网架结构设计总结

合集下载

钢网架 工程师总结(二)

钢网架 工程师总结(二)

网架制作与安装网架是用于大跨度房屋屋盖的空间结构体系,其自重轻、跨度大、节约材料。

近20年来网架结构得到了快速的发展。

我国首都机场机库所采用的网架达到宽90M,长360M,是目前跨度最大的网架结构之一。

第一节网架结构的形式网架结构的形式很多,按结构的组成形式可分为:双层网架、三层网架、组合网架。

其中,双层网架是指,由上弦、下弦、和弦杆间的腹杆、组成的网架。

三层网架是指,由上弦、中弦、下弦、和弦杆之间的腹杆、所组成的网架。

组合网架是用钢筋混凝土板替代网架的上弦杆,形成由钢筋混凝土板、钢腹杆、钢下弦组成。

双层网架,按照其网格形式可分为三大类:1平面桁架体系网架这类网架由平面桁架相互交叉组成,其上、下弦杆件长度相等,杆件类型少,且,上下弦和腹杆在同一面内。

由两组分别与边界平行的平面桁架互成90o组成。

见图8-1-1。

这种网架适用于接近正方形和跨度较小的建筑屋盖。

(1)两向正交正放网架图8-1-1两向正交正放网架(2)两向正交斜放网架由两组于边界成45o角的平面桁架,互成90o交叉而成。

见图8-1-2。

比正交正放网架空间刚度大,受力均匀用钢量小。

图8-1-2两向正交斜放网架(3) 两向斜交斜放网架这种网架由两组与边界成一斜角的平面桁架斜向相交而成,其构造复杂受力性能也不好因而很少采用。

见图8-1-3。

2 四角锥体系网架这类网架由倒置四角锥,按一定规律组成。

倒置四角锥的底边为上弦杆,锥菱为腹杆,锥顶间的连杆为下弦杆,其上下弦均是矩形。

图8-1-3两向斜交斜放网架(1) 正放四角锥网架将各个倒置的四角锥底边用上弦杆相连并与边界平行或垂直,用上弦杆平行的杆件,将各锥顶连接 形成四角锥网架,这种网架各个弦杆等长,当腹杆与上、下弦平面的夹角成45o 角时,则所有腹杆长度均相等。

此类网架适用于四边支撑,屋面荷载较大时的情况。

见图8-1-4。

图8-1-4正放四角锥网架(2) 斜放四角锥网架将各个倒置四角锥,底面的角与角相连,上弦杆与边界成45o 角,下弦杆正交正放,腹杆与下弦杆在同一垂直面内,就形成斜放四角锥网架。

空间网架结构设计浅析

空间网架结构设计浅析

空间网架结构设计浅析摘要:随着空间网架结构的应用越来越广泛,网架设计已经成为工程师提升自身设计水平及竞争力的必备能力之一。

本文以实际工程案例作为对象对空间网架的设计,计算以及施工要点进行简要的阐述和分析。

关键词:空间网架设计施工前言:近些年随着行业技术的发展及建筑多样化需求的增长,大跨度结构的应用逐渐增多,尤其是以公共建筑为主,大跨度屋面不仅要保证在地震作用和风作用下的结构安全性,同时要能发挥体现建筑风格的功能,并兼具排水甚至采光等一系列建筑功能,同时要具备较高的经济效益,复杂屋面设计还要能够保证施工的顺利进行;大型公共建筑因为大空间,密集人员交通疏散等建筑功能的需要,采用厚重的钢筋混凝土结构往往达不到理想的效果,空间网架结构通过多年的发展很好的满足这类空间建筑的需求,并得到了广泛的推广。

网架结构是一种空间网状杆系结构,由多根杆件按照一定的网格形式通过节点连接在一起形成的空间受力结构,其往往具备较小的尺寸单元以及相似风格的网格;通常情况下,平板网架简称为网架,曲面网架简称为网壳。

空间网架结构是一种具备三维受力特点的高次超静定结构,除关键杆件外局部单个杆件的失效由于具备一定的超静定次数可引起内力重分布而使结构继续承担荷载,因此具备较高的安全储备。

