高考数列不动点法解题方法整理版

高考数列不动点法解题方法整理版
高考数列不动点法解题方法整理版

高中数学-数列公式及解题技巧

数列求和的基本方法和技巧 除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、 等比数列求和公式:?????≠--=--==) 1(11)1()1(111q q q a a q q a q na S n n n 自然数方幂和公式: 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0) 解: ∵x≠0 ∴该数列是首项为1,公比为x 2的等比数列而且有n+3项 当x 2=1 即x =±1时 和为n+3 评注: (1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本 题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论. (2)要弄清数列共有多少项,末项不一定是第n 项. 对应高考考题:设数列1,(1+2),…,(1+2+1 2 2 2-?+n ),……的前顶和为 n s ,则 n s 的值。

二、错位相减法求和 错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出 了这方面的内容。需要我们的学生认真掌握好这种方法。这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列 的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。 [例] 求和:1 32)12(7531--+???++++=n n x n x x x S ( 1≠x )………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。 对应高考考题:设正项等比数列{}n a 的首项2 1 1= a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例] 求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++ 证明: 设n n n n n n C n C C C S )12(53210++???+++=………………………….. ① 把①式右边倒转过来得 113)12()12(n n n n n n n C C C n C n S ++???+-++=- (反序)

不动点法求数列通项公式

不动点法求数列通项公 式 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如: a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

高考数列万能解题方法

数列的项n a 与前n 项和n S 的关系:1 1 (1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果 {}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比 数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差) 可裂项为: 11 1111 ()n n n n a a d a a ++=-?,

1 d = 等差数列前n项和的最值问题: 1、若等差数列{}n a的首项10 a>,公差0 d<,则前n项和 n S有最大值。 (ⅰ)若已知通项 n a,则 n S最大? 1 n n a a + ≥ ? ? ≤ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最大; 2、若等差数列{}n a的首项10 a<,公差0 d>,则前n项和 n S有最小值 (ⅰ)若已知通项 n a,则 n S最小? 1 n n a a + ≤ ? ? ≥ ? ; (ⅱ)若已知2 n S pn qn =+,则当n取最靠近 2 q p -的非零自然数时 n S最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知 n S(即 12 () n a a a f n +++= L)求 n a,用作差法:{11,(1),(2) n n n S n a S S n - = =-≥。 已知 12 () n a a a f n = g g L g求 n a,用作商法: (1),(1) () ,(2) (1) n f n f n a n f n = ?? =?≥ ?- ? 。 ⑶已知条件中既有 n S还有 n a,有时先求 n S,再求 n a;有时也可直接求 n a。 ⑷若 1 () n n a a f n + -=求 n a用累加法: 11221 ()()() n n n n n a a a a a a a --- =-+-++- L 1 a +(2) n≥。 ⑸已知1() n n a f n a +=求 n a,用累乘法:12 1 121 n n n n n a a a a a a a a - -- =???? L(2) n≥。 ⑹已知递推关系求 n a,用构造法(构造等差、等比数列)。 特别地,(1)形如 1 n n a ka b - =+、 1 n n n a ka b - =+(,k b为常数)的递推数列都可以用待 定系数法转化为公比为k的等比数列后,再求n a;形如1n n n a ka k - =+的递推数列都可以除以 n k得到一个等差数列后,再求 n a。 (2)形如1 1 n n n a a ka b - - = + 的递推数列都可以用倒数法求通项。

求递推数列通项的特征根法与不动点法

求递推数列通项的特征根法与不动点法 一、形如21(,n n n a pa qa p q ++=+是常数)的数列 形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特征根法求得通项n a ,其特征方程为2x px q =+…① 若①有二异根,αβ,则可令1212(,n n n a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,n n a c nc c c α=+是待定常数) 再利用1122,,a m a m ==可求得12,c c ,进而求得n a . 例1.已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为232x x =-,解得121,2x x ==,令1212n n n a c c =?+?, 由1122122243a c c a c c =+=??=+=?,得121 12 c c =???= ??, 112n n a -∴=+. 例2.已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a . 解:其特征方程为2 441x x =-,解得121 2x x ==,令()1212n n a c nc ?? =+ ??? , 由1122121()121(2)2 4 a c c a c c ? =+?=????=+?=??,得1246c c =-??=?, 1322n n n a --∴=. 二、形如2n n n Aa B a C a D ++= +的数列 对于数列2n n n Aa B a C a D ++= +,*1,(,,,a m n N A B C D =∈是常数且0,0C AD BC ≠-≠) 其特征方程为A x B x C x D += +,变形为2()0C x D A x B +--=…②

