高考数列求和解题方法大全()

高考数列求和解题方法大全()
高考数列求和解题方法大全()

高考数列求和解题方法大全

数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。 一、利用常用求和公式求和

利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、

等差数列求和公式:d n n na a a n S n n 2

)

1(2)(11-+=+=

2、等比数列求和公式:?????≠--=--==)

1(11)1()1(111

q q q a a q

q a q na S n n

n 3、

)1(211+==∑=n n k S n

k n 4、)12)(1(61

1

2++==∑=n n n k S n

k n

例1. 已知3

log 1

log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由2

1

2log log 3log 1log 3323=?-=?-=

x x x , 由等比数列求和公式得 n n x x x x S +???+++=32=x x x n --1)1(=2

11)21

1(2

1--n =1-n 21 二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2. 求和:132)12(7531--+???++++=n n x n x x x S ………………………①

解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积

当时1=x ,()()[]22

121127531n n n n S n =-+=-+++++=

当时1≠x

设n n x n x x x x xS )12(7531432-+???++++=……………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减)

再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1

----?

+=-- ∴ 2

1)

1()

1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令

)(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。

解析:

①-②得:a na a a a S a n n n lg )()1(12+-+++=-

[]

n n a na n a a

a S )1(1)

1(lg 2

-+--=

∴。 点评:设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列{}n n b a 的前n 项和n S 求解,均可用错位相减法。

三、反序相加法求和

这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.

例4.函数)(x f 对任意R x ∈,都有2

1

)1()(=-+x f x f 。(1)求)2

1(f 和)1()1(n

n f n

f -+

的值;(2)数列{}n a 满足:)1()1

()2()1

()0(f n

n f n f n f f a n +-++++= ,数列{}n a 是 等差数列吗?请给与证明。(3)1

44-=n n a b ,n

S n 16

32-

=,22221n n b b b T +++= 试比较n T 与n S 的大小。

解:(1)令2

1=x ,可得41)21(=f ,21

)11()1()1(

)1(=-+=-+n f n f n n f n f

(2) )1()1

(

)2()1()0(f n n f n f n f f a n +-++++= ∴)0()1

()2()2()1()1(f n

f n f n n f n n f f a n ++++-+-+=

∴)1(2

1

)0()1()1()1()1()0(2+=+++-+++=n f f n n f n f f f a n ∴4

1

+=

n a n (3)n b n 4

=,))1(13212111(16)131211(162

22n n n

T n ?-++?+?+≤++++

= 四、分组法求和

有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. 例5.求数列的前n 项和:231

,,71,

41,111

2-+???+++-n a a a n ,…

解:设)231

()71()41()11(12-++???++++++=-n a

a a S n n

将其每一项拆开再重新组合得

)23741()1

111(12-+???+++++???+++

=-n a

a a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(n

n + (分组求和)

当1≠a 时,2)13(1111n n a

a S n

n -+

--==2)13(11n n a a a n -+--- 例6. 求数列{n(n+1)(2n+1)}的前n 项和.

解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n

k n k k k S 1

)12)(1(=)32(231

k k k n

k ++∑=

将其每一项拆开再重新组合得

S n =k k k n

k n

k n

k ∑∑∑===++1

2

1

3

1

32 (分组)

=)21()21(3)21(2222333n n n +???++++???++++???++

=2)1(2)12)(1(2)1(22++++++n n n n n n n =2

)

2()1(2++n n n 五、裂项法求和

这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项

分解(裂项)如:

(1))()1(n f n f a n -+= (2)

n n n n tan )1tan()1cos(cos 1sin -+=+

(3)1

1

1)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=

n n n n n a n (5)])

2)(1(1

)1(1[21)2)(1(1++-+=+-=n n n n n n n a n

(6)n

n

n n n n n n S n n n n n n n n n a 2)1(1

1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++=

-则 例7. 求数列???++???++,1

1,

,3

21,

211n n 的前n 项和.

解:设n n n n a n -+=++=11

1

(裂项)

则 1

13

212

11+++

???+++

+=

n n S n (裂项求和)

=)1()23()12(n n -++???+-+-=11-+n 例8. 在数列{a n }中,1

1211++

???++++=n n

n n a n ,又12+?=n n n a a b ,求数列{b n }的前n 项的和.

