Low-frequency QPO, Magnetic Flood and the states of GRS 1915+105
物探专业术语中英文对照

物探专业术语中英文对照lunar tide 太阴潮solar tide 太阳潮turbulence 湍流spectrum of turbulence 湍流谱turbulent diffusion 湍流扩散turbulent dissipation 湍流耗散turbulent exchange 湍流交换turbulent mixing 湍流混合twilight 曙暮光wind shear 风切变yield function 产额函数zonal circulation 纬向环流zonal wind 纬向风airglow 气辉MST radar MST雷达,对流层、平流层、中层大气探测雷达。
aeronomy 高空大气学deviative absorption 偏移吸收non-deviative absorption 非偏移吸收after-effect of [magnetic] storm 磁暴后效Chapman layer 查普曼层Appleton anomaly 阿普尔顿异常equatorial anomaly 赤道异常winter anomaly 冬季异常magneto-ionic theory 磁离子理论buoyancy frequency 浮力频率D - region D区E - region E区F - region F区F1 layer F1层F1 ledge F1缘F2 layer F2层Chapman production function 查普曼生成函数Cowling conductivity 柯林电导率Pedersen conductivity 彼得森电导率Hall conductivity 霍尔电导率direct conductivity 直接电导率cosmic radio noise 宇宙射电噪声riometer 宇宙噪声吸收仪critical frequency 临界频率dissociative recombination 离解性复合dynamo region 发电机区evanescent wave 消散波fade 衰落fadeout, blackout [短波通讯]中断ordinary wave 寻常波extraordinary wave 非寻常波Faraday rotation 法拉第旋转field-aligned irregularity 场向不规则结构Harang discontinuity 哈朗间断impedance probe 阻抗探针incoherent scattering radar 非相干散射雷达ionospheric storm 电离层暴ionosonde 电离层测高仪virtual height 虚高true height 真高digisonde 数字式测高仪ionogram 电离图polar cap absorption, PCA 极盖吸收sudden ionospheric disturbance, SID 突发电离层骚扰spread F 扩展 Fsporadic E 散见 E 层top-side sounder 顶视探测仪bottom-side sounder 底视探测仪travelling ionospheric disturbance, TID 电离层行扰short wave fadeout, SWF 短波突然衰落sudden frequency deviation, SFD [短波]频率急偏sudden phase anomaly, SPA 突发相位异常characteristic wave 特征波cross-modulation 交叉调制total electron content, TEC 电子总含量ambipolar diffusion 双极扩散eclipse effect [日]食效应skip distance 跳距outer space 外层空间interplanetary space 行星际空间interstellar space [恒]星际空间deep space 深空solar-terrestrial space 日地空间solar-terrestrial physics 日地物理学one-hop propagation 一跳传播quasi-transverse propagation 准横传播quasi-longitudinal propagation 准纵传播maximum usable frequency, MUF 最大可用频率geomagnetism 地磁[学] main field 主磁场inclination, dip angle 磁倾角declination 磁偏角agonic line 零偏线aclinic line 零倾线magnetic isoclinic line 等磁倾线magnetic chart 磁图isomagnetic chart 等磁图isomagnetic line 等磁强线isoporic line, isopore 等年变线magnetic isoanomalous line 等磁异常线geomagnetic pole 地磁极dip pole 磁倾极magnetic local time 磁地方时magnetic dipole time 磁偶极时central dipole 中心偶极子dipole coordinate 偶极子坐标corrected geomagnetic coordinate 修正地磁坐标north magnetic pole 磁北极south magnetic pole 磁南极invariant latitude 不变纬度dip equator 倾角赤道eccentric dipole 偏心偶极子magnetogram 磁照图magnetically quiet day, q 磁静日magnetically disturbed day, d 磁扰日secular variation 长期变化solar daily variation, S 太阳日变化disturbed daily variation, Sd 扰日日变化storm-time variation, Dst 暴时变化magnetic disturbance 磁扰magnetic bay 磁湾扰magnetic crochet 磁钩扰magnetic storm 磁暴gradual commencement [magnetic] storm 缓始磁暴sudden commencement [magnetic] storm 急始磁暴sudden commencement 急始initial phase 初相main phase 主相recovery phase 恢复相magnetic substorm 磁亚暴expansive phase 膨胀相equivalent current system 等效电流系internal field 内源场external field 外源场aurora 极光aurora australis 南极光aurora borealis 北极光auroral oval 极光卵形环auroral belt 极光带subauroral zone 亚极光带Alfvēen layer 阿尔文层cleft, cusp 极隙pseudo-trapped particle 假捕获粒子radiation belt, Van Allen belt 辐射带又称“范艾伦带”。
光电技术专业英语词汇

《光电技术》专业英语词汇1.Absorption coefficient 吸收系数2.Acceptance angle 接收角3.fibers 光纤4.Acceptors in semiconductors 半导体接收器5.Acousto-optic modulator 声光调制6.Bragg diffraction 布拉格衍射7.Air disk 艾里斑8.angular radius 角半径9.Airy rings 艾里环10.anisotropy 各向异性11.optical 光学的12.refractive index 各向异性13.Antireflection coating 抗反膜14.Argon-ion laser 氩离子激光器15.Attenuation coefficient 衰减系数16.Avalanche 雪崩17.breakdown voltage 击穿电压18.multiplication factor 倍增因子19.noise 燥声20.Avalanche photodiode(APD) 雪崩二极管21.absorption region in APD APD 吸收区域22.characteristics-table 特性表格23.guard ring 保护环24.internal gain 内增益25.noise 噪声26.photogeneration 光子再生27.primary photocurrent 起始光电流28.principle 原理29.responsivity of InGaAs InGaAs 响应度30.separate absorption and multiplication(SAM) 分离吸收和倍增31.separate absorption grading and multiplication(SAGM) 分离吸收等级和倍增32.silicon 硅33.Average irradiance 平均照度34.Bandgap 带隙35.energy gap 能级带隙36.bandgap diagram 带隙图37.Bandwidth 带宽38.Beam 光束39.Beam splitter cube 立方分束器40.Biaxial crystal双s 轴晶体41.Birefringent 双折射42.Bit rate 位率43.Black body radiation law 黑体辐射法则44.Bloch wave in a crystal 晶体中布洛赫波45.Boundary conditions 边界条件46.Bragg angle 布拉格角度47.Bragg diffraction condition 布拉格衍射条件48.Bragg wavelength 布拉格波长49.Brewster angle 布鲁斯特角50.Brewster window 布鲁斯特窗51.Calcite 霰石52.Carrier confinement 载流子限制53.Centrosymmetric crystals 中心对称晶体54.Chirping 啁啾55.Cladding 覆层56.Coefficient of index grating 指数光栅系数57.Coherence连贯性pensation doping 掺杂补偿59.Conduction band 导带60.Conductivity 导电性61.Confining layers 限制层62.Conjugate image 共轭像63.Cut-off wavelength 截止波长64.Degenerate semiconductor 简并半导体65.Density of states 态密度66.Depletion layer 耗尽层67.Detectivity 探测率68.Dielectric mirrors 介电质镜像69.Diffraction 衍射70.Diffraction g rating 衍射光栅71.Diffraction grating equation 衍射光栅等式72.Diffusion current 扩散电流73.Diffusion flux 扩散流量74.Diffusion Length 扩散长度75.Diode equation 二极管公式76.Diode ideality factor 二极管理想因子77.Direct recombinatio直n接复合78.Dispersion散射79.Dispersive medium 散射介质80.Distributed Bragg reflector 分布布拉格反射器81.Donors in semiconductors 施主离子82.Doppler broadened linewidth 多普勒扩展线宽83.Doppler effect 多普勒效应84.Doppler shift 多普勒位移85.Doppler-heterostructure 多普勒同质结构86.Drift mobility 漂移迁移率87.Drift Velocity 漂移速度88.Effective d ensity o f s tates 有效态密度89.Effective mass 有效质量90.Efficiency 效率91.Einstein coefficients 爱因斯坦系数92.Electrical bandwidth of fibers 光纤电子带宽93.Electromagnetic wave 电磁波94.Electron affinity 电子亲和势95.Electron potential energy in a crystal 晶体电子阱能量96.Electro-optic effects 光电子效应97.Energy band 能量带宽98.Energy band diagram 能量带宽图99.Energy level 能级100.E pitaxial growth 外延生长101.E rbium doped fiber amplifier 掺饵光纤放大器102.Excess carrier distribution 过剩载流子扩散103.External photocurrent 外部光电流104.Extrinsic semiconductors 本征半导体105.Fabry-Perot laser amplifier 法布里-珀罗激光放大器106.Fabry-Perot optical resonator 法布里-珀罗光谐振器107.Faraday effect 法拉第效应108.Fermi-Dirac function 费米狄拉克结109.Fermi energy 费米能级110.Fill factor 填充因子111.Free spectral range 自由谱范围112.Fresnel’s equations 菲涅耳方程113.Fresnel’s optical indicatrix 菲涅耳椭圆球114.Full width at half maximum 半峰宽115.Full width at half power 半功率带宽116.Gaussian beam 高斯光束117.Gaussian dispersion 高斯散射118.Gaussian pulse 高斯脉冲119.Glass perform 玻璃预制棒120.Goos Haenchen phase