数字图像处理 图像匹配

合集下载

如何进行高效的图像匹配和图像配准

如何进行高效的图像匹配和图像配准

如何进行高效的图像匹配和图像配准图像匹配和图像配准是计算机视觉领域中常见的任务,其目的是通过计算机算法将两幅或多幅图像进行比较,从而找出它们之间的相似性或者进行图像的对齐。

本文将介绍一些高效的图像匹配和图像配准的方法。

一、图像匹配图像匹配即是将一幅图像中的特征在另一幅图像中找到对应物体或者区域。

下面是一些常见的图像匹配方法:1.特征点匹配特征点匹配是最常见的图像匹配方法之一,它通过在图像中提取特征点,并计算特征点的描述子,然后使用某种度量来比较两幅图像的特征点,找出最相似的特征点对。

常用的特征点匹配算法包括SIFT、SURF和ORB等。

2.直方图匹配直方图匹配是一种基于图像全局颜色或纹理分布的匹配方法,它将图像的直方图进行比较,通过计算直方图之间的相似性度量来进行匹配。

直方图匹配适用于颜色和纹理信息较为明显的图像匹配任务。

3.模板匹配模板匹配是一种基于像素点灰度值的匹配方法,它通过将一个预定义的模板图像滑动或者扫描到待匹配图像上,计算模板和图像之间的相似性度量,从而找到最佳匹配位置。

模板匹配适用于物体检测和目标跟踪等应用场景。

4.特征描述子匹配特征描述子匹配是一种将图像中的局部特征点的描述子进行比较的匹配方法,它通过计算特征点描述子之间的相似性度量找到最佳匹配。

常用的特征描述子匹配算法包括基于二值描述子的BRISK和ORB,基于二进制描述子的BRIEF和FREAK,以及基于浮点数描述子的SIFT、SURF和AKAZE等。

二、图像配准图像配准是将两幅或多幅图像进行对齐,使得它们在空间上或者几何上具有一致性。

下面是一些常用的图像配准方法:1.特征点配准特征点配准是将两幅图像中的特征点进行对应的一种配准方法,它通过计算特征点的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像的特征点对应一致。

常用的特征点配准方法包括RANSAC、LMS和Hough变换等。

2.像素级配准像素级配准是将两幅图像的像素进行一一对应的配准方法,它通过计算图像间的几何变换关系,然后将其中一幅图像进行变换,使得两幅图像在几何上对应一致。

图像匹配的算法种类和原理

图像匹配的算法种类和原理

图像匹配的算法种类和原理
图像匹配是一种广泛应用于计算机视觉领域的技术,用于判断两个或多个图像之间的相似性或是否存在某种关联。

以下是几种常见的图像匹配算法和其原理:
1. 直方图匹配:该算法基于图像的颜色分布,通过比较两个图像的直方图来评估它们的相似性。

直方图是一种将图像像素值与其频率关联起来的统计工具。

2. 特征点匹配:该算法通过提取图像中的特征点,如角点、边缘等,然后比较两个图像中的特征点之间的距离或相似性来确定它们之间的匹配关系。

常见的特征点匹配算法包括SIFT、SURF 和ORB。

3. 模板匹配:该算法使用一个预先定义好的模板图像,将其与输入图像进行比较,找出最佳匹配的位置。

模板匹配算法通常使用相关性或差异性度量来评估匹配程度。

4. 形状匹配:该算法旨在比较图像中的形状特征,例如提取图像边界上的轮廓,并计算它们之间的相似性。

形状匹配通常与图像分割和轮廓提取技术结合使用。

5. 神经网络匹配:近年来,深度学习和卷积神经网络(CNN)等技术的发展为图像匹配带来了新的突破。

使用深度神经网络,可以学习到更高级别的特征表示,并通过训练模型来实现图像匹配任务。

这些算法各有优缺点,并且在不同应用场景下具有不同的适用性。

在实际应用中,经常需要结合多种算法来实现更准确的图像匹配结果。

数字图像处理图像匹配

数字图像处理图像匹配

DIP-7 图像匹配一.题目要求选择摸板8,将选定模板与10个图实施匹配运算。

如果匹配成功,请说明图号和摸板左上角像素在匹配图象所在的坐标。

二.算法分析设检测对象的模板为t(x,y),令其中心与图像f(x,y)中的一个像素(i,j)重合,检测t(x,y)和图像重合部分之间的相似度,对图像中所有的像素都进行这样的操作,根据相似度为最大或者超过某一阈值来确定对象物是否存在。