网架结构的节点一般假定为铰接,在承担外部荷载作用力时,能将所受荷载传递至所有杆件并将这些荷载均匀的分配到空间结构的支座。

平板型网架和双层壳型网架的杆件分为上弦杆,下弦杆和腹杆,主要是拉压杆,仅承担拉力和压力,充分利用材料的物理性能;单层壳型网架的杆件除承受拉力和压力以外还承受弯矩和切力,此时节点不再是单纯的铰接节点而且具备一定的刚度来承担弯矩和变形;腹杆一般相对于弦杆截面较小,作为支撑杆件,对结构整体稳定起到一定的作用。

1.设计背景本工程为某地一中学综合楼,地上四层,地下一层,建筑高度16.8米,顶层作为运动场,屋面采用网架结构。

结构设计使用年限为50年,建筑结构安全等级为二级,抗震设防类别采用乙类,所处地区为抗震设防烈度7度区,地震加速度0.1g,第一组,场地类别为II类场地,特征周期0.35s,框架结构,按政策相关要求,学校医院等乙类建筑抗震等级按所属地区抗震设防烈度提高一度确定,框架抗震等级为二级,计算地震作用加速度采用0.1g,所处场地地面粗糙类别为B类,基本风压0.55KN/ m2,基本雪压0.50KN/ m2;根据地勘报告项目所在场地为抗震一般场地,无不良地质作用。

网架结构杆件和节点的设计与构造

网架结构杆件和节点的设计与构造

(2) 拉力支座节点
常用的拉力支座节点有下列两种型式: 1)平板拉力支座节点 对于较小跨度网架,支座拉力较小,可采
用与平板压力支座相同的构造,利用连接 支座与支承校的锚栓来承受拉力。 2)弧形拉力支座节点 弧形拉力支座节点的构造与弧形压力支座 相似。
6mm时,圆钢管杆件与空心球之间可采用 角焊缝连接,圆钢管内可不加设短衬管。 此时,按与杆件截面等强的条件可计算所
需角焊缝焊脚尺寸hf:
角焊缝的焊角尺寸hf还应符合以下要
求:
① 当t≤4mm时,hf≤1.5t,且不宜小于
4mm;
② 当t>4mm时,hf≤1.2t,且不宜小于 6mm。t为与空心球相连的圆钢管杆件的壁
3)螺栓球节点的设计
(1)螺栓钢球体的设计 螺栓钢球体直径的大小主要取决于高强度
螺栓的直径,高强度螺栓拧入球体的长度 及相邻两杆件轴线之间的夹角。 当网架中各杆件所需高强度螺栓直径确定 以后,螺栓钢球直径的大小应同时满足两 个条件: ① 保证相邻两螺栓在球体内不相碰; ② 保证套筒与钢球之间有足够的接触面。
式中,Nmax——网架杆件(弦杆或腹杆)中的最大拉力
设计值,N;
Nbt——高强度螺栓的抗拉承载力设计值,N;
ψ——螺栓直径对承载力影响系数,当螺栓直径<30mm时, ψ=1.0;
当螺栓直径>30mm时,ψ=0.93。
fbt——高强度螺栓经热处理后的抗拉强度设计值:对40Cr
钢、40B钢、20MnTiB钢为430N/mm2;对45号钢为 365N/mm2;
网架杆件的最小截面尺寸应根据网架跨度 及网格大小确定,
角钢不宜小于∟50×3, 圆钢管不宜小于Φ48×2。 薄壁型钢的壁厚不应小于2mm。
五、网架结构的节点设计与构造

网架结构节点设计解析

网架结构节点设计解析

网架结构节点设计解析网架结构节点是指构成整个网架结构的基本组成部分,它们之间的连接和关系决定了网架的功能和性能。

设计好网架结构节点是一个关键的任务,本文将从设计的目标、关键要素、节点类型和实现方法四个方面对网架结构节点的设计进行解析。

一、设计目标网架结构节点的设计目标是确保整个系统的稳定性、可靠性、可扩展性和性能。

稳定性要求节点之间的通信和数据传输效率高、可靠性高,系统能够长时间运行而不发生故障;可扩展性要求节点能够扩展和缩小,适应不同规模和负载的需求;性能要求节点能够快速响应用户请求,处理大量的数据和并发访问。

二、关键要素1.节点类型:节点可以分为核心节点、边缘节点和终端节点。

核心节点是整个网架的核心部分,负责处理核心任务和协调各个节点的工作;边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载;终端节点是最终的用户访问节点,负责接收用户请求和返回处理结果。