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

【高考数学】高考数列不动点法解题方法整理版

利用“不动点”法巧解高考题 由递推公式求其数列通项历来是高考的重点和热点题型,对那些已知递推关系但又难求通项的数列综合问题,充分运用函数的相关性质是解决这类问题的着手点和关键.与递推关系对应的函数的“不动点”决定着递推数列的增减情况,因此我们可以利用对函数“不动点”问题的研究结果,来简化对数列通项问题的探究。笔者在长期的教学实践中,不断总结探究反思,对那些难求通项的数列综合问题,形成利用函数不动点知识探究的规律性总结,以期对同学们解题有所帮助. 1 不动点的定义 一般的,设()f x 的定义域为D ,若存在0x D ∈,使f x x ()00=成立,则称x 0为f x ()的 不动点,或称00(,)x x 为f x ()图像的不动点。 2 求线性递推数列的通项 定理 1 设()(01)f x ax b a =+≠,,且x 0为f x ()的不动点,{}a n 满足递推关系1()n n a f a -=,2,3, n =,证明{}a x n -0是公比为a 的等比数列。证:∵x 0是f x ()的不动点,所以ax b x 00+=, 所以,所以a n -=+-=-=----x a a b x a a ax a a x n n n 0101010()()··,∴数列{}a x n -0是公比为a 的等比数列。 例1(2010上海文数21题)已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*n N ∈ (1)证明:{}1n a -是等比数列;(2)求数列{}n S 的通项公式,并求出使得1n n S S +>成立的最小正整数n . 证:(1) 当n =1时,a 1=-14;当2n ≥时,a n =S n -S n -1=-5a n +5a n -1+1,即1651n n a a -=+(2)n ≥即 15166n n a a -= +(2)n ≥,记51 ()66f x x =+,令()f x x =,求出不动点01x =,由定理1知:15 1(1)(2)6 n n a a n --=-≥,又a 1-1= -15 ≠0,所以数列{a n -1}是等比数列。(2)解略。 3求非线性递推数列的通项 定理2 设()(00)ax b f x c ad bc cx d +=≠-≠+,,且x x 12、是f x ()的不动点,数列{}a n 满足递推关系a f a n n =-()1,2,3,n =,(ⅰ)若12x x ≠,则数列{ }a x a x n n --12是公比为a x c a x c --12的等比数列;(ⅱ)

数列解题技巧归纳总结---好(5份)

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-? ?-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ??????????????????? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和 求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)

不动点(特征方程)法求数列通项

特征方程法求解递推关系中的数列通项 考虑一个简单的线性递推问题. 设已知数列}{n a 的项满足 其中,1,0≠≠c c 求这个数列的通项公式. 采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述. 定理1.设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当, 其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-. 证明:因为,1,0≠c 由特征方程得.10c d x -=作换元,0x a b n n -= 则.)(110011 n n n n n n cb x a c c cd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用. 例1.已知数列}{n a 满足:,4,N ,23 111=∈--=+a n a a n n 求.n a 解:作方程.2 3,23 10-=--=x x x 则 当41=a 时,.2112 3 ,1101= +=≠a b x a 数列}{n b 是以3 1 -为公比的等比数列.于是.N ,)3 1 (2112323,)31(211)3 1 (111 1∈-+-=+-=-=-=---n b a b b n n n n n n 例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位. 当1a 取何值时,数列}{n a 是常数数列? 解:作方程,)32(i x x +=则.5 360i x +-= a 1= b a n+1=ca n +d

2020届高三数学复习 数列解题方法集锦

2020届高三数学复习 数列解题方法集锦 数列是高中数学的重要内容之一,也是高考考查的重点。而且往往还以解答题的形式出 现,所以我们在复习时应给予重视。近几年的高考数列试题不仅考查数列的概念、等差数列和等比数列的基础知识、基本技能和基本思想方法,而且有效地考查了学生的各种能力。 一、数列的基础知识 1.数列{a n }的通项a n 与前n 项的和S n 的关系 它包括两个方面的问题:一是已知S n 求a n ,二是已知a n 求S n ; 1.1 已知S n 求a n 对于这类问题,可以用公式a n =???≥-=-) 2()1(11 n S S n S n n . 1.2 已知a n 求S n 这类问题实际上就是数列求和的问题。数列求和一般有三种方法:颠倒相加法、错位相 减法和通项分解法。 2.递推数列:?? ?==+) (11n n a f a a a ,解决这类问题时一般都要与两类特殊数列相联系,设 法转化为等差数列与等比数列的有关问题,然后解决。 例1 已知数列{a n }的前n 项和S n =n 2-2n+3,求数列{a n }的通项a n ,并判断数列{a n }是否为 等差数列。 解:由已知:S n =n 2-2n+3,所以,S n-1=(n-1)2-2(n-1)+3=n 2-4n+6, 两式相减,得:a n =2n-3(n ≥2),而当n=1时,a 1=S 1=2,所以a n =???≥-=) 2(32)1(2 n n n . 又a 2-a 1≠a 3-a 2,故数列{a n }不是等差数列。 注意:一般地,数列{a n }是等差数列?S n =an 2 +bn ?S n 2 ) (1n a a n +. 数列{a n }是等比数列?S n =aq n -a. 例2 已知数列{a n }的前n 项的和S n = 2 ) (1n a a n +,求证:数列{a n }是等差数列。 证明:因为S n = 2)(1n a a n +,所以,2 ) )(1(111++++=n n a a n S