本题目中则用到的是普通的模式匹配,即对每一幅图像的每一个像素进行一一的核对。

三.实现代码clear allg = imread('D:\matlab2011\work\m08.tif');[gm,gn] = size(g);f(1).num = imread('D:\matlab2011\work\p7-01.tif');f(2).num = imread('D:\matlab2011\work\p7-02.tif');f(3).num = imread('D:\matlab2011\work\p7-03.bmp');f(4).num = imread('D:\matlab2011\work\p7-04.tif');f(5).num = imread('D:\matlab2011\work\p7-05.tif');f(6).num = imread('D:\matlab2011\work\p7-06.tif');f(7).num = imread('D:\matlab2011\work\p7-07.tif');f(8).num = imread('D:\matlab2011\work\p7-08.tif');f(9).num = imread('D:\matlab2011\work\p7-09.tif');f(10).num = imread('D:\matlab2011\work\p7-10.tif');for len = 1:10[fm,fn] = size(f(len).num);for i = 1:fm-gmfor j = 1:fn-gnflag = 1;for k = 1:gmfor t = 1:gnif g(k,t) ~= f(len).num(i+k,j+t);flag = 0;break;endendif ~flagbreak;endendif flagbreak;endendif flagbreak;endendif flagbreak;endenddisp('图像为:');disp(len);disp('x,y的坐标分别为:');disp(i);disp(j);subplot(121);imshow(g);title('摸板8');subplot(122);imshow(f(len).num);title('原图像');四.结果分析由上图可知,原图像为第九幅,即“p7-09.tif”匹配坐标为:x = 206,y=254 。

图像配准与匹配在MATLAB中的实现方法

图像配准与匹配在MATLAB中的实现方法

图像配准与匹配在MATLAB中的实现方法引言图像配准与匹配是数字图像处理领域的重要研究方向,广泛应用于医学图像处理、遥感图像处理、计算机视觉等领域。

图像配准与匹配的目标是找到多幅图像之间的几何变换关系,使它们能够在相同的坐标系统下进行比较、融合或分析。

而MATLAB作为图像处理与分析的重要工具,提供了丰富的函数和工具箱,可以方便地实现图像配准与匹配。

一、图像配准与匹配的概念1. 图像配准图像配准是将多幅图像投影到同一坐标系统的过程。

其目标是找到一个几何变换关系,使得多幅图像在此变换下能够对齐,即各个像素点所代表的相同位置的物理含义保持一致。

图像配准可以分为刚性配准和非刚性配准。

刚性配准是指在图像进行配准过程中,只考虑平移、旋转和缩放三种刚性变换,并忽略了图像的非刚性变形。

非刚性配准则考虑了更加复杂的变换,例如弯曲、扭曲等。

2. 图像匹配图像匹配是指在完成配准后,进一步比较和分析图像之间的相似性。

图像匹配可以通过计算图像间的相似性度量指标,例如均方差、相关系数等,得出两幅图像的相似程度。

在医学图像中的应用广泛,例如针对同一患者不同时间点的影像图像,可用于疾病进展的监测和分析。

二、MATLAB中图像配准与匹配的实现方法1. 刚性变换配准MATLAB提供了一些函数,例如"imregtform"和"imregister"等,可以实现图像的刚性配准。