2.节点连接:节点之间的连接可以通过物理连接或逻辑连接来实现。

物理连接是指直接通过网络、硬件等传输媒介进行连接,适用于距离较近、传输速度要求高的情况;逻辑连接是通过软件协议、API等进行连接,适用于跨网络、跨地域的通信。

3.节点功能:节点的功能包括数据处理、存储、计算、通信等,不同节点的功能可以根据具体需求进行配置和分配。

例如,核心节点的存储和计算能力要求较高,边缘节点的通信和转发能力要求较高,终端节点的用户接口和交互能力要求较高。

三、节点类型1.核心节点:核心节点是整个网架的核心部分,负责处理核心任务、协调各个节点的工作和维护整个系统的稳定性和可靠性。

核心节点的设计要考虑高可用性、高性能和高扩展性。

可以采用分布式架构,将不同功能和任务的核心节点分开部署,通过负载均衡和集群技术来分担负载和提高系统性能。

2.边缘节点:边缘节点是核心节点和终端节点之间的桥梁,负责缓冲和转发数据,减轻核心节点的负载,并提高系统的响应速度。

钢网架结构设计方法及其优化措施

钢网架结构设计方法及其优化措施

钢网架结构设计方法及其优化措施摘要:本文深入探讨了钢网架结构设计的关键要点,涵盖了结构节点设计、杆件设计、屋面排水设计以及钢网架结构的耐久性设计对策等多个方面。

文章详细讲解了这些方面的设计原则和实施方法,以及优化设计的重要性和方法。

我们了解到,良好的钢网架结构设计需要基于深入的理论学习,实际经验的积累,以及持续的优化过程,以实现其在实际工程中的最佳表现。

关键词:钢网架结构;设计方法;优化措施1 选择钢网架结构类型的考量在选择钢网架结构的类型时,考虑因素众多。

主要的依据涵盖了结构的几何可变性、特定的载荷需求,以及实际的建设尺寸、形状和支持方式。

此外,制作安装的便捷性和项目的整体经济性也是决策过程中无法忽视的要素。

首先,我们注意到几何可变性对于选择网架结构类型的重要性。

常用的三角锥和四角锥,凭借其几何稳定性,在设计中常成为首选。

这两种单元形式构建的网架体系,在面对任何外力影响下,仍能保持其结构稳定,避免发生变形。

这为工程的安全性和稳定性提供了有力保障。

其次,建筑的实际载荷需求,必须作为决定钢网架类型的重要因素。

根据工程建设的具体需求,以及钢网架结构在受到不同外力时的形状变化性,我们需要选择最合适、最能发挥效能的结构类型。

钢网架的稳定性能始终是设计的首要关注点。

同时,我们需要从全局角度出发,考虑建筑的整体规模、形状、受力状况等因素。

这要求我们不仅要关注工程建设的技术可行性,更要关注经济性。

我们需要制定多套备选方案,从中择优选择,确保既能满足工程技术需求,又能控制好工程的投资成本。

对于平面形状接近正方形的建筑,斜放四角锥网架结构因其材料使用量少,经济性出众,而被广泛采用。

而正放四角锥结构虽然材料使用量较多,但其杆件标准,节点统一度高,非常适合工厂批量生产,因此在实际应用中也十分广泛。

如果平面为矩形,那么斜放四角锥网架、棋盘形四角锥网架和正放抽空四角锥网架则是理想的选择。

至于圆形、多边形等特殊形状的平面,一般倾向于选择三向网架、三角锥网架和抽空三角锥网架。

网架结构设计

网架结构设计

(4-1)
如果将网架作为刚体考虑,则最少的支座约束链杆数为 6,故 r ≥6。
由此可知,当 m ≥ 3J − r 时,为超静定结构的必要条件;当 m =
3J − r 时,为静定结构的必要条件;当 m ≤ 3J − r 时,为几何可变体系。
