溶剂,或称潜溶剂:本身不能溶解树脂,但当有 活性溶剂存在时,它能起到增加溶解能力的作 用,并能使混合溶剂的溶解度参数与高分子化 合物更接近,使之少凝聚、常为醇类。
(7)按溶剂的质子传递情况分
质子溶剂(又称两性溶剂)(有质子自递作用) 中性溶剂(均等两性溶剂)(接受质子和给出质 子能力相同,如H2O) 碱性溶剂(亲质子溶剂)(易接受质子,如NH3) 酸性溶剂(给质子溶剂)(易给出质子,如H2SO4、
HF)
非质子溶剂(无质子自递作用,如SO2、BrF3)
质子溶剂:分子中含有可作为氢键给体的O—H键或 N—H键的溶剂称为质子溶剂。 非质子溶剂:分子中没有氢键给体的溶剂称为非质 子溶剂。 O—H、N—H键的O和N都有孤对电子,因此质子溶 剂既是氢键给体,又是氢键受体,如H2O、ROH、 RNH2等。非质子溶剂不是氢键给体,有些是氢键受 体,如CH3COCH3、HCON(CH3)2等;有些也不是 氢键的受体,如C6H6、n-C7H16等。
溶
溶 质 HOAc HNO3 HClO4 H2O (l) 弱酸性 强酸性 强酸性 NH3 (l) 强酸性 强酸性 强酸性
剂
H2SO4 (l) 碱 性 弱酸性 弱酸性 HF(l) 碱 性 酸 性 酸 性
欣赏一首歌曲:
乡村屌丝MV——《够坚强》
萃
取
溶剂萃取是溶剂的另一大用途,它是一种分离过 程。根据用溶剂处理的物质性质(气体、固体),萃 取分为气体吸收,液—液萃取,液—固萃取。 炼油气或天然气用一(或二)乙醇胺处理除去 H2S——气体吸收。 从苯,甲苯或二甲苯生产的产品中用乙醇-水,N— 甲基吡咯酮—乙二醇等萃取芳香族化合物——液一液 萃取。 将硫酸通过矿床,从矿石中渗洗出硫酸铜—— 液—固萃取:采用液体溶剂从固体中分离出一种或多 种溶质。
电极反应 Eθ/V 电极反应 Eθ/V -------------------------------------------------------------------------------------Li+ + e – → Li -2.34 LiNH2 + e- → Li + NH2- -2.70 K+ + e - → K -2.04 K+ + e - → K -2.04 Na+ + e- → Na -1.89 NaNH2 + e- →Na + NH2- -2.02 NH4++e-→NH3+1/2 H2 0.00 NH3 + e- → NH2- + 1/2 H2 -1.59 Cu+ + e- → Cu 0.36 1/2 N2+2NH3+3e-→3NH2- -1.55 1/2 I2(s) + e- → I1.26 1/2 I2(s) + e- → I1.26 -------------------------------------------------------------------------------------
4、层析:常用的层析又分薄层层析和柱层析,但 都需要溶剂来展开(又称展开剂),用以分离 较难分离的混合物。
5、清洗:从金属、织物或其它物质上清洗去沾污 物。化学反应得到的产物通常也要用不同的溶 剂洗涤,除掉大部分杂质,以得到较纯的产物。
三、溶剂的性能指标
水:是一种最常用且特殊的溶剂,它具 有高极性和高介电常数,溶剂化倾 向大,并通过氢键使分子有一定程 度的规则排列。相反饱和烃类的性 质则处于另一极端,其余有机溶剂 的物理和化学性质介于这两个极端 之间。溶剂的性质常用下列指标描 述。
3)
另外,氨比水也更难氧化,在此溶液中,许多在水
中不能使用的氧化剂可以使用,如O3 , O2- 能在液 氨中存在和使用。
液氨溶液中的标准电极电势
-------------------------------------------------------------------------------------酸性溶液 (1 mol.L-1 NH4+) 碱性溶液 (1 mol.L-1 NH2-)
溶质和溶剂的相互作用
溶质能溶于溶剂,说明在溶液中溶质和溶剂间存在
相互作用。 溶质和溶剂间的作用力除来源于静电引力,也可来 源于广义的酸碱的相互作用。 如溶剂化作用、酸碱作用、偶极作用、氢键合作用、
极化作用等。
溶剂化作用
1.溶剂化 在溶液中,溶质被溶剂分子包围的现象称为溶
剂化。
例如:氯化钠在溶液中,结构单元就是水化了
d- d+
质子溶剂的溶剂化作用除了离子-偶极键作用 外,往往还有氢键的作用。
3.溶剂化的结果
稳定了离子,降低了离子的化学反应活性。 例如: 质子溶剂不仅稳定正离子,还急剧地降低 了负离子的反应活性,因为负离子的碱性及亲核 性是一致的。
溶剂理论
1905年美国化学家佛兰克林(E.C.Franklin) 提出了酸碱的溶剂理论,如下定义酸碱:在某 溶剂的溶液中,凡能解离产生该溶剂阳离子的 物质为酸;凡能解离产生该溶剂阴离子的物质 为碱。这一理论不仅概括了水溶液中的酸碱概 念,而且把酸碱概念引入非水溶剂,例如在液 氨中铵盐(如 NH4Cl )表现为酸,氨基化物 (如N aNH2)表现为碱。
如乙酸中,HClO4 仍为强酸,而HI, HBr,
HCl就表现为弱酸。乙酸作为溶剂对这些酸具
有区分效应。
由此可知,酸的相对强度在碱性较强的
溶剂中,易被拉平而无法区别,应选择在酸性
较强的溶剂中加以比较。同样道理,碱的相对
强度在酸性较强溶剂中易被拉平,应选择在碱
性较强溶剂中进行比较。
几种溶质在无机非水溶剂中的酸碱性
常用溶剂的介电常数
惰性溶剂是指溶剂分子和溶质分子间相互作用很小 的溶剂,也称疏质子溶剂。 溶剂化溶剂是指溶剂分子与酸或碱分子发生明显的 相互作用的溶剂。
练习题
下列溶剂哪些是极性溶剂?哪些是非极性溶