通过这些函数,我们可以选择适当的变换模型,例如平移、旋转和缩放,配准多幅图像。

以"imregister"函数为例,其使用方法如下:```movingRegistered = imregister(moving,fixed,transformType,optimizer,metric);```参数中,moving代表待配准的移动图像,fixed代表已经配准好的固定图像。

transformType表示选择的变换模型,optimizer和metric表示配准的优化器和评价指标。

MATLAB中的图像配准与匹配方法

MATLAB中的图像配准与匹配方法

MATLAB中的图像配准与匹配方法图像配准与匹配是计算机视觉领域的重要研究方向。

配准指的是将多幅图像在空间上对齐,使得它们之间的特定特征点或特征区域对应一致。

匹配则是在已经配准的图像中寻找相似的图像区域。

在实际应用中,图像配准与匹配常用于医学图像分析、遥感影像处理、计算机视觉等领域,具有广泛的应用前景。

MATLAB作为一种强大的数值计算与数据可视化软件,提供了丰富的图像处理和计算机视觉函数,使得图像配准与匹配任务变得更加简便和快捷。

下面将介绍几种常用的MATLAB图像配准与匹配方法。

一、基于特征点的图像配准特征点是图像中具有鲁棒性和独特性的点,常常用于图像配准任务。

在MATLAB中,可以使用SURF(Speeded-Up Robust Features)或SIFT(Scale-Invariant Feature Transform)等函数来检测图像中的特征点。

然后可以通过计算特征点间的相似度或使用一致性约束等方法来对图像进行配准。

二、基于图像区域的图像配准除了特征点外,图像的局部区域也可以作为配准的参考。

一种常用的方法是使用归一化互相关(Normalized Cross Correlation)来度量两幅图像之间的匹配度。

在MATLAB中,可以使用normxcorr2函数来实现归一化互相关操作。

该函数将两幅图像进行归一化,并计算它们之间的互相关系数,从而确定最佳的配准位置。

三、基于形态学的图像配准形态学图像处理是一种基于形态学运算的图像处理方法。

它利用图像中的形状、结构和拓扑信息来进行图像处理和分析。

在图像配准中,形态学操作可以用来提取图像区域的形状信息,并进行形状匹配。

在MATLAB中,可以使用bwmorph函数进行形态学操作,例如腐蚀、膨胀、开运算、闭运算等,从而实现图像的配准与匹配。

四、基于变换模型的图像配准图像配准中常常涉及到图像的几何变换,例如平移、旋转、缩放、投影变换等。

在MATLAB中,可以使用imwarp函数来对图像进行几何变换和配准。

数字图像处理3-直方图均衡,直方图匹配,空间滤波相关等

数字图像处理3-直方图均衡,直方图匹配,空间滤波相关等

Timg(原图) im_1(MATLAB均衡处理) im_2(ps均衡处理)原图的rgb直方图r通道直方图(原图)g通道直方图(原图)b通道直方图(原图)r通道直方图(im_1)g通道直方图(im_1)b通道直方图(im_1)r通道直方图(im_2)g通道直方图(im_2)b通道直方图(im_2)这里找到了一张对比度较低的图像timg,其原本的对比度很低。

之后分别用MATLAB和ps对其进行了直方图均衡,生成了im_1与im_2,可见其处理的效果是有区别的。

MATLAB处理的结果色彩更加艳丽但是相对于原图来说其每个区域的颜色和旁边的区域颜色差别会很巨大,就是使得边界更明显,同时对比度提高了很多。

而ps处理的结果可以看出新的直方图和原直方图相比产生了很多形状上的差别,可见ps的直方图均衡采用了更为复杂的算法。

同时图像对比度以及颜色艳丽的程度得到了提升,但是没有MATLAB处理的效果明显,保持了原图的色调以及部分颜色关系。

Ps中直方图均衡可以一键实现,因此在此不做重点描写,我们来看如何用MATLAB实现这种操作。

MATLAB代码如下:主程序:im=imread('timg.jpg');im_r=change(im(:,:,1));im_g=change(im(:,:,2));im_b=change(im(:,:,3));im1(:,:,1)=im_r;im1(:,:,2)=im_g;im1(:,:,3)=im_b;figure;imshow(im1);imwrite(im1,'im1.jpg');Change函数:function [n] = change(m)n=m;sum=0;for i=0:255for j=1:407for k=1:500if(m(j,k)==i)sum=sum+1;endendendchan=sum/(407*500);chan1=fix(chan*255+0.5);for j=1:407for k=1:500if(m(j,k)==i)n(j,k)=chan1;endendendend[x,xout] = hist(n(:), 0:255);figure;bar(xout, x); xlim([0 255]);MATLAB其实本身有实现直方图均衡效果的函数,这里为了理解算法自己做了这个函数。

