2014-2015学年八年级数学下册课件:16.1 二次根式(第1课时)

合集下载

【人教版】八年级数学下册 16.1二次根式第一课时教学课件(共34张ppt)

【人教版】八年级数学下册 16.1二次根式第一课时教学课件(共34张ppt)
5
思考这些填入数据有什么特征
动脑想一想
【师】很明显
3
、s
、65
、 s 都是一些正数的
5
算术平方根.像这样一些正数的算术平方根的式
子,我们就把它称二次根式.因此,一般地,我
们把形如 (a a≥0)的式子叫做二次根式“ ”称
为二次根号.
动脑想一想
思考: (学生活动)议一议:
1.-1有算术平方根吗? 没有 2.0的算术平方根是多少? 0 3.当a<0,a 有意义吗? 没有
7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。14、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。
动手做一做
【师】同学们好(学生活动)请同学 们独立完成下列三个问题:
问题1:面积为3的正方形的边长为 _3_面 积为S的正方形的边长 s . 问题2:一个长方形的围栏,长是宽的2 倍,面积为130则他的宽为 __6_5_____.
动手做一做
问题3:一个物体从高处自由落下,落 到地面所用的时间t与开始落下时离地 面的高度h满足关系h=5t2用含h的式子表 示t,那么t为 __h____.
9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更5、别着急要结果,先问自己够不够格,付出要配得上结果,工夫到位了,结果自然就出来了。 6、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。

人教版数学八年级下册二次根式(第1课时)教学课件

人教版数学八年级下册二次根式(第1课时)教学课件

(3) 3 8
(4) 4 a2
不是(bù shi)
不是
不是
(5) - m (m 0)

(8) - x2 1
不是
(6) 2a 1
不是
(9)4 2

(7) a2 2a 3
是 1 (10) 3

第九页,共三十页。
探究新知
素养考点 2 利用二次根式有意义的条件(tiáojiàn)求字母的取值范 例2 当x是怎围样的实数时, x 2 在实数范围内有意义?
课堂小结
二次根式
(gēnshì)有意 义的条件和 非负性
二次根式
(gēnshì)的


在有意义
条件下求
字母的取
值范围
形如 a (a 0)的式子叫做 二次根式
抓住被开方数必须为非负数, 从而建立不等式或不等式组
求出其解集
二次根式
的双重非 负性
二次根式 a中,a≥0且
a ≥0
第二十九页,共三十页。
课后作业(zuòyè)
3.当x=__-_1_时,二次根式 x 1取最小值,其最小值
为_____0_.
第二十三页,共三十页。
课堂检测
4.(1)若式子
x 1 2
在实数范围内有意义,则x的取值
范围是__x_≥_1___;
(2)若式子
1 x2
x
在实数范围内有意义,则x的取
值范围是___x_≥_0_且_x_≠_2__.
第二十四页,共三十页。
第十五页,共三十页。
探究新知
归纳总结
二次根式的实质是表示一个(yī ɡè)非负数(或式)的算术平方
根.对于任意一个二次根式 ,必须a满足以下两条:

人教版八年级数学下《二次根式 第1课时:二次根式的概念和有意义的条件》精品教学课件

人教版八年级数学下《二次根式 第1课时:二次根式的概念和有意义的条件》精品教学课件

1 5;
2
3
2
x

2

3
x


A. 1
B. 2
D. 4
解:(1)∵−5<0,∴ 5 不是二次根式;
(2)∵x2+2>0,∴
课堂小结
C. 3
4 3 5;
5 是二次根式;
(3)∵当x≥0时,x3≥0,∴
3
x不一定是二次根式;
(4)∵ 3 5 的根指数是3,∴ 3 5 不是二次根式.
3
(2)由2x+3≥0,得x≥ .
2
二次根式有意义的条件
被开方数大于或等于0,即a≥0.
布置作业
创设情境
思考
当x是怎样的实数时, x 2 在实数范围内有意义? x3 呢?
探究新知
解:由x2≥0,得x是任意实数,
应用新知
巩固新知
课堂小结
布置作业
∴当x为任意实数时, x 2 都有意义.
由x3≥0,得x≥0,
探究新知
应用新知
与开始落下时离地面的高度h(单位:m)满足关系h=5t2.
如果用含有h的式子表示t,那么t该怎么表示?
巩固新知
课堂小结
布置作业
h=5t2
h
t=
5
创设情境
探究新知
应用新知
归纳
h
上面问题中,得到的结果分别是: 3、 S、 65、
5
它们都是表示正数的算术平方根.
.
观察上面的式子,
你能写出二次
可得, x 2 1 在实数范围内有意义.
创设情境
定义
探究新知
应用新知
巩固新知
课堂小结