高考数学数列答题技巧解析

2019-2019高考数学数列答题技巧解析 数列是高中数学的重要内容,又是学习高等数学的基础。下面是查字典数学网整理的数学数列答题技巧,请考生学习。 高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。 有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。 试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。

1、在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关 问题。 2、在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 3、培养学生善于分析题意,富于联想,以适应新的背景,新的设问方式,提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法. 其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

不动点法求数列通项公式

不动点法求数列通项公式 This model paper was revised by the Standardization Office on December 10, 2020

不动点法求数列通项公式 通常为了求出递推数列a[n+1]=(ca[n]+d)/(ea[n]+f)【c、d、e、f是不全为0的常数,c、e不同时为0】的通项,我们可以采用不动点法来解.假如数列{a[n]}满足a[n+1]=f(a[n]),我们就称x=f(x)为函数f(x)的不动点方程,其根称为函数f(x)的不动点.至于为什么用不动点法可以解得递推数列的通项,这足可以写一本书.但大致的理解可以这样认为,当n趋于无穷时,如果数列{a[n]}存在极限,a[n]和a[n+1]是没有区别的. 首先,要注意,并不是所有的递推数列都有对应的不动点方程,比如:a[n+1]=a[n]+1/a[n].其次,不动点有相异不动点和重合不动点. 下面结合不动点法求通项的各种方法看几个具体的例子吧. ◎例1:已知a[1]=2,a[n+1]=2/(a[n]+1),求通项. 【说明:这题是“相异不动点”的例子.】 先求不动点 ∵a[n+1]=2/(a[n]+1) ∴令 x=2/(x+1),解得不动点为:x=1 和 x=-2 【相异不动点】 ∴(a[n+1]-1)/(a[n+1]+2) 【使用不动点】 =(2/(a[n]+1)-1)/(2/(a[n]+1)+2) =(2-a[n]-1)/(2+2a[n]+2) =(-a[n]+1)/(2a[n]+4) =(-1/2)(a[n]-1)/(a[n]+2) ∵a[1]=2 ∴(a[1]-1)/(a[1]+2)=1/4 ∴{(a[n]-1)/(a[n]+2)}是首项为1/4,公比为-1/2的等比数列

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

数列之特征方程法+不动点法

递推数列特征方程的来源与应用 浙江省奉化二中 周 衡(315506) 浙江省奉化中学 杨亢尔(315500) 递推是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和数学方法。新教材将数列放在高一讲授,并明确给出“递推公式”的概念:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,那么这个公式叫做数列的递推公式。有通项公式的数列只是少数,研究递推数列公式给出数列的方法可使我们研究数列的范围大大扩展。新大纲关于递推数列规定的教学目标是“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,但从近几年来高考试题中常以递推数列或与其相关的问题作为能力型试题来看,这一目标是否恰当似乎值得探讨,笔者以为“根据递推公式写出数列的前几项”无论从思想方法还是从培养能力上来看,都不那么重要,重要的是学会如何去发现数列的递推关系,学会如何将递推关系转化为数列的通项公式的方法。本文以线性递推数列通项求法为例,谈谈这方面的认识。 关于一阶线性递推数列:),1(,11≠+==+c d ca a b a n n 其通项公式的求法一般采用如下的参数法[1],将递推数列转化为等比数列: 设t c ca a t a c t a n n n n )1(),(11-+=+=+++则 , 令d t c =-)1(,即1 -= c d t ,当1≠c 时可得 )1 (11-+=-++c d a c c d a n n 知数列? ?? ? ??-+ 1c d a n 是以c 为公比的等比数列, 11)1 (1--+=-+ ∴n n c c d a c d a 将 b a =1代入并整理,得 ()1 1---+=-c d c b d bc a n n n 对于二阶线性递推数列,许多文章都采用特征方程法[2]: 设递推公式为,11-++=n n n qa pa a 其特征方程为02 2 =--+=q px x q px x 即, 1、 若方程有两相异根A 、B ,则n n n B c A c a 21+= 2、 若方程有两等根,B A =则n n A nc c a )(21+= 其中1c 、2c 可由初始条件确定。