3.网架几何不变的充分条件 分析网架结构几何不变的充分条件时,应先对组成网架的基本单元进 行分析,进而对网架的整体作出评价。 三角形是几何不变的。如果网架基本单元的外表面是由三角形所组 成,则此基本单元也将是几何不变的。在对组成网架的基本单元进行分析 时,一般有以下两种类型和两种分析方法。 1)两种类型: 自约结构体系 自身就为几何不变体系; 它约结构体系 需要加设支承链杆,才能成为几何不变体系。 2)两种分析方法:
图 4-16 棋盘形四角锥网架
图 4-17 三角锥网架
3)三角锥体系 这类网架的基本单元是一倒置的三角锥体。锥底的正三角形的三边为 网架的上弦杆,其棱为网架的腹杆。随着三角锥单元体布置的不同,上下 弦网格可为正三角形或六边形,从而构成不同的三角锥网架。 ① 三角锥网架 三角锥网架上下弦平面均为三角形网格,下弦三角形网格的顶点对着 上弦三角形网格的形心(图 4-17)。三角锥网架受力均匀,整体抗扭、抗 弯刚度好;节点构造复杂,上下弦节点交汇杆件数均为 9 根。适用于建筑 平面为三角形、六边形和圆形的情况。 上海徐汇区工人俱乐部剧场(六边形,外接圆直径 24m)采用了这种 网架结构型式。
的平面桁架相交而成(图 4-11)。
这类网架受力均匀,空间刚度大。
但也存在一定的不足,即在构造上
汇交于一个节点的杆件数量多,最
多可达 13 根,节点构造比较复杂,
宜采用圆钢管杆件及球节点。
三向网架适用于大跨度 (L>60m),而且建筑平面为三角形、

网架结构的支座设计要点

网架结构的支座设计要点

网架结构的支座设计要点网架(网壳)结构作为一种高次超空间感静定空间杆系结构,由于其受力性能好(理论上杆件只受轴力作用)、刚度大、整体性及抗震性能好、承载力强、受支座不均匀沉降影响小、适应性强,而计算理论的日益完善以及计算机技术飞速发展,使得对任何极其复杂的三维结构的分析与设计成为可能,因此网架结构建筑安装被广泛应用于工业与民用建筑领域中所。

但站台雨棚结构内部结构如果其支承结构、支座型式及边界条件设计不合理会对网架结构的安全性和经济性造成重要影响。

1.支承构造与支承方式目前在很多工程施工中,网架(网壳)一般的专业由大丁草公司根据事先假定的边界约束条件进行设计,再将他们算出来的支座反力作为外加荷载作用剪应力到下部支承结构中。

把网架(网壳)和下部支承结构连在一起计算,网架支座相对于下部结构的位移可以虽然通过弹性约束方法模拟,但是由下部支承结构变形带来的支座沉陷等支座本身的很难估算准确,算出来的结构灵气在某些情况下会与实际情况差别较大,可能会工程施工给工程留下安全隐患。

下部结构可能是柱,也可能是梁,也可能是其他结构形式,不仅刚度是极小的,而且具体情况可能出现工程刚度差异可能很大,在这种假定条件下所,算出来的杆件内力、支座反力及下部结构内力与采用网架支座刚度为刚度且上、下部结构共同工作的物理所计算出来的结果肯定是不相同的。

另外,分开计算割裂了上下部结构的协同工作,使得上、下部结构的周期和位移计算均不准确。

一般会网架的支承可以分为:周边支承、点支承以及点支承与周边支承混合使用三种方式,周边支承是将空心周边节点搁置在梁或柱上,点支承则是将网架支座以较大的间距搁置于独立梁或柱上,柱子与其他结构无联系。

网架(网壳)搁置在梁或柱上才时,可以认为梁和柱的竖向耐久性很大,忽略梁的梁柱变形和柱子轴向变形,因此网架(网壳)支座壁面位移为零,网架(网壳)支座水平变形应考虑下部结构共同工作。