人教版八年级数学下册16.1《二次根式》课件(共23张PPT)

人教版八年级数学下册16.1《二次根式》课件(共23张PPT)

C. a>-2或a≠ 0
【解析】选D.要使式子
D. a≥-2且a≠ 0
a2 a
有意义,须同时
满足a+2≥0,a≠0两个条件,解两个不等式
可得a≥-2且a≠0 。
巩固提高:
1.分别求下列二次根式中的字母的取值范围 (1) (
3 2x )
2
(2) (1 x) 2
3 (1). 3 2 x 0 x (2).x为全体实数 2 (3).x 3 0且x 2 x 3且x 2
2
(5) xy (x,y 异号), (7)
3
5
在实数范围内,负数没有平方根
1、判断下列代数式中哪些是二次根式?


1 2
2

16
x ( x 0)
a9
a 2a 2 ⑷
2
⑸ m 3

a 1 (a 3)
2.下列式子一定是二次根式的是( A.

2
x 2
4. a≥0, a ≥0
( 双重非负性)
小结:
1.怎样的式子叫二次根式?
形如 a (a 0)的式子叫做二次根式 .
2.怎样判断一个式子是不是二次根式?
(1). 形式上含有二次根号
(2).被开方数a为非负数, 3.如何确定二次根式中字母的取值范围?
从左看到右;从上看到下
看到分数线,分母不为0 看到偶次根式,被开方数大于等于0
2
2、如果 x 3,那么 x 3 ;
2
3、如果 x a(a 0) ,
2
那么 x a 。
用带有根号的式子填空,看看结果有什么特点:
1.面积为3的正方形的边长为—— 3。 2.如图所示的值表示正方形的 面积,则正方形的边长是 b 3

人教版《16.1二次根式》课件第一课时

人教版《16.1二次根式》课件第一课时

已知
1 a
有意义,那么A(a,
a)
在第 二 象限.
∵由题意知a<0 ∴点A在第二象限
结束语
谢谢大家聆听!!!
23
定义:式子 a(a 0) 叫做二次根式.
其中a叫做被开方式。
不要忽略
掌握二次根式有意义的条件
二次根式 a 有意义的条件: ____a__≥_0_____
例1.x是怎样的实数时,下列式子在实数范 围内有意义?
(1) x 1
(2) x2 2
(3) x2
(4) 1 3 2x
①被开方数大于或等于零;
②分母中有字母时,要保证分母不为零。
第十六章二次根式
16.1 二次根式
二次根式
(a≥0)表示非负数a的算术平方根,
形如(a≥0)的式子叫做二次根式.
它必须具备如下特点: 1、根指数为2; 2、被开方数必须是非负数.
例1.下列各式是二次根式吗?
(1)32, (2)6, (3)9,
(4)12, (5)m m0 ,
(6) xyx,y异号 , (7)a2,(8)3 5.
切入点:从字母的取值范围入手。 l2.已知 x 2y 9与 x y 3互为相反数,
求 x 、y 的值.
切入点:从代数式的非负性入手。
l3.已知 x 1 ,你能求出 x的取值范围吗?
3 x
切入点:分类讨论思想。
l4.若 1 0 a为一个非负整数,求非负整数 a 的值
若a.b为实数,且| 2a| b20 求 a2 b2 2b1的值。
又 ∵ a+2 +|3b-9|+(4-c) 2=0, ∴ a+2=0 , 3b-9=0 ,4-c=0 。 ∴ a= -2 , b= 3 ,c= 4。 ∴ 2a-b+c=2× (-2) -3+4 = -3。