解: ∵ 211211n n n n n a n =++???++++=

∴ )11

1(82

122+-=+?=n n n n b n

∴ 数列{b n }的前n 项和)]1

1

1()4131()3121()211[(8+-+???+-+-+-=n n S n

=)111(8+-n =

1

8+n n

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

数列求和7种方法(方法全,例子多)

数列求和的基本方法和技巧(配以相应的练习) 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+=

2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11) 21 1(2 1--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n

数列求和的8种常用方法(最全)

求数列前n 项和的8种常用方法 一.公式法(定义法): 1.等差数列求和公式: 11()(1)22 n n n a a n n S na d ++==+ 特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+?,即前n 项和为中间项乘以项数。这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,( )111n n a q S q -= -,特别要注意对公比的讨论; 3.可转化为等差、等比数列的数列; 4.常用公式: (1)1 n k k ==∑1 2 123(1)n n n ++++=+L ; (2)21n k k ==∑222211 63 1123(1)(21)()(1)2 n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2 123[ ]n n n +++++=L ; (4)1 (21)n k k =-=∑2135(21)n n ++++-=L . 例1 已知3log 1 log 23-= x ,求23n x x x x ++++ 的前n 项和. 解:由21 2log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 23n n S x x x x =++++L =x x x n --1)1(=2 11)211(2 1--n =1-n 2 1 例2 设123n S n =++++ ,*n N ∈,求1 )32()(++=n n S n S n f 的最大值. 解:易知 )1(21+=n n S n , )2)(1(2 1 1++=+n n S n ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64341++=50 )8(1 2+-n n 50 1≤ ∴ 当 8 8 -n ,即8n =时,501)(max =n f . 二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。如:等差数列的前n 项和即是用此法推导的,就是

数列求和常见的7种方法

数列求与得基本方法与技巧 一、总论:数列求与7种方法: 利用等差、等比数列求与公式 错位相减法求与 反序相加法求与 分组相加法求与 裂项消去法求与 分段求与法(合并法求与) 利用数列通项法求与 二、等差数列求与得方法就是逆序相加法,等比数列得求与方法就是错位相减法, 三、逆序相加法、错位相减法就是数列求与得二个基本方法。 数列就是高中代数得重要内容,又就是学习高等数学得基础。在高考与各种数学竞赛中都占有重要得地位、数列求与就是数列得重要内容之一,除了等差数列与等比数列有求与公式外,大部分数列得求与都需 要一定得技巧、下面,就几个历届高考数学与数学竞赛试题来谈谈数列求与得基本方法与技巧、 一、利用常用求与公式求与 利用下列常用求与公式求与就是数列求与得最基本最重要得方法。 1、等差数列求与公式: 2、等比数列求与公式: 3、4、 5、 [例1]已知,求得前n项与。 解:由 由等比数列求与公式得(利用常用公式) ===1- [例2]设S n=1+2+3+…+n,n∈N*,求得最大值、 解:由等差数列求与公式得, (利用常用公式) ∴= == ∴当,即n=8时, 二、错位相减法求与 这种方法就是在推导等比数列得前n项与公式时所用得方法,这种方法主要用于求数列{an·bn} 得前n项与,其中{a n}、{bn}分别就是等差数列与等比数列。 [例3]求与:………………………① 解:由题可知,{}得通项就是等差数列{2n—1}得通项与等比数列{}得通项之积 设………………………。②(设制错位)

①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列得求与公式得: ∴ [例4] 求数列前n 项得与、 解:由题可知,{}得通项就是等差数列{2n}得通项与等比数列{}得通项之积 设…………………………………① ………………………………② (设制错位) ①—②得 (错位相减) ∴ 三、反序相加法求与 这就是推导等差数列得前n项与公式时所用得方法,就就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个。 [例5] 求证: 证明: 设…………………………、。 ① 把①式右边倒转过来得 (反序) 又由可得 ………….。……、. ② ①+②得 (反序相加) ∴ [例6] 求得值 解:设…………、 ① 将①式右边反序得 ………….。② (反序) 又因为 ① +②得 (反序相加) )89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++???++++=S =89 ∴ S=44、5 题1 已知函数 (1)证明:; (2)求得值。 解:(1)先利用指数得相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明得结论可知, 两式相加得: 所以、 练习、求值:

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n [ [∴当8 -n ,即n =8时,50)(max =n f 题1.等比数列的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a =,b =,c = . 解:原式=答案:

二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. [例3]求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) n n 1432-∴[例4]2 练习题1已知,求数列{答案: 练习题2的前n 项和为____ 答案: 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5]求证:n n n n n n n C n C C C 2)1()12(53210+=++???+++

高中数列求和方法大全

1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常见拆项公式: 111)1(1+-=+n n n n ; 1111()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? 5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 6.合并求和法:如求22222212979899100-++-+-Λ的和。 7.倒序相加法: 8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法: 1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1 ()1()1(n n n x x x x x x S ++++++ =Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 110101011112 -= ++++==k k k k a Λ321Λ个 ] )101010[(9 1 )]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ81 10910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ

(完整)高中数列求和方法集锦

数列求和的常用方法 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高考数列求和解题方法大全

高考数列求和解题方法 大全 YUKI was compiled on the morning of December 16, 2020

高考数列求和解题方法大全 数列求和问题是数列的基本内容之一,也是高考的热点和重点。由于数列求和问题题型多样,技巧性也较强,以致成为数列的一个难点。鉴于此,下面就数列求和问题的常见题型及解法技巧作一归纳,以提高同学们数列求和的能力。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:??? ??≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(61 1 2++==∑=n n n k S n k n 例1. 已知3 log 1 log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x , 由等比数列求和公式得 n n x x x x S +???+++=32=x x x n --1)1(=211) 21 1(2 1--n =1-n 21 二、错位相减法求和

这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 例2. 求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 当时1=x ,()()[]22 121127531n n n n S n =-+=-+++++= 当时1≠x 设n n x n x x x x xS )12(7531432-+???++++=……………② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ 例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令 )(lg N n a a b n n n ∈?=,求数列{}n b 的前n 项和n S 。 解析: ①-②得:a na a a a S a n n n lg )()1(12+-+++=-

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

数列前n项和的求和公式

数列求和的基本方法和技巧 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2) 1(2) (11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11) 1() 1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6 1 12++==∑=n n n k S n k n 5、 213)]1(2 1[+==∑=n n k S n k n [例1] 已知3 log 1 log 23-=x ,求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{}n a 、{}n b 分别是等差数列和等比数列. [例3] 求和:13 2)12(7531--+???++++=n n x n x x x S ………………………①

[例4] 求数列 ??????,22,,26,24,2232n n 前n 项的和. 三、倒序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例5] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 四、分组法求和 有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例6] 求数列的前n 项和:231,,71,41,1112-+???+++-n a a a n ,… [例7] 求数列{n(n+1)(2n+1)}的前n 项和.

(甘志国)数列求和的七种基本方法

数列求和的七种基本方法 甘志国部分内容(已发表于 数理天地(高中),2014(11):14-15) 数列求和是数列问题中的基本题型,但具有复杂多变、综合性强、解法灵活等特点,本文将通过例题(这些例题涵盖了2014年高考卷中的数列求和大题)简单介绍数列求和的七种基本方法. 1 运用公式法 很多数列的前n 项和n S 的求法,就是套等差、等比数列n S 的公式,因此以下常用公式应当熟记: 还要记住一些正整数的幂和公式: 例1 已知数列}{n a 的前n 项和232n n S n -=,求数列}{n a 的前n 项和n T . 解 由232n n S n -=,可得n a n 233-=,160≤?>n a n ,所以: (1)当16≤n 时,n T =232n n S n -=. (2)当17≥n 时, 所以 2 2 32(1,2,,16)32512 (17,) n n n n T n n n n * ?-=?=?-+≥∈??N L 且 例2 求1)2(3)1(21?++-?+-?+?=n n n n S n Λ. 解 设2 )1()1(k n k k n k a k -+=-+=,本题即求数列}{k a 的前n 项和. 高考题1 (2014年高考浙江卷文科第19题(部分))求数列{}21n -的前n 项和n S . 答案:2n S n =. 高考题2 (2014年高考四川卷理科第19题(部分))求数列{}24n -的前n 项和n S . 答案:23n S n n =-. 高考题3 (2014年高考福建卷文科第17题)在等比数列{}n a 中,253,81a a ==. (1)求n a ; (2)设3log n n b a =,求数列{}n b 的前n 项和n S . 答案:(1)1 3 n n a -=;(2)22 n n n S -=. 高考题4 (2014年高考重庆卷文科第16题)已知{}n a 是首项为1,公差为2的等差数列,

(完整word版)数列求和的各种方法

教学目标 1熟练掌握等差、等比数列的前 n 项和公式. 2 ?掌握非等差、等比数列求和的几种常见方法. 3?能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1求数列的前n 项和的方法 (1) 公式法 ①等差数列的前n 项和公式 n n 1 , =na i + d . 2 ②等比数列的前n 项和公式 (I )当 q = 1 时,S n = na i ; (2) 分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 倒序相加法 这是推导等差数列前 n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5) 错位相减法 这是推导等比数列的前 n 项和公式时所用的方法,主要用于求 {a n ? b n }的前n 项和,其中{a n }和{b n } 分 别是等差数列和等比数列. ⑹并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如 a n = (— 1)n f (n)类型,可采用两项 合并求解. 例如,S n = 1002— 992+ 982 — 972+…+ 22 — 12= (100 + 99) + (98 + 97)+…+ (2 + 1) = 5 050. 数列求和的方法 n a i a n Si=— 2 (n )当q 丰1时, a i 1 q n 1 q a 1 — a n q 1 - q ③常见的数列的前 n 项和:1 +n=垃 1) , 1+3+5+??…+(2r — 1)= n 2 2 12 22 32 +n 2 n(n 罟,13 23 33 +n 3 2 n(n 1)等 2

数列求和7种方法(方法全_例子多)

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式)

=x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n -1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2 +cn ,则a = ,b = ,c = . 解: 原式= 答案: 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1) 1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和.