图像处理中的灰度直方图匹配算法介绍

图像处理中的灰度直方图匹配算法介绍

图像处理中的灰度直方图匹配算法介绍随着数字图像处理技术的不断发展,图像处理的各种应用已经渗透到了我们日常的生活中。

其中,灰度直方图匹配算法是图像处理中的一个非常重要的工具,它可以帮助我们快速地对图像进行灰度级的调整,从而使我们得到更加清晰明亮的图像。

在本文中,我们将会对灰度直方图匹配算法进行介绍,并探讨一些该算法的相关技术和应用。

一、什么是灰度直方图匹配算法?灰度直方图匹配算法是一种常用的图像处理算法,它可以将一张图像的灰度级转换为另一种灰度级。

在灰度直方图匹配算法中,我们利用图像的灰度直方图来判断该图像的灰度级分布情况,然后去匹配一个新的灰度级分布,以达到改变图像灰度级的效果。

二、灰度直方图匹配算法的原理灰度直方图是指图像中各个灰度级的像素点个数的统计数据,它包含了图像的整体亮度分布情况。

灰度直方图匹配算法可以通过将原始图像的灰度级值进行映射,使其变得更加清晰明亮。

在具体实现时,我们可以采用以下步骤来完成灰度直方图匹配算法:1、统计原始图像的灰度直方图,得到其像素点分布情况。

2、统计目标图像的灰度直方图,得到其像素点分布情况。

3、利用原始图像的灰度级和目标图像的灰度级之间的分布关系,对原始图像的每一个像素进行映射。

这一步可以通过一些数学公式来实现,例如线性变换、S形变换等。

4、得到新的映射后的图像,并进行保存。

三、灰度直方图匹配算法的应用灰度直方图匹配算法在图像处理中有着广泛的应用,例如在数字图像矫正、影像亮度调整、图像增强等方面,都可以采用该算法进行处理。

1、数字图像矫正数字图像矫正是图像处理中的一个重要应用。

传统的数字图像矫正方法通常需要进行图像的旋转、平移等操作,而这些操作常常会导致图像的质量下降。

灰度直方图匹配算法可以在数字图像矫正中起到重要的作用,通过对原始图像和目标图像进行灰度直方图匹配,可以使图像得到更加精确的矫正效果。

2、影像亮度调整影像亮度调整是指对影像中的亮度进行调整,以实现影像明暗的调整。

Matlab中的图像比对和图像匹配技术

Matlab中的图像比对和图像匹配技术

Matlab中的图像比对和图像匹配技术在现代科技的发展中,图像处理技术在各个领域均得到了广泛应用。

其中,图像比对和图像匹配技术是图像处理中的重要组成部分。

在Matlab中,我们可以通过各种函数和工具箱实现不同类型的图像比对和图像匹配任务。

本文将介绍Matlab中的图像比对和图像匹配技术,并探讨其在实际应用中的一些潜在问题。

一、图像比对技术图像比对技术主要用于判断两幅图像之间的相似程度。

在Matlab中,可以通过计算图像的相似性指标来实现图像比对。

常用的相似性指标包括均方差(MSE)、峰值信噪比(PSNR)、结构相似性指数(SSIM)等。

首先,我们来介绍均方差(MSE)指标。

MSE指标是通过计算两幅图像的像素之间的差值平方的平均值来衡量两幅图像之间的相似程度。

在Matlab中,可以使用imabsdiff函数计算两幅图像的差值,然后使用mean函数计算均方差。

同样重要的是峰值信噪比(PSNR)。

PSNR是通过计算两幅图像之间的峰值信噪比来衡量它们之间的相似程度。

在Matlab中,可以使用imread函数读入图像,然后计算两幅图像之间的PSNR值。

除了MSE和PSNR,还有一种常用的相似性指标是结构相似性指数(SSIM)。

SSIM是通过比较两幅图像的亮度、对比度和结构来评估它们之间的相似性。

在Matlab中,可以使用ssim函数计算两幅图像之间的SSIM值。

二、图像匹配技术图像匹配技术用于在两幅或多幅图像中找到相似的部分。

在Matlab中,我们可以使用不同的特征描述算法和匹配算法来实现图像匹配。