shift Goos Haenchen 相位移121.Graded index rod lens 梯度折射率棒透镜122.Group delay 群延迟123.Group velocity 群参数124.Half-wave plate retarder 半波延迟器125.Helium-Neon laser 氦氖激光器126.Heterojunction 异质结127.Heterostructure 异质结构128.Hole 空穴129.Hologram 全息图130.Holography 全息照相131.Homojunction 同质结132.Huygens-Fresnel principle 惠更斯-菲涅耳原理133.Impact-ionization 碰撞电离134.Index matching 指数匹配135.Injection 注射136.Instantaneous irradiance 自发辐射137.Integrated optics 集成光路138.Intensity of light 光强139.Intersymbol interference 符号间干扰140.Intrinsic concentration 本征浓度141.Intrinsic semiconductors 本征半导体142.Irradiance 辐射SER 激光144.active medium 活动介质145.active region 活动区域146.amplifiers 放大器147.cleaved-coupled-cavity 解理耦合腔148.distributed Bragg reflection 分布布拉格反射149.distributed feedback 分布反馈150.efficiency of the He-Ne 氦氖效率151.multiple quantum well 多量子阱152.oscillation condition 振荡条件ser diode 激光二极管sing emission 激光发射155.LED 发光二极管156.Lineshape function 线形结157.Linewidth 线宽158.Lithium niobate 铌酸锂159.Load line 负载线160.Loss c oefficient 损耗系数161.Mazh-Zehnder modulator Mazh-Zehnder 型调制器162.Macrobending loss 宏弯损耗163.Magneto-optic effects 磁光效应164.Magneto-optic isolator 磁光隔离165.Magneto-optic modulator 磁光调制166.Majority carriers 多数载流子167.Matrix emitter 矩阵发射168.Maximum acceptance angle 最优接收角169.Maxwell’s wave equation 麦克斯维方程170.Microbending loss 微弯损耗171.Microlaser 微型激光172.Minority carriers 少数载流子173.Modulated directional coupler 调制定向偶合器174.Modulation of light 光调制175.Monochromatic wave 单色光176.Multiplication region 倍增区177.Negative absolute temperature 负温度系数 round-trip optical gain 环路净光增益179.Noise 噪声180.Noncentrosymmetric crystals 非中心对称晶体181.Nondegenerate semiconductors 非简并半异体182.Non-linear optic 非线性光学183.Non-thermal equilibrium 非热平衡184.Normalized frequency 归一化频率185.Normalized index difference 归一化指数差异186.Normalized propagation constant 归一化传播常数187.Normalized thickness 归一化厚度188.Numerical aperture 孔径189.Optic axis 光轴190.Optical activity 光活性191.Optical anisotropy 光各向异性192.Optical bandwidth 光带宽193.Optical cavity 光腔194.Optical divergence 光发散195.Optic fibers 光纤196.Optical fiber amplifier 光纤放大器197.Optical field 光场198.Optical gain 光增益199.Optical indicatrix 光随圆球200.Optical isolater 光隔离器201.Optical Laser amplifiers 激光放大器202.Optical modulators 光调制器203.Optical pumping 光泵浦204.Opticalresonator 光谐振器205.Optical tunneling光学通道206.Optical isotropic 光学各向同性的207.Outside vapor deposition 管外气相淀积208.Penetration depth 渗透深度209.Phase change 相位改变210.Phase condition in lasers 激光相条件211.Phase matching 相位匹配212.Phase matching angle 相位匹配角213.Phase mismatch 相位失配214.Phase modulation 相位调制215.Phase modulator 相位调制器216.Phase of a wave 波相217.Phase velocity 相速218.Phonon 光子219.Photoconductive detector 光导探测器220.Photoconductive gain 光导增益221.Photoconductivity 光导性222.Photocurrent 光电流223.Photodetector 光探测器224.Photodiode 光电二极管225.Photoelastic effect 光弹效应226.Photogeneration 光子再生227.Photon amplification 光子放大228.Photon confinement 光子限制229.Photortansistor 光电三极管230.Photovoltaic devices 光伏器件231.Piezoelectric effect 压电效应232.Planck’s radiation distribution law 普朗克辐射法则233.Pockels cell modulator 普克尔斯调制器234.Pockel coefficients 普克尔斯系数235.Pockels phase modulator 普克尔斯相位调制器236.Polarization 极化237.Polarization transmission matrix 极化传输矩阵238.Population inversion 粒子数反转239.Poynting vector 能流密度向量240.Preform 预制棒241.Propagation constant 传播常数242.Pumping 泵浦243.Pyroelectric detectors 热释电探测器244.Quantum e fficiency 量子效应245.Quantum noise 量子噪声246.Quantum well 量子阱247.Quarter-wave plate retarder 四分之一波长延迟248.Radiant sensitivity 辐射敏感性249.Ramo’s theorem 拉莫定理250.Rate equations 速率方程251.Rayleigh criterion 瑞利条件252.Rayleigh scattering limit 瑞利散射极限253.Real image 实像254.Recombination 复合255.Recombination lifetime 复合寿命256.Reflectance 反射257.Reflection 反射258.Refracted light 折射光259.Refractive index 折射系数260.Resolving power 分辩力261.Response time 响应时间262.Return-to-zero data rate 归零码263.Rise time 上升时间264.Saturation drift velocity 饱和漂移速度265.Scattering 散射266.Second harmonic generation 二阶谐波267.Self-phase modulation 自相位调制268.Sellmeier dispersion equation 色列米尔波散方程式269.Shockley equation 肖克利公式270.Shot noise 肖特基噪声271.Signal to noise ratio 信噪比272.Single frequency lasers 单波长噪声273.Single quantum well 单量子阱274.Snell’s law 斯涅尔定律275.Solar cell 光电池276.Solid state photomultiplier 固态光复用器277.Spectral intensity 谱强度278.Spectral responsivity 光谱响应279.Spontaneous emission 自发辐射280.stimulated emission 受激辐射281.Terrestrial light 陆地光282.Theraml equilibrium 热平衡283.Thermal generation 热再生284.Thermal velocity 热速度285.Thershold concentration 光强阈值286.Threshold current 阈值电流287.Threshold wavelength 阈值波长288.Total acceptance angle 全接受角289.Totla internal reflection 全反射290.Transfer distance 转移距离291.Transit time 渡越时间292.Transmission coefficient 传输系数293.Tramsmittance 传输294.Transverse electric field 电横波场295.Tranverse magnetic field 磁横波场296.Traveling vave lase 行波激光器297.Uniaxial crystals 单轴晶体298.UnPolarized light 非极化光299.Wave 波300.W ave equation 波公式301.Wavefront 波前302.Waveguide 波导303.Wave n umber 波数304.Wave p acket 波包络305.Wavevector 波矢量306.Dark current 暗电流307.Saturation signal 饱和信号量308.Fringing field drift 边缘电场漂移plementary color 补色310.Image lag 残像311.Charge handling capability 操作电荷量312.Luminous quantity 测光量313.Pixel signal interpolating 插值处理314.Field integration 场读出方式315.Vertical CCD 垂直CCD316.Vertical overflow drain 垂直溢出漏极317.Conduction band 导带318.Charge coupled device 电荷耦合组件319.Electronic shutter 电子快门320.Dynamic range 动态范围321.Temporal resolution 动态分辨率322.Majority carrier 多数载流子323.Amorphous silicon photoconversion layer 非晶硅存储型324.Floating diffusion amplifier 浮置扩散放大器325.Floating gate amplifier 浮置栅极放大器326.Radiant quantity 辐射剂量327.Blooming 高光溢出328.High frame rate readout mode 高速读出模式329.Interlace scan 隔行扫描330.Fixed pattern noise 固定图形噪声331.Photodiode 光电二极管332.Iconoscope 光电摄像管333.Photolelctric effect 光电效应334.Spectral response 光谱响应335.Interline transfer CCD 行间转移型CCD336.Depletion layer 耗尽层plementary metal oxide semi-conductor 互补金属氧化物半导体338.Fundamental absorption edge 基本吸收带339.Valence band 价带340.Transistor 晶体管341.Visible light 可见光342.Spatial filter 空间滤波器343.Block access 块存取344.Pupil compensation 快门校正345.Diffusion current 扩散电流346.Discrete cosine transform 离散余弦变换347.Luminance signal 高度信号348.Quantum efficiency 量子效率349.Smear 漏光350.Edge enhancement 轮廓校正351.Nyquist frequency 奈奎斯特频率352.Energy band 能带353.Bias 偏压354.Drift current 漂移电流355.Clamp 钳位356.Global exposure 全面曝光357.Progressive scan 全像素读出方式358.Full frame CCD 全帧CCD359.Defect correction 缺陷补偿360.Thermal noise 热噪声361.Weak inversion 弱反转362.Shot noise 散粒噪声363.Chrominance difference signal 色差信号364.Colotremperature 色温365.Minority carrier 少数载流子366.Image stabilizer 手振校正367.Horizontal CCD 水平CCD368.Random noise 随机噪声369.Tunneling effect 隧道效应370.Image sensor 图像传感器371.Aliasing 伪信号372.Passive 无源373.Passive pixel sensor 无源像素传感器374.Line transfer 线转移375.Correlated double sampling 相关双采样376.Pinned photodiode 掩埋型光电二极管377.Overflow 溢出378.Effective pixel 有效像素379.Active pixel sensor 有源像素传感器380.Threshold voltage 阈值电压381.Source follower 源极跟随器382.Illuminance 照度383.Refraction index 折射率384.Frame integration 帧读出方式385.Frame interline t ransfer CCD 帧行间转移CCD 386.Frame transfer 帧转移387.Frame transfer CCD 帧转移CCD388.Non interlace 逐行扫描389.Conversion efficiency 转换效率390.Automatic gain control 自动增益控制391.Self-induced drift 自激漂移392.Minimum illumination 最低照度393.CMOS image sensor COMS 图像传感器394.MOS diode MOS 二极管395.MOS image sensor MOS 型图像传感器396.ISO sensitivity ISO 感光度。