数列求和及求通项方法归纳

1 ①形如a n 1 n(n ,可裂项成a n k) i ,1 k (n 丄),列出前 n k n 项求和消去一些项 ②形如a n 1 ------ ,可裂项成 、n k a n k n), 列出前n 项求和消去 些项 例:已知数列a n (n 1)(n 1)(n 2), a 1 1,求前n 项和 S n 数列求和及求通项 、数列求和的常用方法 1、公式法: 利用等差、等比数列的求和公式进行求和 2、错位相减法:求一个等差数列与等比数列的乘积的通项的前 n 项和,均可用错位相减法 例:已知数列a n ,求前n 项和S n 3 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项

4 、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。例:已知数列a n 2n 2n 1,求前n项和S n 5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广) 一、数列求通项公式的常见方法有: 1、关系法 2、累加法 3、累乘法 4、待定系数法 5、逐差法 6、对数变换法 7、倒数变换法 8、换元法

9、数学归纳法 累加法和累乘法最基本求通项公式的方法 求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列, 过累加法或累乘法求出通项公式。 二、方法剖析 1、关系法:适用于S n f(n)型 2 例:已知数列a n的前n项和为S n n n 1,求数列a.的通项公式 2、累加法:适用于a n 1 a n f(n)- 广义上的等差数列 求解过程:若a n 1a n f(n) 则a2a1f(1) a3a2f(2) 累加f a n a n 1f(n1) 1 1n 1 所有等式两边分别相加得: a n a1 f (k) 则a n a1f(k) k 1k 1 例:已知数列a n满足递推式a n 01 12n 1(n 2),a11, 求a n的通项公式再通 求解过程:a n a i S i(n 1) S n S n i(n 2)

数列求和7种方法(方法全-例子多)

数列求和 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(6112++==∑=n n n k S n k n 5、 21 3)]1(21[+==∑=n n k S n k n [例1],求???++???+++n x x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 题1.等比数列 的前n项和S n=2n-1,则= 题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c = 二、错位相减法求和 { a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+???++++=n n x n x x x S ………………………① [例4] 求数列??????,2 2,,26,24,2232n n 前n 项的和.

练习题1 已知 ,求数列{a n }的前n 项和S n . 练习题2 的前n 项和为____ 三、反序相加法求和 这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +. [例6] 求 89sin 88sin 3sin 2sin 1sin 22222++???+++的值 题1 已知函数 (1)证明:; (2)求 的值. 练习、求值: 四、分组法求和 [例7] 求数列的前n 项和:231,,71,41, 1112-+???+++-n a a a n ,…

详解数列求和的方法+典型例题

详解数列求和的常用方法 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+ =+= 2、等比数列的前n 项和公式 ?? ? ??≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(2 1 3211+= +?+++== ∑=n n n k S n k n (2)、)12)(1(6 1 321222212++= +?+++== ∑=n n n n k S n k n (3)、23 3331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列 }{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1 -n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1 321+=+?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则1 2 321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ②

①式—②式:n n n nq q q q q S q -+?++++=--1 321)1( ?)1(11 132n n n nq q q q q q S -+?++++-= - ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1) 1(12 综上所述:????????? ≠≠----=+==)10(1) 1(1)1)(1(2 1 )0(02 q q q nq q q q n n q S n n n 且 解析:数列}{1 -n nq 是由数列{}n 与{}1-n q 对应项的积构成的, 此类型的才适应错位相减,(课本中的的等比数列前n 项和公式就是用这种方法推导出来的),但要注意应按以上三种 情况进行分类讨论,最后再综合成三种情况。 第三类:裂项相消法 这是分解与组合思想在数列求和中的具体应用。 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解(裂项)如: 1、乘积形式,如: (1)、1 1 1)1(1+- =+= n n n n a n (2)、)1 21 121(211)12)(12()2(2+--+=+-= n n n n n a n (3)、]) 2)(1(1 )1(1[21)2)(1(1++-+=++=n n n n n n n a n ( 4 ) 、 n n n n n n n n S n n n n n n n n n a 2 )1(1 1,2)1(12121)1()1(221)1(21+-=+-?=?+-+=?++= -则 2、根式形式,如:

相关文档
最新文档