特征描述算法是用于提取图像中的特征点的算法。

常用的特征描述算法包括尺度不变特征变换(SIFT)、加速稳健特征提取器(SURF)和高级LBP特征(HOG)等。

在Matlab中,可以使用extractFeatures函数来提取图像中的特征点,并得到特征描述子。

然后,我们可以使用匹配算法来将提取的特征描述子进行匹配。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要图像匹配是图像处理技术中的重要研究内容。

文本介绍了图像匹配技术的要素,对匹配算法的分类以及匹配性能评价指标,并且将各方法进行了分析比较,指出其各自的优势与不足。

同时,进一步探讨了图像匹配算法中有待研究的方向。

图像匹配是将不同时间、不同传感器、不同视角及不同拍摄条件下获取的两幅或多幅图像进行匹配融合。

图像匹配是多种图像处理及应用如物体辨识、变化检测、三维建模等的基础。

图像匹配的方法有很多种,其中基于图像特征的图像匹配是匹配中最常见的方法。

基于特征的图像匹配中,特征主要针对点特征。

基于点特征的图像匹配,特征点的提取是图像匹配的关键步骤,从提取效率、算子稳定性、定位准确性、抗噪性、计算效率上对提取算子进行分析比对,用测试图像对各个提取算子进行实验分析,得出实验结论。

通过特征点匹配算法需满足的三个原则对基于奇异值分解的角点匹配法进行了分析,得出了实验结论。

关键词:图像匹配;传感器;特征;过特征点匹配目录1.设计的要求与目的 ..................................................................................................................................... I I1.1题目 (1)1.2 设计要求 (1)1.3设计目的: (1)1.4性能、接口: (1)2.设计原理 (2)2.1概念解释: (2)2.2数字图像匹配算法设计 (2)2.2.1基于灰度的摸版匹配算法 (3)2.2.2局部灰度特征的编码与计算 (4)3. 设计方案 (6)3.1设计思想 (6)3.2设计流程 (6)4.应用程序设计 (7)4.1程序代码 (7)4.1.1读取原图像过程 (7)4.1.2取特征点 (8)4.1.3映射函数 (8)4.1.4图像匹配 (8)4.1.5输出匹配后图像 (9)4.2界面设计 (10)5.仿真与结果分析 (10)5.1仿真分析 (10)5.2结果分析 (10)结论 (12)参考文献 (13)1.设计的要求与目的1.1题目用特征匹配算法实现数字图像匹配1.2 设计要求所谓图像匹配,就是指图像之间的比较、得到不同图像之间的相似度。

基于数字图像,编写对两副数字图像进行匹配的算法及演示程序。

基本要求: (1).进行匹配的两幅图像为JPG格式或BMP格式。

(2).能够进行对两幅数字图像的匹配。

(3).采用交互式程序对图像进行匹配。

提高要求:能够对数字进行简单处理,例如放大,缩小,翻转,灰度处理,图象二值化。

开发环境:MATLAB 7.1 GUI:MATLAB 7.1自带的GUI界面编辑器1.3设计目的:通过分析题目的基本要求,我将此软件的基本功能主要分为2大模块:一个是数字图像处理模块,另一个是数字图像匹配模块。

在数字图像处理模块中,用户可以对数字图像进行简单的处理,可以对图像进行放大,缩小,翻转,灰度处理。

在数字图像匹配模块中,用户可以对两张图像进行匹配并显示匹配结果。

1.4性能、接口:输入/输出形式:此软件以MATLAB7.1 GUI编辑器开发出的界面作为载体对相映的图像行相应的操作,所以输入输出形式主要是通过MATLAB7.1 GUI编辑器开发出的界面来实现的。