TENS课件

The issue of skin resistance 皮肤阻力问题
Human skin: Poor conductor
Dry skin = 1 M ohm
Wet skin = 1 K ohm
The conductivity of human tissue depends on the proportion of water content
低频电疗法的生理作用
(一)兴奋N-M组织 1.电刺激引起的兴奋过程 2.电刺激引起兴奋的条件 (1)刺激强度:超过组织的兴奋阈,对
>100ms的刺激时间,强度必须达到基强度。 (2)刺激持续时间:引起骨骼肌收缩所需要的
最短时间至少在1/100000秒以上。
(二)促进局部血循环 1.血管舒缩神经有调节 2.引起肌肉收缩:促进血液,淋巴液回流机理 (1)轴突反射 (2)三联反应 小动脉直接刺激
(6)调制:常用调制型的低频电流在无线电上 称为调制。
低频电疗的分类和特点
(一)按临床治疗作用分 1.锻炼肌肉的低频电疗法 (1)锻炼肌肉的低频脉冲电疗法 (2)N-M电刺激疗法 (3)痉挛肌肉的电刺激疗法:指应用电刺激治疗CNS
病变而导致的痉挛性瘫痪的方法,将波宽和频率相 同先后出现的两组方法分别刺激痉挛肌和其拮抗肌, 使二者交替出现。
Severe pain, require strong stimulation – what mode is suitable?
Placement of Electrode电极的摆放
Area of pain – big or small? Area of low skin resistance:
least tolerable
Application
EEMD与改进小波阈值结合应用于心电信号去噪研究

现代电子技术Modern Electronics TechniqueJun.2023Vol.46No.122023年6月15日第46卷第12期0引言心电信号是人体活动的基本表征,是判断心律失常、心肌梗死等的重要临床依据。
而监测得到的信号常常存在各种噪声[1],从监测信号中提取有用信号是当前科研活动的关键。
目前提取有用信号多采用集合经验模态分解(EEMD )去噪处理手段,但此方法容易产生模态混叠现象,且对含噪声的固有模态IMF 分量直接剔除[2⁃5]等缺点会影响去噪性能。
对此,本文提出将改进的小波阈值与EEMD 相结合,应用于心电信号去噪。
首先介绍了改进的小波阈值方法和EEMD 算法;再将结合算法应用于模拟信号去噪,达到了良好效果;最后对真实心电信号进行去噪实验,实验证明了改进的算法是有效的,比单一的EEMD 算法应用于心电信号提取处理更有效。
1EEMD 算法介绍为解决经典EMD 方法模态混叠问题,研究者们提出了一种新的噪声辅助数据分析方法,即EEMD 算法。
EEMD 算法的核心思想是利用白噪声具有频率均匀分DOI :10.16652/j.issn.1004⁃373x.2023.12.023引用格式:蔡帮贵,朱雨男,王彪.EEMD 与改进小波阈值结合应用于心电信号去噪研究[J].现代电子技术,2023,46(12):137⁃140.EEMD 与改进小波阈值结合应用于心电信号去噪研究蔡帮贵1,2,朱雨男2,王彪2(1.四川卫生康复职业学院,四川自贡643000;2.江苏科技大学海洋学院,江苏镇江212000)摘要:心电信号监测过程中噪声是不可避免的,目前主要采用EEMD 算法对观测信号所带有的噪声进行滤除,但该方法会直接丢弃高频噪声主导的低阶IMF 分量或低频噪声主导的余项,导致部分有用信息丢失。
为此,文中提出将改进的小波阈值与EEMD 相结合,应用于心电信号去噪。
改进的阈值方法能有效地去除各IMF 分量噪声,再将处理后的各分量叠加,得到去噪的心电信号。
基于MEMS_硅基谐振器的磁场传感器最新进展

第 21 卷 第 11 期2023 年 11 月Vol.21,No.11Nov.,2023太赫兹科学与电子信息学报Journal of Terahertz Science and Electronic Information Technology基于MEMS硅基谐振器的磁场传感器最新进展武颖杰1,2,吕秀梅1,张自强1,涂程2,张晓升*2(1.北京新风航天装备有限公司,北京100854;2.电子科技大学电子科学与工程学院,四川成都611731)摘要:随着智能时代的到来,磁场传感器已经广泛应用于移动设备中,为用户提供定位和导航等服务。
目前,基于霍尔效应的磁场传感器和基于磁性材料的磁阻式传感器是人们普遍采用的2种磁场检测传感器。
基于霍尔效应的磁场传感器的优点是成本低,不需要外加磁性材料,且制作工艺和互补金属氧化物半导体(CMOS)工艺兼容。
这种传感器的工作范围一般为10 μT~1 T,并可以通过增加功耗的方式来提高分辨力。
磁阻式磁场传感器拥有较高的分辨力和较宽的工作范围(0.1 nT~1 T),其性能主要取决于磁性材料。
除了以上2种方式外,由硅基微机电系统(MEMS)谐振器构成的谐振式磁场传感器利用洛伦兹力对磁场的依赖性实现了对磁场的检测,具有体积小、功耗低、性能优异且与CMOS工艺兼容等优点,近年来受到研究人员的广泛关注。
本文回顾了由MEMS硅基谐振器构成的磁场传感器的最新发展动态和性能提升方法,并总结了当前存在的关键挑战和未来机遇。
关键词:微机电系统;谐振式磁场传感器;硅基谐振器;压电式换能;电容式换能中图分类号:TN40 文献标志码:A doi:10.11805/TKYDA2022129Review of magnetic field sensors based on MEMS silicon resonatorsWU Yingjie1,2,LYU Xiumei1,ZHANG Ziqiang1,TU Cheng2,ZHANG Xiaosheng*2(1.Beijing Xinfeng Aerospace Equipment Co.,Ltd. Beijing 100854,China;2.School of Electronic Science andEngineering,University of Electronic Science and Technology of China,Chengdu Sichuan 611731,China)AbstractAbstract::With the advent of the intelligent era, magnetic field sensors have been widely used in mobile devices to provide users with services such as positioning and navigation. At present, themagnetic field sensors based on Hall effect and the magnetoresistive magnetic field sensors which rely onmagnetic materials are two dominant technologies in the market. The advantages of the magnetic fieldsensors based on the Hall effect include low cost, no need for magnetic materials and fabricationcompatibility with the Complementary Metal Oxide Semiconductor(CMOS) technology. The operatingrange of this kind of sensors typically is from 10 μT to 1 T, and the resolution can be improved byincreasing the power consumption. Magnetoresistive magnetic field sensors have high resolution andwide operating range(0.1 nT~1 T), and their performances mainly depend on the magnetic materialsadopted. Besides these two technologies, resonant magnetic field sensors composed of silicon-basedMicro-Electro-Mechanical System(MEMS) resonators have received extensive attention in recent yearsdue to their benefits of small form factor, low power consumption, high performance and fabricationcompatibility with CMOS technology. This paper reviews the latest developments of magnetic fieldsensors using silicon-based MEMS resonators. In addition, methods for improving the performance ofsuch sensors are described. The current key challenges and future opportunities are provided.KeywordsKeywords::Micro-Electro-Mechanical System(MEMS);resonant magnetometers;silicon-based resonators;piezoelectric transduction;capacitive transduction文章编号:2095-4980(2023)11-1387-10收稿日期:2022-06-24;修回日期:2022-12-27基金项目:国家自然科学基金资助项目(62074029;61804023;61971108;62004029);四川省科技厅成果转移转化示范资助项目(2020ZHCG0038);四川省科技厅资助项目(2019YJ0198;2020YJ0015);中央高校基本科研业务费集成攻关资助项目(ZYGX2019Z002)*通信作者:张晓升email:*****************.cn太赫兹科学与电子信息学报第 21 卷1388随着信息时代的到来,磁场传感器在工业控制和导航中发挥着越来越重要的作用[1]。
第五章_涡流检测

Depth Depth
Standard Depth of
Penetration
(Skin Depth)
Eddy Current Density
High Frequency High Conductivity High Permeability
1/e or 37 % of surface density
非磁性导电基体上非导体覆盖层.镀层厚度的测量.振幅 灵敏性涡流法
用电磁(涡流)法测定电导率的标准实施规程 ASTM 有色金属的电磁(涡流)分类标准规程 ASTM 用涡流仪器测量铝阳极镀层及其它非磁性基底金属绝
缘镀层的厚度标准试验方法 ASTM
涡流检测的基本过程
熟悉要检测缺陷的类型,位置,方向 选择合适的探头类型,适应工件的形状,缺陷对涡流有影响 选择合适的线圈激励频率,对表面缺陷检测,可以使用较高的激励频
率得到高分辨率和高灵敏度,对近表面缺陷,使用较低的激励频率得 到较大的穿透深度,但灵敏度会降低。铁磁材料或者高导电率材料需 要更低的激励频率。 制作参考试样,材料与工件基本一致。人工缺陷类似于待测缺陷 选择和安装仪器和探头 通过试样调节仪器到能方便识别缺陷的信号 放置探头到被测工件表面,仪器设置零点 扫查整个待测表面,扫查过程中要保证探头的稳定,因为探头的抖动 将会影响信号的质量。在自动扫查系统中需要相应的夹具 记录分析数据
壳牌公司开发部向Maclean购买了该专利权, 在探头的研制中获得了很大的成功,并用来检 测井下套管。20世纪60年代初期,壳牌公司应 用远场涡流检测技术来检测管线,检测设备包 括信号功率源、信号测量、信号记录和处理, 做成管内能通过的形式,像活塞一样,加动力 之后即可在管线内运动,取名“智能猪”(见 图3)。此装置于1961年5月9日第一次试用,一 次可以检测80公里或更长的管线。[3]
开关电源需掌握的基本英语词汇