在周边支承网架(网壳)支座的径向应将下部支承结构作为网架(网壳)结构的弹性约束,而点支承网架(网壳)本征值支座的边界条件应充分考虑水平X和Y两个路径的弹性约束。

网架结构毕业设计

网架结构毕业设计

网架结构毕业设计网架结构毕业设计近年来,随着城市化进程的加快和建筑技术的不断发展,网架结构作为一种新兴的建筑形式,逐渐受到人们的关注和喜爱。

网架结构以其轻巧、灵活、美观的特点,成为现代建筑设计中的热门选择。

本文将探讨网架结构的设计原理、应用领域以及发展趋势。

一、设计原理网架结构的设计原理是基于力学和材料学的原理。

其核心思想是通过将杆件和节点相连接,形成一个稳定的三维结构。

杆件承担着承重的功能,节点则起到连接和传递力的作用。

通过合理的设计和布局,使得整个结构能够承受外部荷载,并保持稳定。

在网架结构的设计中,材料的选择是至关重要的。

常见的网架结构材料包括钢材、铝材和复合材料等。

不同的材料具有不同的特点和性能,需要根据具体的使用环境和要求来选择。

同时,设计者还需要考虑材料的强度、刚度、耐久性等因素,以确保结构的安全和可靠性。

二、应用领域网架结构的应用领域非常广泛,涵盖了建筑、桥梁、体育场馆等多个领域。

在建筑领域,网架结构常用于大跨度建筑的设计,如展馆、体育场等。

其轻巧的特点使得大空间的覆盖成为可能,同时还能够创造出独特的建筑形象。

在桥梁领域,网架结构可以用于设计各种形式的桥梁,如悬索桥、斜拉桥等。

其高强度和刚性使得桥梁能够承受大荷载,同时又能够减少材料的使用量。

在体育场馆领域,网架结构可以用于设计大型的体育场馆,如足球场、篮球馆等。

其灵活性和可变形性使得观众能够获得更好的视野和观赛体验。

三、发展趋势随着科技的不断进步和创新,网架结构在设计和施工方面也有了许多新的发展趋势。

首先,数字化设计技术的应用使得网架结构的设计更加精确和高效。

通过计算机模拟和分析,可以在设计阶段就对结构的性能进行评估和优化,从而提高结构的安全性和可靠性。

其次,新材料的应用也为网架结构的发展带来了新的可能。

例如,碳纤维复合材料具有轻质、高强度的特点,可以用于设计更加轻巧和刚性的网架结构。

再者,可持续发展的要求也对网架结构的设计提出了新的挑战。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分析空间网格结构时,应根据结构形式、支座节点的位置、数
量和构造情况以及支承结构的刚度,确定合理的边界约束条件
。支座节点的边界约束条件,对于网架应按实际构造采用两向 或一向可侧移、无侧移的铰接支座或弹性支座。
空间网格结构的支承条件对结构的计算结果有较大的影响,支 座节点在哪些方向有约束或为弹性约束应根据支承结构的刚度 和支座节点的连接构造来确定。
寸过大要合并的数据文件名; 网架屋面排水找坡可采用下列方式:
➢ 上弦节点设置小立柱找坡 ➢ 网架变高度 ➢ 网架结构起坡
容许挠度:
➢ 网架为屋盖短向跨度的1/250
三、结构计算
结构计算 网架结构整体以承受弯曲内力为主,支承条件应提供竖向约束 (结构计算时水平约束可以放松,只是应加局部水平约束处理 以保证不出现刚体位移,或直接采用下部结构的水平刚度), 网架计算时节点可采用铰接模型,并在网架设计与制作中可采 用接近铰接的螺栓球节点。
支座
支座
支座假定:
可滑动铰支座节点、板式橡胶支座节点可按有侧移铰支座计算。常用压 力支座节点可按相对于节点球体中心的铰接支座计算,但应考虑下部 结构的侧向刚度。
支座 支座节点的设计与构造应符合下列规定: ➢ 支座竖向支承板中心线应与竖向反力作用线一致,并与支座节点连接 的杆件汇交于节点中心;
网架设计按满应力设计,将会造成沿受力方向相邻杆件规格
过于悬殊,而造成杆件截面刚度的突变,故从构造要求考虑
,其受力方向相连续的杆件截面面积之比不宜超过1.8倍。 (相邻杆件相差悬殊应人工加以调整,以内力重分布) 对于低应力、小规格的受拉杆件其长细比宜按受压杆件控制
节焊接点空心设球节计点 与构造
空间网格结构的外荷载可按静力等效原则将节点所辖区域内的 荷载集中作用在该节点上。当杆件上作用有局部荷载时,应另 行考虑局部弯曲内力的影响。