输入形式:输入任何一幅JPG格式或BMP格式的数字图像。

输出形式:将经过相应操作处理后的图片显示出来。

测试数据要求: 任何一幅JPG格式或BMP格式的数字图像。

2.设计原理2.1概念解释:①数字图像:数字图像是由被称做像素的小块区域组成的二维像素矩阵。

一般把图像分成3种形式:单色图像,灰度图像和彩色图像。

②像素:表示图像颜色的最小单位③灰度图像:灰度图是指只含亮度信息,不含色彩信息的图像,就像平时看到的黑白照片:亮度由暗到明,变化是连续的。

灰度图的每个像素的亮度用一个数值来表示,通常数值范围在0—255之间,即可用一个字节来表示,0表示黑,255表示白,而其他表示灰度。

④点阵图:显示器的屏幕由可以发光的像素点组成. 并且从几何位置看, 所用这些像素点构成一个矩形的阵列.利用计算机控制各像素点按我们指定的要求发光,就构成了我们需要的图形.这种方式构成的图形我们可称之为点阵图形.⑤点阵图形的坐标系统:各像素点有一个坐标唯一指定了它的位置.如果点阵图形的大小是N×M, 那么它的点阵共有M行N 列, 每个像素点的位置就由它所在的行和列的位置所唯一确定. 这个行和列的位置就给出了点阵图形的坐标系统. 按照前面的顺序, 第m行, 第n列的像素点顺序数就是m+(n-1)N.反之, 顺序数为s的像素点在第s Mod N行, 第Int(s/N ) + 1列, 这里的s Mod N是s除以N后的余数, Int( s/N ) 是s/N的整数部分.需要注意的是第m行, 第n列的像素点的坐标可能不是(m; n), 而是(m-1; n-1). 这是因为有时为了在计算机中处理的方便, 像素点的行列的排序不是从1, 而是从0开始的.我们常用的显示器的像素坐标就是如此.2.2数字图像匹配算法设计在此软件中我采用了两种图像匹配算法:①基于灰度的模板匹配算法②基于灰度的快速匹配算法。

由于各种各样的原因如(成象条件的差异)图象预处理,引入的误差等,参与图象匹配的模板与潜在的匹配子图象间通常存在着程度不同的不一致,因此根据模板在一幅陌生图象中检测出潜在的匹配对象并得出它在图象中的位置是一件复杂的工作。

2.2.1基于灰度的摸版匹配算法模板匹配是指用一个较小的图像,即模板与源图像进行比较,以确定在源图像中是否存在与该模板相同或相似的区域,若该区域存在,还可确定其位置并提取该区域。

模板匹配常用的一种测度为模手术台与源图像对应区域的误差平方和。

设f(x,y)为M ×N 的源图像,t(j,k)为J ×K(J ≤M,K ≤N)的模板图像,则误差平方和测度定义为:11200(,)[(,)(,)]J K j k D x y f x j y k t j k --===++-∑∑ (2.1)由上式展开可得:111111220000(,)[(,)]2(,)(,)[(,)]J K J K J K j k jkj k D x y f x j y k t j k f x j y k t j k ------=====++-⋅+++∑∑∑∑∑∑(2.2)11200(,)[(,)]J K j k DS x y f x j y k --===++∑∑ (2.3)1100(,)2[(,)(,)]J K j k DST x y t j k f x j y k --===⋅++∑∑ (2.4)11200(,)[(,)]J K j k DT x y t j k --===∑∑ (2.5)DS (x ,y )称为源图像中与模板对应区域的能量,它与像素位置(x ,y )有关,但随像素位置(x ,y )的变化,DS (x ,y )变化缓慢。