开关电源需掌握的基本英语词汇AAuxiliary supply(辅助电源)BB-H curve(磁化曲线)Bipolar transistor(双极型晶体管)Avalanche(雪崩)base drive(基极驱动)forward bias safe operating area (FBSOA,正向偏置安全⼯作区) reverse bias safe operating area(RBSOA,反向偏置安全⼯作区) safe operating area(安全⼯作区)secondary breakdown( ⼆次击穿)storage time(储存时间)vecovecsBoost converter(Boost 变换器)Compensation(补偿)Control equation(控制等式)Buck converter (Buck 变换器)Compensation(补偿)Control equation(控制等式)Buck-Boost converter(Buck-Boost 变换器)CCapacitor(电容)Aluminum(铝)Ceramic(陶瓷的)EMI filter(EMI 滤波器)Equivalent circuit(等效电路)Equivalent series inductance(等效串联电感)Failure mode(失效模式)Film(薄膜)Flammability(可燃性)Metallized paper(镀⾦属纸)Metallized film(镀⾦属膜)Multilayer ceramic(多层陶瓷的)Niobium(铌)Polymer electrolytic(聚合物电解)Polymer tantalum(聚合物钽)Reservoir(储能的)Ripple current(纹波电流)Self-heating(⾃加热)Tantalum(钽)Temperature coefficient(温度系数)Capacitor definition(电容定义)Charge pump(电荷泵)Clamp circuit(钳位电路)Common mode interference(共模⼲扰)Compensation(补偿)Laboratory method(实验室⽅法)Continuous operation(连续⼯作)Current limit(限流)Current mode PWM controller(电流模式PWM控制器)Current sense(电流检测)Current transformer(电流互感器)DDC-DC converter(直流-直流变换器)Dead time(死区时间)Differential mode interference(差模⼲扰)Diode(⼆极管)Forward recovery(正向恢复)Gallium arsenide(砷化镓,⽓体)Junction(PN结)PIN(引脚)Reverse recovery(反向恢复)Schottky(肖特基)Silicon carbide(sic,碳化硅)Soft recovery(软恢复)Standard recovery(标准恢复)Ultra-fast(超快速)Discontinuous operation(断续⼯作)Dissipation factor(损耗因数)EEddy current(涡流)Electromagnetic compatibility(EMC,电磁兼容)Electromagnetic interference(EMI,电磁⼲扰)Equivalent series resistance(ESR,等效串联电阻)Error amplifier(误差放⼤器)European community(欧盟)FFederal Communication Commission(FCC,美国联邦通信委员会)Ferrite(铁氧体)Flux density(磁通密度)Flyback(反激)Compensation(补偿)Converter(变换器)Flying capacitor(飞跨电容)Forward compensation(前馈补偿)Converter(变换器)Full bridge converter(全桥变换器)Full wave bridge(全桥)GGround fault circuit interrupter(GFCI,接地故障端路器)HHalf bridge converter(半桥变换器)Hold up time(保持时间)Hysteresis (magnetic,磁滞)IIn-rush current(内部冲击电流)Inductor(电感)Shielded(屏蔽的)Temperature(温升)Unshielded(未屏蔽的)inductor definition(电感定义)inverting boost converter(反向Boost变换器)LLenz’s law(楞次定律)MMagnetic force(磁⼒)Metal oxide varistor(MOV,⾦属氧化物可变电阻)Avalanche(雪崩)Avalanche rating (雪崩额定值)Dv/dt rating(dv/dt额定值)Gate capacitance(门极电容)Gate drive(门极驱动)Gate –voltage(门极电压)High side drive(⾼压侧驱动)Intrinsic diode(体⼆级管)Logic drive(逻辑驱动)Low voltage drive(低压驱动0Miller effect(⽶勒效应)On-resistance(导通电阻)P channel devices(P沟道器件)Reverse recovery(反向恢复)RFI suppression(射频⼲扰抑制)Safe operating area(安全⼯作区)Sense fets(电流检测FET)Standard drive(标准驱动)Synchronous rectification(同步整流)Transform drive(变压器驱动)Multiple phase PWM controller(多相PWM控制器)NNTC thermistor(负温度系数热敏电阻)OOff-line supply(离线式电源)Optocoupler(光耦合器)PPassivation(钝化作⽤)Patient-area medical equipment(医疗器械)Permeability(磁导率)Powdered iron(铁粉)Power factor correction(功率因数校正)Power line transients(电⽹瞬变)Pulse frequency modulation controller(脉冲频率调制控制器件)Pulse width modulation controller(脉宽频率调制控制器件)Push-pull converter(推挽变换器)RRadio frequency interference(RFI,射频⼲扰)Resistor(电阻)Carbon composition(碳化合物)Film(薄膜)Wire(导线)Resonant mode controller(谐振模式控制器)SSEPIC converter(SEPIC变换器)Skin effect(集肤效应)Slope compensation(斜坡补偿)Snubber circuit(缓冲电路)Soft start(软启动)Synchronous rectification(同步整流)TTransformer(变压器)AC flux density(交流磁通密度)Clamp winding(钳位绕组)Copper strip(铜带)Core permeability(磁导率)Equivalent circuit(等效电路)Ideal transformer(理想变换器)Magnetizing inductance(激磁电感)Parasitic(leakage) inductance(寄⽣电感,漏感)Pulse transformer(脉冲变压器)Reset(复位)Safety design(安全性设计)Transformer equation(变压器等式)Wire(导线)Transformer isolated converters(变压器隔离的变换器)UUnder voltage lockout(⽋压锁定)Universal input(通⽤输⼊)VVoltage doubler(电压倍增器)Voltage mode PWM controller(电压模式PWM 控制器)WWire table(导线⼀览表)ZZener diode(齐纳⼆极管)。
流动音频F5工作室监听器系列说明书
The Fluid Audio F5 studio monitor series is the next logical step in the development of the affordable, studio-quality speaker for recording professionals. It’s almost unfair to call it a “budget” monitor because of the many features that set it apart in its class. All of the features have been carefully chosen because they solve problems that many consumers see with speakers found on the market today. Spending the time to the get the Fluid Fader 5 sounding right, we set out to create a monitor that is just as comfortable as your studio mixing workhorse as it is your favorite listening speaker after the session is over.Our aim is to create your next great set of studio monitors, but also a seamless listening experience – and a more Fluid workflow. Accuracy and ControlWhether you’re tracking, mixing, or just listening to your favorite CD, your monitors are your primary source of reference. Accurate monitors are an invaluable tool in your arsenal of music and video production, so you need some assurance that your mixes will translate well to your audience’s speakers. The Fluid F5 monitors have not only the depth of soundstage and sonic clarity that allow you to hear even the most subtle of reverb trails. The fader control on the front baffle allows you to adjust the volume of the monitor without having to interrupt your workflow to reach behind them. Advanced Driver TechnologyThe Fluid Fader 5 monitors feature driver technology that focuses on the details. The composite pulp cones are light and rigid, yet well damped. The coated silk dome tweeters are mounted in such a way to provide a ultra-flat response usable to 22kHz.The built-in waveguide provides the tweeter with wide dispersion and an expansive sweet spot. By pushing the tweeter back slightly, it allows it to be time-aligned with the woofer, resulting in remarkable imaging. Coupled with an optimized front-loaded slot port, the low frequency driver delivers articulate, dynamic bass response – all in an extremely compact footprint.