16,1 二次根式 第一课时八年级数学下册课件(人教版)

16,1 二次根式 第一课时八年级数学下册课件(人教版)

例2 当x 是怎样的实数时, x 2 在实数范围内有意义? 解:由x-2≥0,得x ≥2.
当x ≥2时, x 2 在实数范围内有意义.
1 当a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1; (2) 2a 3;
(3) a;
(4) 5 a .
解:(1)由a-1≥0,得a≥1,所以当a≥1时, a 1 在实数范围内有意义.
当a>0时,-5a<0,则 -5a 不是二次根式.
∴ -5a 不一定是二次根式.
(4) a+1(a≥0)只能称为含有二次根式的式子,不能称为二次根式.
1
1
(5)当x=-3时,(x 3)2 无意义,∴ (x 3)2 也无意义;
1
1
当x≠-3时,(x 3)2 >0,∴ (x 3)2 是二次根式.
3 式子 a+1 有意义,则实数a 的取值范围是( C )
a-2
A.a≥-1
B.a≠2
C.a≥-1且a≠2
D.a>2
知识点 3 二次根式的“双重”非负性(a≥0, a≥0)
同时 a (a≥0)也是一个非负数,我们把这个性质叫做二次根
式的双重非负性.
例3 若 x y 1 (y 3)2 0,则x-y 的值为 ( C )
长的等腰三角形的周长是( B )
A.20或16
B.20
C.16
D.以上答案均不对
若式子
x1 ( x 3)2
有意义,则实数x 的取值范围是( B
)
A.x≥-1
B.x≥-1且x≠3
C.x >-1
D.x >-1且x≠3
本题易错在漏掉分母不为0这个条件,由题意
知x+1≥0且(x-3)2≠0,解得x ≥-1且x≠3.

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1


通常把形如 m a(a 0)的式子也叫做二
次根式,如 3 2, 2a b2 1 等. 24
例题1 化简二次根式:
1 72; 2 12a3; 3 18x2 x 0.
注意判断根号 内字母的取值 范围,
25
例题2 化简二次根式:
1 a;
3
2 5 ;
2x
3 b2 b 0;
aa 0.
29
9a
4 a 1.
a
注意判断根号内 字母的取值范围,
26
写出下列等式成立的条件:
1 (x 2)(x 6) x 2 x 6
2 y 2 y 2
6 y 6 y
27
小结
1.掌握化简二次根式的两个基本步骤: ⑴ 将二次根式中的分母化去; ⑵ 把二次根式中所含的完全平方因式移
不要忽略 4
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
a2 1
3 -2
2a 1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
6
例 1 x是怎样的实数时,式子 x 3
在实数范围内有意义?
试一试(2) x是怎样的实数时,下列各式 在实数范围内有意义?
(1) 2x ; (2) 2x 5 ; (3) 3 x
7
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x

人教版八年级数学下册课件:16.1二次根式(第1课时)


上述问题的结果为
3、
S 、 65 、
,t 可以看出它们表示一些
5
正数的算术平方根. 那么类似于这样的式子,你能试着归纳
特点吗?
共同特点是被开方数为非负数,根指数为2.
新知探究
知识点1:二次根式的定义
一般地,我们把形如 a(a≥0)的式子叫做二次根式. 其中
“ ”称为二次根号.
二次根号
根号a
可以是非负的数或单项 式、多项式、分式等
学习目标
1.了解并掌握二次根式的概念. 2.利用二次根式的概念解决具体问题.
课堂导入
圆形喷泉的面积为 70πm², 那么它的半径是多少?
这个式子有什 么特点呢?
新知探究
思考 用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为 3 的正方形的边长为
的边长为
.
,面积为 S 的正方形
(2)一个长方形的围栏,长是宽的 2 倍,面积为 130m2,则
当 a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1
(2) 1
3a
(3) (a 1)2
本题源于《教材帮》
跟踪训练
当 a 是怎样的实数时,下列各式在实数范围内有意义?
(1) a 1
(2) 1
3a
(3) (a 1)2
解:(3)因为不论a为何值,
≥0恒成立,所以a
取任意实数,
在实数范围内都有意义.
被开方数
新知探究
(1)被开方数 a 既可以是一个数,也可以是一个含有 字母的式子,但前提是 a 必须大于或等于 0. (2) a (a≥0)实际上就是非负数 a 的算术平方根, 它既可以表示开方运算,也可以表示运算的结果. (3)如果已知 a 是二次根式,就意味着满足 a≥0 这一 隐含条件.