高考数学答题万能公式及解题技巧:公式篇

高考数学答题万能公式及解题技巧:公式篇1.诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(π2-a)=cos(a) cos(π2-a)=sin(a) sin(π2+a)=cos(a) cos(π2+a)=-sin(a) sin(π-a)=sin(a) cos(π-a)=-cos(a) sin(π+a)=-sin(a) cos(π+a)=-cos(a) 2.两角和与差的三角函数 sin(a+b)=sin(a)cos(b)+cos(α)sin(b) cos(a+b)=cos(a)cos(b)-sin(a)sin(b) sin(a-b)=sin(a)cos(b)-cos(a)sin(b) cos(a-b)=cos(a)cos(b)+sin(a)sin(b) tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b) tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b) 3.和差化积公式 sin(a)+sin(b)=2sin(a+b2)cos(a-b2) sin(a)?sin(b)=2cos(a+b2)sin(a-b2) cos(a)+cos(b)=2cos(a+b2)cos(a-b2) cos(a)-cos(b)=-2sin(a+b2)sin(a-b2) 4.二倍角公式 sin(2a)=2sin(a)cos(b) cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a) 5.半角公式 sin2(a2)=1-cos(a)2 cos2(a2)=1+cos(a)2 tan(a2)=1-cos(a)sin(a)=sina1+cos(a) 6.万能公式 sin(a)=2tan(a2)1+tan2(a2) cos(a)=1-tan2(a2)1+tan2(a2) tan(a)=2tan(a2)1-tan2(a2) 7.其它公式(推导出来的 )

用不动点法求数列通项

定义:方程的根称为函数的不动点. 利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法. 定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列. 证明:因为是的不动点 由得 所以是公比为的等比数列. 定理2:设,满足递推关系,初值条件 (1):若有两个相异的不动点,则(这里) (2):若只有唯一不动点,则(这里) 证明:由得,所以 (1)因为是不动点,所以,所以 令,则 (2)因为是方程的唯一解,所以 所以,所以 所以 令,则 例1:设满足,求数列的通项公式 例2:数列满足下列关系:,求数列的通项公式 定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时, 证明:是的两个不动点 即 于是, 方程组有唯一解

例3:已知数列中,,求数列的通项. 其实不动点法除了解决上面所考虑的求数列通项的几种情形,还可以解决如下问题: 例4:已知且,求数列的通项. 解: 作函数为,解方程得的不动点为 .取,作如下代换: 逐次迭代后,得: 已知曲线22:20(1,2,)n C x nx y n -+==K .从点(1,0)P -向曲线n C 引斜率为(0) n n k k >的切线n l ,切点为(,)n n n P x y . (1)求数列{}{}n n x y 与的通项公式; (2)证明:13521n n n x x x x x y -????<),()f x '是()f x 的 导数,设11a =,1()(12)()n n n n f a a a n f a +=-='L ,,. (1)求αβ,的值; (2)证明:对任意的正整数n ,都有n a α>; (3)记ln (12)n n n a b n a βα -==-L ,,,求数列{}n b 的前n 项和n S 13陕西文21.(本小题满分12分)已知数列{}n a 满足, *11212,,2 n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证明:{}n b 是等比数列; (Ⅱ)求{}n a 的通项公式。 山东文20.(本小题满分12分)等比数列{n a }的前n 项和为n S , 已知对任意的n N + ∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上.(1)求r 的值;(11)

高考数列万能解题方法定稿版

高考数列万能解题方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

数列的项n a 与前n 项和n S 的关系:1 1(1)(2)n n n s n a s s n -=?=?-≥? 数列求和的常用方法: 1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求和。 2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数 列) 即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。 3、裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。 适用于数列11n n a a +???????和??(其中{}n a 等差)

可裂项为: 111111()n n n n a a d a a ++=-? 1 d = 等差数列前n 项和的最值问题: 1、若等差数列{}n a 的首项10a >,公差0d <,则前n 项和n S 有最大值。 (ⅰ)若已知通项n a ,则n S 最大?10 n n a a +≥??≤?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最大; 2、若等差数列{}n a 的首项10a <,公差0d >,则前n 项和n S 有最小值 (ⅰ)若已知通项n a ,则n S 最小?1 0n n a a +≤??≥?; (ⅱ)若已知2n S pn qn =+,则当n 取最靠近2q p - 的非零自然数时n S 最小; 数列通项的求法: ⑴公式法:①等差数列通项公式;②等比数列通项公式。 ⑵已知n S (即12()n a a a f n +++=)求n a ,用作差法:{ 11,(1) ,(2) n n n S n a S S n -== -≥。 已知12 ()n a a a f n =求n a ,用作商法:(1),(1)() ,(2) (1) n f n f n a n f n =??=?≥?-?。 ⑶已知条件中既有n S 还有n a ,有时先求n S ,再求n a ;有时也可直接求n a 。

相关文档
最新文档