“Smart” AmplificationThe Class A/B bi-amplified design separately drives the low and high frequency drivers – allowing each to work independently and more efficiently. Utilizing an external heat sink on the amplifier keeps the heat outside of the enclosure, which allows both the amps and the drivers to operate at lower temperatures. When speakers are not in being used, an integrated standby function powers down the amplifier to conserve energy. Combined with phase-optimized crossover networks, the drivers blend together, resulting in a coherent soundstage across the entire audio spectrum. Features•Bi-amplified design with 70 watts of Class A/B power for coherent and accurate sound reproduction•5” low-frequency drivers with composite paper cones for powerful and dynamic lows•1" treaded silk dome high frequency drivers with integrated waveguide ensure a flat response and wide dispersion•Optimized front-loaded slot port for direct radiating low frequency energy•Magnetic shielding that eliminates interference with other electronic equipment•XLR balanced, 1/4” balanced and RCA unbalanced inputs for connecting mixers, interfaces, instruments, DJ gear, and more•Fader Volume control on front baffle for easy access•Amplifier Standby mode that powers down the amp when no input signal is detected (shown by front LED changing from blue to red)•Includes two isolation padsFor more information visit /F5Fluid Audio F5 - Advanced 70-Watt Bi-AmplifiedSpecifications• Frequency response: 49 Hz – 22 kHz• Crossover frequency: 2.5 kHz•Low-frequency amplifier power: 40 watts• High-frequency amplifier power: 30 watts• Signal-to-noise: > 100 dB (typical A-weighted)• Polarity: Positive signal at + input produces outward LF one displacement• Input impedance: 20 k ohms balanced, 10 k ohms unbalanced• Input sensitivity: 85 mV pink noise input produces 90dBA output SPL@ one meter with volume control at maximum• Power: Factory programmed for either 115V ~50/60 Hz or 230V~50/60 Hz• Protection: RF interference, output current limiting, overtemperature, turn-on/off transient, subsonic filter,external mains fuse• Cabinet: Vinyl-laminated MDF• Size (single monitor): 260 x 176 x 195 mm / 10.25 * 6.9 * 7.7 in• Weight (single monitor): 5 kg / 11 lbsPackage Contents•One pair (2) Fluid Audio Fader 5 studio monitors•Manual• 2 detachable power cables•Isolation padsFor more information visit /F5Fluid Audio F5 - Advanced 70-Watt Bi-AmplifiedMulti-Length Descriptions100 WordsThe Fluid Audio F Series is the new standard in affordable studio monitors for recording professionals.Customized Class A/B analog amplifiers deliver ample power and dynamics while external heat sinks keep heat outsideof the cabinet. The forward facing ports ensure that bass energy is focused toward the listener, while the front mounted fader volume knob provides the listener with the flexibility and control only found in more expensive models.The composite cone woofer is perfectly mated to the waveguide-loaded silk dome tweeter with a phase-optimizedtest crossover. The result is a coherent accurate reference monitor – as well as an enjoyable speaker.50 WordsWith features and refinements found only in higher priced monitors, the Fluid Audio F5 raises the bar of quality at any price points. Not only does the F5 provide more flexibility and control, but it has been finely-tuned to reveal everything in your mix.25 WordsFluid Audio F5 is the new standard in affordable studio monitors, not only because of their thoughtful craftsmanship, but because they are dependable reference monitors.ReferenceSKU F5UPC / EAN 858445004004 EU 858445004127 US 858445004066 UKDescription 2”-way 5” monitorUnit Dimensions, Unboxed 260*175*195 mm 10.25*6.9*7.7 inPair Dimensions, Boxed 449*293*330 mm 17.7*11.5*13 inUnit Weight, Unboxed 5,5 kg 11 lbsUnits per Case ( pair ) 1Shipping box weight12 kg 24,2 lbsShipping box dimensions 464*308*352 mm 18.3*12.1*13.9 inUnits per Pallet ( pairs ) 40Pallet Dimensions 1130*1050*1750 mm 44.5*41.3*68.9 inUnits per Container (20’/40’) 500 / 1100。
100_Hz~1_MHz_感应式磁传感器的低噪声前置放大电路设计
Journal of Sensor Technology and Application 传感器技术与应用, 2023, 11(3), 222-231 Published Online May 2023 in Hans. https:///journal/jsta https:///10.12677/jsta.2023.113024100 Hz~1 MHz 感应式磁传感器的 低噪声前置放大电路设计唐 尧1,2,晏茂珊1,21中南大学地球科学与信息物理学院,湖南 长沙2中南大学有色金属成矿预测教育部重点实验室,湖南 长沙收稿日期:2023年3月15日;录用日期:2023年5月1日;发布日期:2023年5月11日摘要感应式磁传感器常用于大地电磁法勘探中,降低感应式磁传感器的噪声水平可改善采集的磁场数据信噪比,进而提高大地电磁法的勘探精度。
本文从感应式磁传感器的原理出发,分析了感应式磁传感器的噪声源分布,采用低噪声JFET (JFE2140)和高速集成运算放大器(OPA211)设计并制作了一款低噪声前置放大电路,该前置放大电路的电压噪声为1.8 nV/√Hz@100kHz ,电流噪声为2.9 fA /√Hz@100kHz ,固定增益为60 dB ,带宽为30 Hz ~500 kHz 。
测量结果表明,该低噪声前置放大电路适用于100 Hz ~1 MHz 感应式磁传感器中的微弱磁场信号放大。
关键词大地电磁法勘探,感应式磁传感器,低噪声,前置放大电路Low Noise Amplifier Design for100 Hz ~1 MHz Induction MagnetometersYao Tang 1,2, Maoshan Yan 1,21School of Geoscience and Info-Physics, Central South University, Changsha Hunan2Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Central South University, Changsha HunanReceived: Mar. 15th , 2023; accepted: May 1st , 2023; published: May 11th , 2023AbstractInduction Magnetometers (IM) are commonly used in geomagnetic exploration. Reducing the noise唐尧,晏茂珊of Induction Magnetometers can improve the signal-to-noise ratio of the collected magnetic field data, which in turn can improve the exploration accuracy of geomagnetic exploration. In t his paper, the noise source distribution of IM is analyzed. A low-noise JFET (JFE2140) and a high- speed integrated operational amplifier (OPA211) were used to design and fabricate a low-noise amplifier with a voltage noise of 1.8 nV/√****************************** fA/√Hz@100kHz, a fixed gain of 60dB and a bandwidth of 30 Hz~500 kHz. The measurement results show that this low-noise amplifier is suitable for amplifying weak magnetic field signals in 100Hz~1 MHz Induc-tion Magnetometers.KeywordsMagnetotelluric Methods, Induction Magnetometers, Low Noise, AmplifierThis work is licensed under the Creative Commons Attribution International License (CC BY 4.0)./licenses/by/4.0/1. 引言由感应线圈、前置放大电路、磁芯构成的感应式磁传感器(Induction Magnetometers, IM)因具有低功耗、高灵敏度、高分辨率、携带方便等特点[1][2][3][4],在大地电磁法勘探工作中常承担着磁场信号的测量任务。
极低频电磁场及与铅联合作用对发光细菌Vibrioqinghaiensis发光的影