大跨度结构中风荷载往往非常关键,特别强调风荷载作用下的 计算。
结构计算 空间网格结构分析时,应考虑上部空间网格结构与下部支承结 构的相互影响。空间网格结构的协同分析可把下部支承结构折 算等效刚度和等效质量作为上部空间网格结构分析时的条件; 也可把上部空间网格结构折算等效刚度和等效质量作为下部支 承结构分析时的条件;也可将上、下部结构整体分析。
结构计算 在抗震分析时,应考虑支承体系对空间网格结构受力的影响 。此时宜将空间网格结构与支承体系共同考虑,按整体分析 模型计算;亦可把支承体系简化为空间网格结构的弹性支座 ,按弹性支承模型进行计算
在进行结构地震效应分析时,对于周边落地的空间网格结构
,阻尼比值可取0.02;对设有混凝土结构支承体系的空间网 格结构,阻尼比可取0.03.
空间网格结构应经过位移、内力计算后进行杆件截面设计,如 杆件截面需要调整应重新进行计算,使其满足设计要求。空间 网格结构设计后,杆件不宜替换,如必须替换时,应根据截面 及刚度等效的原则进行
结构计算 当网架结构符合下列条件之一时,可不考虑温度而引起的内力 :
➢ 支座节点的构造允许网架侧移,且允许侧移值大于或等于网架结构 的温度变形值;
➢ 网架周边支承、验算方向的跨度小于40m,且支承结构为独立柱; ➢ 在单位力作用下,柱顶水平位移大于或等于下式的计算值
结构计算 对用作屋盖的网架结构,其抗震验算应符合下列规定: ➢ 在抗震设防烈度为8度的地区,对于周边支承的中小跨度网架结构 应进行竖向抗震验算,对于其他网架结构均应进行竖向和水平抗 震验算;
四、节点设计与构造
节点设计与构造 确定杆件的长细比时,其计算长度
➢ 注:l为杆件的几何长度(即节点中心间距离)
杆件的长细比要求
节点设计与构造 空间网格结构杆件分布应保证刚度的连续性,受力方向相邻 的弦杆其杆件截面面积之比不宜超过1.8倍,多点支承的网架 结构其反弯点处的上、下弦杆宜按构造要求加大截面。
五、支座
边界条件:与支座节点和支承结构的刚度有关 (当支承结构刚度很大可忽略其变形时,边界 条件完全取决于支座构造)
支座 空间网格结构的支座节点应根据其主要受力特点,分别选用 压力支座节点、拉力支座节点、可滑移与转动的弹性支座节 点以及兼受轴力、弯矩与剪力的刚性支座节点。
பைடு நூலகம்
支座
支座
支座
能较好地承受水平力又能自由转动,比较不符合不动球铰支承的约束条 件且有利于抗震。但构造复杂,一般用于多点支承的大跨度空间网格结 构
➢ 支座球节点底部至支座底板间的距离应满足支座斜腹杆与柱或边梁不 相碰的要求
结构计算 网架结构一般下部为独立柱或框架柱支承,柱的水平侧向刚度 较小,并由于网架受力为类似于板的弯曲型,因此对于网架支 座的约束可采用两向或一向可侧移铰接支座或弹性支座
空间网格结构施工安装阶段与使用阶段支承情况不一致时,应 区别不同支承条件分析计算施工安装阶段和使用阶段在相应荷 载作用下的结构位移和内力
➢ 在抗震设防烈度为9度的地区,对各种网架结构应进行竖向和水平 抗震验算
《抗规》10.2.6 下列屋盖结构可不进行地震作用计算,但应符 合本节有关的抗震措施要求:
➢ 7度时,矢跨比小于1/5的单向平面桁架和单向立体桁架结构可不进 行沿桁架的水平向以及竖向地震作用计算;
➢ 7度时,网架可不进行地震作用计算。
➢国内大跨度结构中采用较多,设计简单,规格 不需统一,球加工制作也简单,有优越性, ➢不足之处:现场工作量大,质量检验工作量大。 国内人工便宜尚有市场,而螺栓球节点内力受到 限制,因此尚有一定的使用价值
节点设计与构造
螺栓球节点
➢ 越来越为工程师接受,发展迅速 ➢ 节点精度高,工厂化生产,现场安装方便,工作量小,速度快 ➢ 高强螺栓质量的重要性
网架结构设计总结
目录
➢网架选型 ➢ 基本规定 ➢ 结构计算 ➢ 节点计算与构造 ➢支座
一、网架选型
交叉桁架体系
四角锥体系
三角锥体系
二、基本规定
基本规定 网架的最优高跨比则主要取决于屋面体系(采用钢筋混凝土屋 面时为1/10~1/14,采用轻屋面时为1/13~1/18) 网架二相邻杆件间夹角不宜小于30度,以免杆件相碰或节点尺
相关文档
最新文档