DST (x ,y )模板与源图像对应区域的互相关,它随像素位置(x ,y )的变化而变化,当模板t(j ,k)和源图像中对应区域相匹配时取最大值。

DT (x ,y )称为模板的能量,它与图像像素位置(x ,y )无关,只用一次计算便可。

显然,计算误差平方和测度可以减少计算量。

基于上述分析,若设DS (x ,y )也为常数,则用DST (x ,y )便可进行图像匹配,当DST (x ,y )取最大值时,便可认为模板与图像是匹配的。

但假设DS (x ,y )为常数会产生误差,严重时将无法下确匹配,因此可用归一化互相关作为误差平方和测度,其定义为:11(,)(,)(,)J K t j k f x j y k R x y --⋅++=∑∑ (2.6)下图给出了模板匹配的示意图,其中假设源图像f(x,y)和模板图像t(k,l)的原点都在左上角。

对任何一个f(x,y)中的(x,y),根据上式都可以算得一个R(x,y).当x 和y 变化时,t(j,k)在源图像区域中移动并得出R(x,y)所有值。

R(x,y)的最大值指出了与t(j,k)匹配的最佳位置,若从该位置开始在源图像中取出与模板大小相同的一个区域,便可得到匹配图像。

2-1匹配图像⑵基于灰度的快速匹配算法 2.2.2局部灰度特征的编码与计算首先将整幅图像划分为k ×k 尺寸且互不重叠的方块,k 可根据问题任意选择,称该方块为R-块.如果图像的边长不是k 的整数倍,则将最底部与最右边剩余的几行、几列裁剪掉(下文将说明这并不影响最终的匹配结果).对边长为H 的图像,共可得到 H 2/k 2个R-块.对于R-块R i ,S(R i )表示R i 所包含像素的灰度值之和.定义1. R-块(如图2-2中的R 5所示)与其周围8个相邻的R-块(如图2中的R 1,R 2,R 3,R 4,R 6,R 7,R 8,R 9所示)组成R-块的邻域.将R-块的邻域分为4个部分,分别为D 1,D2,D3,D4(如图2-2所示),称为R-块的D-邻域.R-块R5分别属于4个D-邻域,即D1=R1∪R2∪R 4∪R5;D2=R4∪R5∪R7∪R8;D3=R5∪R6∪R8∪R9;D4=R2∪R3∪R5∪R6.对于每个D-邻域中的4个R-块,可规定一个顺序(如图2-3中所取的逆时针序).对Dj所包含的4个R-块的像素灰度值之和S(Rj1),S(Rj2),S(Rj3),S(Rj4)做排序,显然共有4!=24种可能,每种排序结果可以用5位的二进制编码来表示,记作P(Dj)∈{00000,00001,…,10111}.图2-2划分2-3划分后的区域将R-块Ri 所在的4个D-块的P(Dj)做位串拼接,得到F(Ri)=P(D1)P(D2)P(D3)P(D4),即F(Ri)=(P(D1)<<15)+(P(D2)<<10)+(P(D3)<<5)+P(D4).其中,P(Dj )为Ri所在的邻域Dj的二进编码,<<为移位操作,其后面的数字表示移位位数.定义2. F(Ri )为Ri块的20位二进制编码特征表示,简称Ri块的编码.对一幅图像,提取它所有Ri 块的编码,需要计算各个R-块的灰度值和S(Ri)、计算各个D-邻域的编码P(Dj )、计算各个Ri块的编码F(Ri)等共3步.图像最外一圈的Ri块的编码无定义.对于边长为H的图像,上述运算的时间复杂度为O(H2).显然,F(Ri )表示R-块Ri的灰度与相邻8个R-块灰度的分布(序)关系,体现了图像灰度的相对值,因此对整体灰度值的变化具有相对的稳定性.通过对R-块尺寸k的选择,可以改变图像处理粒度的大小,以改变抵抗不同频率噪声的能力.3. 设计方案3.1设计思想定义3. 在待搜索图S上以模板T的长、宽为横向、纵向步长,从S的左上角开始按模板T的大小划分S得到的子图称为限制块,记作C i, j,其中(i,j)为限制块左上角顶点在搜索图S上的坐标.这样划分后,如果在搜索图S的右侧或底部有剩余部分,则相应地从S的最右侧开始向左,或从最底部开始向上划分出一列或一行限制块,使得全部限制块可以完全覆盖搜索图S.这样得到的图S上的限制块的数量为M2/H2。

相关文档
最新文档