应用与环境生物学报 2004,10(5):667~670 Chin J Appl Environ Biol=ISSN10062687X 2004210225极低频电磁场及与铅联合作用对发光细菌V ibrio qi nghaiensis发光的影响3刘 33 喻云梅 翁恩琪(华东师范大学环境科学系 上海 200062)摘 要 观察了50Hz,0.1~9.6mT,10~30min的电磁场暴露及其与铅的联合作用对淡水发光细菌青海弧菌(V ib2 rio qinghaiensis sp.nov)发光的影响.结果表明,电磁场暴露能增强发光细菌的发光,在6.4mT附近,增强作用最为强烈,在0.2~0.4mT附近,增强作用显得最为微弱,提示EL F EMFs对发光细菌的效应具有剂量“窗口”特性;Pb(0.2~1.6mg L-1)能抑制发光细菌发光,并随着Pb剂量的增大,抑制效应愈明显,呈明显的线性负相关;电磁场与Pb合并作用,Pb并没有改变电磁场对发光细菌效应的包括剂量窗口在内的特性,但3.2~9.6mT的电磁场暴露提高了发光细菌对Pb剂量变化的敏感性.图3表3参9关键词 极低频电磁场;铅;发光细菌C LC X837.02EFFECTS OF EXTREME LY LOW FREQUENCY E L ECTROMAGNETIC FIE LDS AN D ITS COMBINED EFFECT WITH L EAD ON THEL UMINESCENCE OF VIB RIO QIN GHAI ENSIS3L IU Yun33,YU Yunmei&WEN G Enqi(Depart ment of Envi ronmental Science,East Chi na Normal U niversity,Shanghai 200062,China) Abstract The effects of extremely low frequency electromagnetic fields(EL F EMFs)and its combined effect with lead on the luminescence of luminescent bacteria V ibrio qinghaiensis sp.nov(Strain Q67)were studied in this paper.Results indi2 cated that an exposure to50Hz,0.1~9.6mT EMFs for10~30min significantly enhanced the luminescence.The en2 hancement was most evident when EMFs density was around6.4mT and weakest at about0.2~0.4mT,which suggests the existence of dose”windows”during the interaction between EMFs and the bacterial organisms.Exposure to lead(0.2~1.6mg L-1)inhibited the luminescence,and the inhibition became stron ger with the increment of lead dose.When EL FEMFs and lead were applied simultaneously,the results suggested that lead could not change the characteristics of EL F EMFs′effects on the luminescence including dose”windows”.However,under the exposure to EMFs of3.2~9.6mT the luminescent bacteria became more sensitive to the increment of lead dose.Fi g3,Tab3,Ref9K eyw ords extremely low frequency electromagnetic fields;lead;luminescent bacteriaC LC X837.02 极低频电磁场(extremely low frequency electromagnetic fields,EL F EMFs)是指频率为0~3000Hz的电磁场,我们日常生活中接触最多的EL F EMFs是50Hz(欧美国家多为60 Hz)的工频电磁场.随着电力事业的迅猛发展和家用电器的广泛普及,EL F EMFs已逐渐成为威胁人体以及其他生物体健康和安全的环境污染因子[1].发光细菌在代谢过程中伴随着发光,通过监测发光细菌发光的变化,可推断其代谢过程是否受到影响[2].发光细菌急性毒性试验已被用来检测环境化学污染物的毒性[3].极低频电磁场是否会影响发光细菌的发光效应呢?我们选择了淡水发收稿日期:2003209205 接受日期:20032102283上海市重点学科生态学资助 Supported by the Shanghai Priority A2 cademic Discipline(Ecology)33通讯作者 Corresponding author 光细菌青海弧菌,观察了EL F EMFs对其发光的影响;此外,考虑到环境电磁场污染往往和化学污染物同时存在,又观察了它和铅暴露的联合作用.1 材料与方法1.1 材料淡水发光细菌青海弧菌(V ibrio qinghaiensis sp.nov,strain Q67)冻干粉,由华东师范大学生物系朱文杰教授提供.测定前将发光细菌冻干粉置于4℃下复苏10min,然后取1mL4℃预冷的0.85%NaCl溶液注入粉剂瓶内,震荡混匀,再加入3 mL NaCl溶液,配制成n=109~1010mL-1的细菌悬液备用.电磁场发生器,由华东师范大学教学仪器厂研制,参数为:正弦波、50Hz、0~15mT连续可调,用CT3-A型特斯拉计和SR-12A型示波器监测. RS 9901生物发光光度计,上海容圣电子仪器公司生产.1.2 暴露与测定每支样品管内包含2mL 0.85%NaCl 溶液和100μL 细菌悬液.样品管分为2组:空白对照管和测试管.测试管再分为4小组:电磁场假暴露管、单独电磁场暴露管、单独铅暴露管和电磁场合并铅暴露管.对于电磁场假暴露管和单独铅暴露管,试管放置于电磁场发生仪的暴露区,但电磁场发生仪关机;对于所有电磁场暴露管,电磁场强度分别设定为0.1mT ,0.2mT ,0.4mT ,0.8mT ,1.6mT ,3.2mT ,6.4mT 和9.6mT ,分别于暴露5min 、10min 、15min 、20min 后,迅速在生物发光光度计上测定其发光强度.对于所有铅暴露管,在管内添加醋酸铅(国产分析纯)溶液,使Pb 终浓度分别为0、0.2mg L -1、0.4mg L -1、0.8mg L -1和1.6mg L -1,暴露10min 后测定发光强度.空白对照管与测试管平行测定.实验重复3次.实验过程中环境温度保持在(25±1)℃.1.3 数据分析以LC t ,L T t 分别表示t 时刻空白对照管和测试管的发光强度,设t 时刻空白对照管的发光强度为100%,则t 时刻测试管的发光强度表示为相对发光强度,计算公式为:相对发光强度(relative luminescence ,RL )=L T t /LC t ×100%取3次重复实验数据的平均值,采用t 检验法进行差异显著性检验.2 结果2.1 EL F EMFs 暴露对发光细菌发光效应的影响结果见表1.与电磁场假暴露管相比,在不同强度的EL F EMFs 暴露下,发光细菌的相对发光强度明显增高(P <0.05),表明在本实验条件下,0.1~9.6mT 的EL F EMFs 能增强发光细菌的发光效应.将表1所列数据制成图1,可见不同的EL F EMFs 暴露持续时间(5min ,10min ,15min 和20min )导致发光细菌相对发光强度的变化趋势相似.值得注意的是,在6.4mT 附近,EL F EMFs 对发光的增强作用最为强烈,而在0.2~0.4mT 附近,增强作用显得最为微弱.表1 EL F EMFs 暴露对发光细菌发光效应的影响Table 1 E ffects of EL F EMFs on the relative luminescence (RL/%)of V .qinghaiensis电磁场暴露Exposure to EL F EMFs (B /mT )暴露时间Exposure time (t /min )5101520P 3Shame exposure999510198-0.1129127139140<0.050.2116112113110<0.050.4112118123127<0.050.8125127129128<0.051.6131138133132<0.053.2130131130133<0.056.4156164159167<0.059.6129133133133<0.05 3与电磁场假暴露管相比vs Shame exposure2.2 Pb 暴露及其与EL F EMFs 的联合作用对发光细菌发光效应的影响如表2所示.单独铅暴露下,发光细菌相对发光强度低于100%(P <0.05),表明Pb 能抑制发光细菌发光,而且随着Pb 剂量的增大,抑制效应愈明显,呈明显的线性负相关,相关系数为-0.9618.EL F EMFs 合并Pb 暴露组相对发光强度明显高于单独铅暴露组(P <0.05),但明显低于相应强度的单独EL F EMFs 暴露组(P <0.05).将表2所列数据制成图2,可见在EL F EMFs 合并不同浓度Pb 暴露条件下,发光细菌的发光随电磁场强度变化而变化的趋势与单独EL F EMFs 暴露相似.图3表示不同强度EL F EMFs 暴露下,相对发光强度与Pb 的暴露剂量之间的关系.据线性回归方程y =a +bx ,对每条曲线以Pb 剂量为自变量x ,相对发光强度为因变量y ,进行线性回归;参数b 为该回归曲线的斜率,即相对发光强度随Pb 剂量的变化率,反映了发光细菌对Pb 剂量变化的敏感程度.表3为图3中各条曲线的回归系数.经回归系数差别的t 检验,EL F EMFs 强度为3.2mT ,6.4mT 和9.6mT 时,曲线的斜率明显增大,这表明该强度EMFs 提高了发光细菌对Pb 剂量变化的敏感性.866 应用与环境生物学报 Chin J Appl Environ Biol 10卷图3 不同EL F EMFs 暴露强度下Pb 暴露对发光细菌发光效应的影响Fig.3 Effects of lead on the luminescence of V.qi nghaiensisat different EL F EMFs flux density表3 EL F EMFs 对Pb 剂量与发光细菌相对发光强度关系的线性回归系数的影响T able 3 E ffect of E LF EMFs on the coefficient b of linear regression equation of lead d ose and relative luminescence of V.qinghaiensis组别Group系数bCoefficient b Exposure to Pb alone -18.030.1mT EMFs +Pb -28.430.2mT EMFs +Pb -20.130.4mT EMFs +Pb -20.960.8mT EMFs +Pb -20.961.6mT EMFs +Pb -22.263.2mT EMFs +Pb -34.4336.4mT EMFs +Pb -27.4339.6mT EMFs+Pb-30.8733表示与单独铅暴露管相比 vs tubes exposed to lead alone ,P <0.053 讨论细菌的生物发光是一个复杂的生理、生化过程,涉及到膜的功能、相关酶的活性以及电子传递链[2].外界环境因子可能通过干扰发光细菌的代谢环节而影响发光.利用发光细菌观察极低频电磁场生物学效应的研究非常少见.Mittenzwey 等观察了2~50Hz ,1~10mT 电磁场暴露下,海洋发光细菌Photo 2bacterium phosphoreum 和Photobacterium f isheri 的发光变化,结果表明50Hz 、2mT 电磁场暴露抑制了发光,但其他频率和强度的电磁场未改变细菌的发光[4].Greenbaum 等报道,未观察到60Hz 电磁场对发光菌V ibrio f isheri 发光的影响[5].本文采用淡水发光菌V ibrio qinghaiensis ,观察到50Hz ,0.1~9.6mT EMFs 暴露明显增强了发光,这与其他研究者的观察结果有所不同,究其原因,可能与细菌种属、电磁场特性以及暴露条件的差异有关.关于本文所观察到发光增强效应,我们推测可能与发光系统多酶复合体所包含的金属辅基有关,例如铁离子具有顺磁性,在外加电磁场条件下可能会发生能态的改变,从而改变了酶的活性,最终表现为发光增强.本实验室曾采用与本文相同的电磁场暴露条件,观察到电磁场暴露下,萌发期大豆包含金属辅基的酶(超氧化物歧化酶SOD 和过氧化氢酶CA T )活性表现为增强[6],这为上述推测提供了一定证据.当然,也不排除EL F EMFs 可能直接促进细菌的代谢过程,导致发光增强.同时,我们也观察到,EL F EMFs 强度与其对发光的增强效应呈现强度剂量“窗口”现象,即在某些特定强度下,效应非常显著,而偏离这些强度,效应则微弱得多.这个现象与其他关于EL F EMFs 生物效应的研究报道[7]一致,是EL F EMFs 的作用特点之一.EL F EMFs 作用于发光细菌的机制尚待分子水平的研究证据,对这个问题的探讨有助于阐明EL F EMFs 生物学效应的机制问题.本研究中,观察到重金属Pb 对发光细菌发光的抑制,这种抑制效应与铅浓度呈明显的量效关系,这与其他文献报道结果[8]互为印证.环境中EL F EMFs 总是与多种化学污染物并存,它们之间的联合效应是不容忽视的.EL F EMFs 与Pb 联合作用时,Pb 没有明显改变发光细菌对EL F EMFs 的强度剂量反应特性;但较高强度(3.2~9.6mT )的EL F EMFs 增强了发光细菌对Pb 暴露剂量变化的敏感性,也即当EL F EMFs 与Pb 同时存在时,随着Pb 剂量的升高,发光抑制效应的增强比单独Pb 作用时更为明显.这种协同效应的实现可能通过如下途径实现:(1)Pb 与EL F EMFs 可能作用于细菌代谢过程的相同靶点或环节,因此能够相互影响;(2)EL F EMFs 可能改变金属离子Pb 2+的行为,从而改变Pb 对发光过程的抑制效应.我们在哺乳动物实验上也曾观察到EL F EMFs 与重金属Pb 的协同效应[9].这一饶有兴趣的现象,值得进一步探讨.R eferences1 Repacholi MH ,Greenebaum B.Interaction of static and extremely lowfrequency electric and magnetic fields with living system :health effects and research needs.Bioelect romagnetics ,1999,20:133~1602 胡天喜,陈杞,陈克明编著.发光分析与医学.