八年级数学下册课件: 二次根式(第1课时) 公开课精品课件 (2)


青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
为S的正方形的边长为
S
二、创设情境,引入 新知
.
(2)一个长方形的围栏,长是宽的2倍,面积为 65 130 m2,则它的宽为 m.
(3)一个物体从高处自由落下,落到地面所用的时 间t(单位:s)与开始落下时离地面的高度h(单 位:m)满足关系h=5t2.如果用含有h的式子表示t, h 那么t为_________. 5
2 x

1 x (3)x
x) 1 (4
x2
x

3
• (5)
(6)
总结: • 求二次根式中字母的取值范围的基 本依据: • ①被开方数不小于0; • ②分母中有字母时,要保证分母不 为0.
五、归纳总结
(1)本节课你学习了哪些知识? (2)利用本节课知识,你能解决什么问题?
本节课主要学习了二次根式的定义及被开 方数的取值范围.
(3)全体实数 .
七、布置作业
• 1.教材第3页练习1、2题. • 2.教材第5页习题16.1第1 题.
语文
小魔方站作品 盗版必究
谢谢您下载使用!
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式
16.1 二次根式
第1课时
一、回顾与思考
0 1.4的平方根是_____ 2 ;0的平方根是______.
2.5的平方根是_______ 5 ;5的算术平方根是____. 5 3. 什么叫平方根? 什么叫算术平方根?
二、创设情境,引入新知
用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为3的正方形的边长为 为S的正方形的边长为 . S
3
,面积
(2)一个长方形的围栏,长是宽的2倍,面积为 65 130 m2,则它的宽为 m.
(3)一个物体从高处自由落下,落到地面所用的时 间t(单位:s)与开始落下时离地面的高度h(单 位:m)满足关系h=5t2.如果用含有h的式子表示t, h 那么t为_________. 5
六、检测反馈
• 当a是怎样的实数时,下列各式在实数范围内有意 义? • (1) 3a ;(2) a 1;(3) 6 2a2.
答案:(1)
a
≥0. (2)
a ≤-1.
(3)全体实数 .
七、布置作业
• 1.教材第3页练习1、2题. • 2.教材第5页习题16.1第1题.
• ②分母中有字母时,要保证分母不为0.
五、归纳总结
(1)本节课你学习了哪些知识? (2)利用本节课知识,你能解决什么问题?
本节课主要学习了二次根式的定义及被开 方数的取值范围.
பைடு நூலகம்
利用本节课知识,解决了使二次根式在实数范 围内有意义的被开方数的取值范围问题,此问题在计 算中经常作为隐含条件给出,注意合理应用.
• 0的平方根为0; • 在实数范围内,负数没有平方根;
• 因此,开方时被开方数只能为正数或0.
形如 a (a 0)的式子叫做二次根式.
1. a 表示 a 的算术平方根. 2. a 可以是数,也可以是式. 3. 形式上含有二次根号 4. .
a 0.
5. a 既可表示开方运算,也可表示运算的结果.
四、例题讲解,应用新知
• 例 当x为何值时,下列各式在实数范围内有意义?
• (1) x 3 • (3) 5x
1 x • (5) x • (7) 2
(2) (4)
2 4x 3
1 2 x
(6)
(8)
x 1
x
x
3
总结:
• 求二次根式中字母的取值范围的基本依据: • ①被开方数不小于0;
三、探索新知,解决问题
在上面的问题中,化简的结果分别是 3 , S , 65 ,
h 5
.
它们都表示一些正数的算术平方根.
请同学们议一议:
(1)-1有算术平方根吗? (没有) (2)0的算术平方根是多少? (0) (3)当 a <0时, a 有平方根吗? (没有)
归纳总结:
• 一个正数有两个平方根;
相关文档
最新文档