上海:华东师范大学966 5期刘赟等:极低频电磁场及与铅联合作用对发光细菌V ibrio qi nghaiensis 发光的影响 出版社,19903 Y an P (阎鹏),Sun L (孙礼),L I BX (李百祥).Survey of study onrapid determination of acute toxicity of environmental pollutants by lu 2minescent bacteria.J Envi ron Health (环境与健康杂志),2001,18(4):250~2524 Mittenzwey R ,Submuth R ,Mei W.Effects of extremely low frequen 2cy electromagnetic fields on bacteria -the question of a co -stressing factor.Bioelect rochem Bioenerg ,1996,40:21~275 Greenbaum MP.An upper limit for the effect of 60Hz magnetic fieldson bioluminescence from the photobacterium V ibrio f isheri .BiochemBiophys Res Com m un ,1994,198:40~446 Liu Y (刘赟),Weng EQ (翁恩琪),Dai YQ (戴雅奇),Zhang X(张璇).Biological effects of extremely low frequency electromagneticfields on soybean seeds during germination.Chi n J A ppl Envi ron Biol (应用与环境生物学报),2002,8(5):482~4847 Lacy -Hulbert A ,Metcalfe J C ,Hesketh R.Biological responses toelectromagnetic fields.FA S EB J ,1998,12:395~4208 Thomulk KW ,Mc G ee DJ ,Lange J e of the bioluminescent bac 2terium Photobacteri um phosphoreum to detect potential biohazardous materials in water.B ull Envi ron Contam Toxicol ,1993,51(4):538~5449 Liu Y (刘赟),Weng EQ (翁恩琪),Zhang Y (张颖),Hong R (洪蓉).Effects of extremely low frequency electromagnetic fields and itscombination with lead on the antioxidant system in mice.Chi n J IndHyg Occup Dis (中华劳动卫生职业病杂志),2002,20(1):263~265欢迎订阅 欢迎投稿《应用与环境生物学报》(双月刊)刊号:ISSN 1006-687XCN 51-1482/Q 邮发代号:62-15本刊是中国科学院主管、中国科学院成都生物研究所主办、科学出版社出版、国内外公开发行的全国性学术科技期刊(学报级),是我国应用生物学和环境生物学的核心刊物.主要报道我国应用生物学、环境生物学及相关科学领域的基础研究、应用基础研究和应用研究的成果,包括研究论文、研究简报和本刊邀约的综述或述评.读者对象主要为本学科的科研人员、大专院校师生和科研管理干部.本刊获中国科学院科学出版基金资助.本刊是中国科技论文与引文数据库(CSTPCD )核心期刊、中国科学引文数据库(CSCD )核心期刊、《中文核心期刊要目总览》收录期刊、中国学术期刊综合评价数据库(CAJ CED )统计源期刊,也为《中国生物学文摘》和中国生物学文献数据库、中国科技期刊数据库以及美国《CA 》(化学文摘)、俄罗斯《РЖ》(文摘杂志)、英国《Europa Publications 》等中外数据库收录.本刊曾获中国期刊方阵双效期刊、四川省第二届优秀期刊、四川省一级学术期刊.《应用与环境生物学报》为双月刊(1999年由季刊改为双月刊),全铜版纸印刷,双月25日出版,每期128页.定价为每期11.00元,年定价66.00元.全国各地邮局(所)均可订阅.新订户可向本刊编辑部补购1995至2003年以来各卷,以及1999年增刊(环境微生物学研究).编辑部地址:成都市人民南路4段9号,中国科学院成都生物研究所学报编辑部.邮编:610041;电话:(028)85229903,85237341(联系人:刘东渝);E 2mail :biojaeb @ ;http ://076 应用与环境生物学报 Chin J Appl Environ Biol 10卷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :a s t r o -p h /0208472v 1 27 A u g 2002Low-frequency QPO,Magnetic Flood and the states of GRS 1915+105M.Tagger Service d’Astrophysique (CNRS URA 2052),CEA Saclay,Gif sur Yvette,France.Abstract.We sum up progress accomplished,since the last microquasar workshop,on the physics of the Accretion-Ejection Instability (AEI),and its ability to explain the properties of the low-frequency QPO of microquasars.These results concern the basic theory of the instability,its numerical simulation and the resulting modelisation of the QPO,as well as detailed observations of the QPO properties.They converge to reinforce the ‘magnetic flood’scenario,extrapolated from the AEI to explain the ∼30minutes cycles of GRS 1915+105.We then discuss directions in which this scenario might be extended toward a more global view of the evolution of this source.1.Overview This contribution is first a status report,in which we summarize recent results on the theory and numerical simulation of the Accretion-Ejection Instability (AEI),and on detailed observations of the properties of the low-frequency Quasi-Periodic Oscillation of microquasars,for which we believe that it provides a convincing explanation.This progress has been made in complementary directions (see the contributions of Peggy Varni`e re and Jerˆo me Rodriguez,these proceedings):−Theory:We have [1]computed what was only shown approximately in the original description of the AEI [2],and justifies the ‘E’in its name:its unique ability to send upward,as Alfv´e n waves propagating in the corona,the accre-tion energy and angular momentum it extracts from the disk.We find that this mechanism is highly efficient,so that a large fraction of the accretion energy can be converted into Alfv´e n waves.Future work should show how this energy can be deposited in the corona to energize a wind or jet.−Numerical simulation:We have improved the numerical simulations pre-sented by S.Caunt [3]at the last workshop.A simple model of heating and thickening of the disk at the spiral shock formed by the instability allowsus to start producing 1synthetic light curves,which can be compared with the observed ones.Preliminary results show in particular that the AEI can reproduce the high rms amplitude of the QPO.−Observation:We have now published in final form the results presented at the last workshop,comparing theory and observation of relativistic effects when the inner disk edge approaches the last stable orbit,in particular in GRO J1655-40and GRS 1915+105[4]-[5].Although the observational evi-1in collaboration with M.Muno(MIT)2Michel Taggerdence is fragile and can only be taken as an indication,an additional hint is now provided by observations of XTE J1550-564[6].−Energy spectrum of the QPO:It is commonly observed that the QPO is best correlated with the properties of the disk,although it affects more strongly the coronal emission,i.e.the power-law tail.However,in the same observations of XTE J1550-564,wefind that the modulated emission has a different energy spectrum than this power-law.This is consistent with the presence of a hot point in the disk i.e.,in our interpretation,the spiral shock. Thus these results converge to confirm the expected properties of the AEI and its ability to explain the main characteristics of the QPO.These expectations were the basis of the‘Magnetic Flood’scenario[7],which starts from the identification of the QPO with the AEI,and extrapolates to give a tentative explanation for the ∼30minutes cycles of GRS1915+105.In this scenario the cycles are determined by the processing of the poloidal(vertical)magneticflux advected with the gas in the disk.We will show below how we have found a positive indication in favor of this scenario,in the detailed analysis of one of these cycles.We will then turn to unpublished work,presented in the undergraduate thesis of Fitzgibbon(1999)with E.Morgan and R.Remillard at MIT:defining states analogous to the ones of Belloni et al.[8],they show a striking regularity in the succession of these states:the source does not err between them,but repeatedly follows a well-defined sequence between them.We will briefly discuss how the Magnetic Flood scenario could be extrapolated again to explain this regularity.2.The Magnetic Flood ScenarioPresented previously[7]and at the last workshop,this starts from the identifica-tion of the AEI as the origin of the QPO,and follows a simple line of inferences which could explain the30mn cycles of GRS1915+105.Itsfirst step is that the apparition of the QPO,when the disk transitions from the high-soft to the low-hard state,must correspond to the crossing of a stability threshold.In our scenario the QPO appears when the magnetic pressure in the inner region of the disk builds up,reaching equipartition with the gas pressure;this is known to suppress the Magneto-Rotational turbulence(causing accretion in weakly mag-netized disks),and conversely it is the most unstable situation for the AEI.As a consequence the disk cools down,since the AEI transports the accretion energy outward and upward,in the form of waveflux,rather than depositing it locally to heat the gas(as assumed in theα-disk model).This explains that the disk transitions to the low-hard state,characterized by weak disk emission and dominant coronal one,and by the presence of a strong QPO.The disk moves outward and then back in,as it is viscously refilled from the outer regions;the low state ends when the inner disk edge reaches the Last Stable Orbit,allowing its magneticflux to reconnect with that trapped in the vicinity of the black hole(this may be the same force-free magnetic structure associated with the Blandford-Znajek mechanism).The reconnection,seen as the‘spike’ending the low-hard state(see the‘Magnetic Bomb’model presented by S.Eikenberry,this workshop) causes the ejection of the relativistic plasmoids later seen in IR and radio,and destroys magneticflux:this allows a return to a lower magnetization state where the magneto-rotational instability dominates again the accretion process.Our detailed analysis of two such cycles was mainly motivated by a comparison of observations with the theory of relativistic effects on the AEI,mentioned in the previous section.However we also found that the QPO appeared shortly before the transition to the low state.Thus,if there is a causal relation between the lowMagnetic Flood in GRS 1915+1053state and the QPO,it is not the one usually assumed:the QPO is not a property of the low state,but might well be what causes it,as predicted by our scenario.This scenario is compatible with all the observational facts;we use it as aguide1997199819992000100200Year 012345678910Figure 1.Bottom:ASM count of GRS 1915+105from 1996to 2000.Top:State of the source in Fitzgibbon’s categories.in our ongoing work of theory,simulation and observation;this new fact lets us hope that it may become a true model of the evolution of this source,from which much could be learnt:concerning other states of GRS 1915+105,its long-term behavior,and by extension the physics of accretion in black-hole binaries.3....and beyond?One way to progress in this direction might be to turn to the results of Fitzgibbon,reproduced in Figure 1:he defined 9states of the source,similar to the 12states of Belloni et al.(a tenth state would be Belloni’s state χ,and is not shown).Figure 1is his main result:he found that the source goes from one state to the other in a well-defined order,following the history of its X-ray luminosity,rather than simply the luminosity itself with which it is only loosely correlated:as plateau states are followed by flares,the source transitions from Fitzgibbon’s states 1to 8and 9(Belloni’s states βand ϑ,subject to the 30mn cycles).They are followed by a drop back to the plateau state,until the next flare.This result,although unpublished,may be of great importance as it probably contains a clue to the additional parameter,besides the accretion rate,which is suspected to rule the behavior of GRS 1915+105.This must have to do with the history of the source,which cannot return to the plateau state before it has gone4Michel Taggerthrough the30mn cycles,and before that through the succession of the different states.We suggest that this parameter could be the poloidalflux advected in the disk:in the Magnetic Flood scenario,it is its piling up in the inner region of the disk which causes the cycles.Extrapolating further this scenario,we thus get to the following working hy-pothesis:although one might think of other possibilities,reconnection is the best candidate to explain the spike and the ejection of the plasmoid;but this requires that the magneticfields in the disk and in the‘hole’inside the Last Stable Orbit have opposite polarities.We thus assume that the poloidalfield trapped near the black hole is sometimes parallel and sometimes anti-parallel to the one frozen in the disk(in the solar wind–earth magnetosphere system,the same dichotomy allows reconnection in the anti-parallel case,while in the parallel case more com-plex physics is involved).On long time scales the poloidalflux advected with the gas can change polarity;this may be due to the dynamo in the compan-ion star,or in the disk itself.In a parallel configuration accretion causes theflux trapped in the vicinity of the black hole to gradually build up until,after the next change of polarity in the disk,it can start to be destroyed by reconnection.This (the anti-parallel configuration)would correspond to theflares,and the cycles in Fitzgibbon’s states8and9would occur when the trappedflux has dropped and will soon also change sign:in this case the return to the plateau state corresponds to the return to the parallelfields configuration,and the beginning of theflares to the nextfield reversal in the disk and the onset of an anti-parallel phase.At this stage this is only an extrapolation of the Magnetic Flood scenario, which is itself an extrapolation of the identification of the AEI as the source of the QPO-although we believe that our recent results have increased its credibility. We note,however,that it would nicely explain that the plateau and theflares seem to occupy roughly comparable durations over the period studied by Fitzgibbon, since in order to annihilate the magneticflux built up during one episode the disk has to accrete a comparable amount of oppositeflux.We hope that analyzing other states of GRS1915+105may help in refining this hypothesis,leading to a more global view of accretion physics in this and other sources.AcknowledgmentsThe author thanks Peggy Varni`e re and Jerˆo me Rodriguez for the work summa-rized in this paper,and for their contribution in discussing Fitzgibbon’s results.References1.P.Varni`e re&M.Tagger,2002,to be published in A&A.2.M.Tagger&R.Pellat,1999,A&A,349,1003.3.Caunt,S.E.&Tagger,M.,2001,A&A,367,1095.4.J.Rodriguez et al.,2002,A&A,387,487.5.P.Varni`e re et al.,2002,A&A,387,497.6.J.Rodriguez et al.,2002,A&A,386,271.7.M.Tagger,1999,in Proceedings of the5th Compton Symposium,Portsmouth(USA),Sept1999(Astro-ph10365).8.Belloni,T.et al.,2000,A&A,355,271.。